Mohamed Boudiaf University of Msila. Faculty of sciences Field : Sciences of matter (SM) 1st year LMD Semester 01.

Physics 01: Mechanics of point particle.

University Year 2024-2025

Series N° 01: Mathematical background

EXERCISE 01:

1- Which of the following quantities are vector or scalar quantities?

(a) Velocity (b) Displacement (c) Kinetic Energy (d) Momentum (e) Acceleration (f) Work (g) Weight (h) Power.

EXERCISE 02:

1- What are the dimensions of the following quantities?

Velocity (*v*), Acceleration (a), Force (F), Density (ρ, which is mass per unit volume), Pressure (P, which is force per unit area).

2- For a fluid with constant density ρ , the velocity v, pressure **P** and height **h** are related by Bernoulli's equation: $P + \frac{1}{2} \rho v^2 + \rho g h = Constant$

g is the acceleration due to gravity.

Show that the left side of the Bernoulli's equation is dimensionally consistent.

3- Use dimensional analysis to determine which of the following equation is certainly wrong?

 $\lambda = vt$, $F = \frac{m}{a}$, $F = \frac{mv}{t}$, $h = \frac{v^2}{2g}$ (λ and h are lengths)

EXERCISE 03 (home work):

The speed of sound, v, in a gas might plausibly depend on the pressure, p, the density, ρ , and the volume, V, of the gas. Use dimensional analysis to determine the formula of v

EXERCISE 04:

1- The magnitude of the centripetal force F_c acting on an object is a function of mass *m* of the object, its velocity *v*, and the radius *r* of the circular path. By the method of dimensional analysis, find an expression for the centripetal force.

2- The frequency of vibration *f* of a mass *m* at the end of spring that has a stiffness constant *k* is related to *m* and *k* by a relation of the form $f = (constant)m^ak^b$.

Use dimensional analysis to find *a* and *b*. it is known that $[f]=[T]^{-1}$ and $[k] = [M][T]^{-2}$.

EXERCISE 05:

1- Newton's law of universal gravitation is given by $F_G = G \frac{m_1 m_2}{r^2}$, where F_G is the force of attraction of one mass m_1 upon another mass m_2 at a distance r. Find the SI units of the constant G.

2- Find the exponents n and m in the formula : $x = \frac{1}{2} a^n t^m$

Where x: distance, a: acceleration and t: time.

EXERCISE 06:

1- Represent the following points in the Cartesian referential: $M_1(3,1,-2)$, $M_2(1,2,1)$, $M_3(-3, 2, 1)$, $M_4(-1,1,2)$ and find the vectors $\vec{A} = \vec{M_1 M_2}$ and $\vec{B} = \vec{M_3 M_4}$

2- Calculate: (a) $\vec{A} + \vec{B}$, (b) $\vec{A} - \vec{B}$, (c) $\|\vec{A}\|$, $\|\vec{B}\|$, (d) $(\vec{A} + \vec{B})^2$, (e) $A^2 + B^2$, (f) $\vec{A} \cdot \vec{B}$, (g) the angle between \vec{A} and \vec{B} , (h) $\vec{A} \wedge \vec{B}$, (i) the directional cosines of \vec{A} and \vec{B} , (j) the unit vector of \vec{A} and \vec{B} .

3- Given the vector $\vec{C} = x\vec{i} + \vec{j} + z\vec{k}$; find x and z for each case: (a) \vec{C} parallel to \vec{A} , (b) \vec{C} is perpendicular to $(\vec{A} \text{ and } \vec{B})$ at the same time.

EXERCISE 07 (home work):

Relative to a fixed origin O, the respective position of three points A, B and C are:

A(3,2, 9), B(-5,11,6), C(4, 0, -8)

1- Determine, in component form, the vectors \overrightarrow{AB} and \overrightarrow{AC}

2- Find the angle BÂC.

3- Calculate the area of the triangle BAC.

EXERCISE 08:

1- By using the properties of the vector product, show that the following equation is satisfied in triangle ABC (see figure 1): $\frac{a}{sing} = \frac{b}{sing} = \frac{c}{siny}$ B

2- Prove that:

$$\cos\alpha = \frac{b^2 + c^2 - a^2}{2bc}$$

EXERCISE 09:

1- Given $\vec{A} = 3t\vec{i} - (t^2 + t)\vec{j} + (t^3 - 2t^2)\vec{k}$. Calculate $\frac{d\vec{A}(t)}{dt}$ and $\frac{d^2\vec{A}(t)}{dt^2}$. Apply for t=2 s. 2- Given $\vec{B} = e^{-wt}\vec{i} + sinwt\vec{j} + coswt\vec{k}$ (w is constant). Calculate $\frac{d\vec{B}(t)}{dt}$ and $\frac{d^2\vec{B}(t)}{dt^2}$

S. HAMRIT, F. MEZAHI

