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Chapter I
Fluid Kinematics

I.1 Introduction
The study of fluid mechanics includes :

 Fluid statics: in this case, we study the fluid at rest (course S3) and the
essential law is the fundamental relation of statics.

 Fluid kinematics is the analytical description of a system in motion. In other
words, we are interested in the movements of fluids in relation to time,
independently of the causes that provoke them, i.e. without taking into
account the forces that are at their source.

 Fluid dynamics, in which fluid motion is studied in the context of
interacting forces.

I.2 Mathematical concepts of fluid mechanics

I.2.1 Differential of a function

Consider the function f which depends on the variables x, y and z, f=f(x ,y, z)
The total differential df is written :

df = + +, Are the partial derivatives of f with respect to x, y and z

I.2.2 Vector analysis operators
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 Gradient of a scalar field
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I.3 Description of a moving fluid
I.3.1 The fluid particle

The fluid particle is chosen as the elementary entity for a complete description of flows:
This is a "packet" of molecules surrounding a given point M, all assumed to have the
same velocity at the same instant.

In the study of fluid motion, we generally define at each point M: the velocity V


,
the density ρ and the pressure P (and possibly the temperature T). Describing the
motion of a fluid calls on notions different from those developed in point or solid
mechanics. Fluid motion is a flow in which there is continuous deformation of
the fluid. In a similar way to solid mechanics, we can isolate (by thought or by
finding a means of visualization, coloring for example) a restricted part of the
fluid called a particle and "follow" it over time, i.e. know its position at each
instant. This position will be known, for example, by its Cartesian coordinates
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x(t,x0 , y0 , z0 ), y(t,x0 , y0 , z0 ) and z(t,x0 , y0 , z0 ) where x0 ,y0 and z0 represent
the coordinates of the chosen particle at time t0 .
The particle's velocity has the following components

t

z
wet

t

y
v,

t

x
u













 (I .1)

The velocity of the fluid particle is then defined by :
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(I.2)

Different types of fluid flow regimes can be observed.
 Permanent (or stationary) regime: quantities do not depend on time. , =

0
t





V


V


(M) (ditto for ρ and P)(this does not mean that the fluid has a

constant velocity everywhere, but only that the fluid velocity at a given
point is the same at every instant.

 Uniform regime: speed does not depend on the point considered = V


V


(t)
 Laminar regime: fluid layers slide relative to each other, speeds are

continuous.
 Turbulent regime: velocities are discontinuous, fluid layers interpenetrate

randomly.

I.3.2 Lagrange description - Euler description
The fluid in motion can be described in two equivalent ways. We can

choose to follow the fluid particles as they move (Lagrange point of view) and
the variables r0 =(x0 , y0 , z0 ) and t are called Lagrange variables.

Lagrange's approach focuses on the trajectory of fluid particles.
We can take a snapshot of the velocity field of all fluid particles at a given

point in time (Euler's point of view). Euler's point of view focuses on the
evolution of fluid properties at different points and over time.

Lagrange's method proves tricky in most cases, since it's not easy to keep
track of the particles: it's rarely used.
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The Euler method consists in knowing the particle velocity over time t at a
given location determined by its coordinates, for example Cartesian x,y and z.

The three projections on a system of Cartesian axes of the velocity )t,r(V


of the

fluid particle passing through point M at time t are called Euler variables. This
method is more widely used than Lagrange's, as knowledge of the velocity field
is sufficient to describe the fluid in motion.

I.4 Current paths and lines
I.4.1 The trajectory :
The trajectory of a fluid particle is defined by the path followed by the particle
over time, i.e. the set of successive positions of the particle during movement.

The trajectory can be visualized by injecting a drop of dye and following its
movement.
Trajectories are generally calculated by eliminating time from the expressions
expressing the position of a fluid particle at each instant:

If we know the velocity in Eulerian description, we can determine the
particle trajectories by integrating this velocity with respect to time.
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Figure I.1 Particle trajectory
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By definition
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This gives us the differential system
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dt
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(I.4)

By integrating this system with the initial conditions r0 =( x0 =x(t0 ), y0 = y(t0 ),
z0=z(t0 )), we obtain the position at each instant:

dt)t,r(Vr))t(z),t(y),t(x()t(r
t

0
00 



By eliminating time, we obtain a relationship between the variables (x, y, z)
corresponding to the equation of the particle's trajectory.

I.4.2 Current lines:
Let's adopt Euler's approach and assume that we know at each instant t the velocity

vector of a fluid particle located at M. The velocity vector )t,M(V


then designates a

vector field.
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Figure I.2 Current lines



Chapter I Fluid Kinematics

6

By definition, a streamline or flowline is a velocity vector field line, i.e. a curve C such

that at a fixed instant t, for any point M C, )t,M(V


is tangent to C at M. When the

velocity field does not depend on time, flowlines do not change over time: the flow
regime is said to be stationary or permanent.

Let dM be an element of the current line, , )dz,dy,dx(dM  dM is parallel in

M to the speed )t,M(V

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(I.5)
Finally, we obtain the relationships defining the current lines

)t,z,y,x(w

dz

)t,z,y,x(v

dy

)t,z,y,x(u

dx


(I.6)

Note:
 Current lines are generally time-dependent, so they deform over time.
 In steady state (stationary flow), velocities no longer depend on time, and the two

previous conditions coincide with :

)z,y,x(w

dz

)z,y,x(v

dy

)z,y,x(u

dx


(I.7)

Figure I.3 Current lines around an obstacle
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The particles continuously follow the same trajectories, generating the same
streamlines. In this particular case, trajectory and current lines are one and the
same.

Other quantities characterizing fluid motion can also be defined:
I.4.3 Current tube:
A current tube is the set of current lines supported by a closed contour.

I.4.4 Emission lines:
Emission lines are the set of all particles that have coincided at an earlier instant with a
fixed point E.

To visualize emission lines, dye can be injected continuously at point E. The
colored curves correspond to the emission lines.

I.5 Particle derivative
Consider a local physical quantity G(M, t) attached to a fluid particle located in M

at time t . We can think of temperature, pressure, density and so on. Let's calculate the
rate of change of this quantity as we follow the particle. This quantity is called the

particle derivative and is denoted by .

Figure I.4 Contour current tube

Figure I.5 Emission lines
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The fluid particle at time t+dt will be at the point with coordinates x+udt, y+vdt, z+wdt

The variation of the G function will therefore be equal to :
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The derivative and called the particle derivative, is equal to :
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(I.8)

This derivative appears as the sum of two terms:

 the first, called convective or advective, is due to the non-uniformity of the flow,
 the second, called temporal, is due to the unsteady nature of the flow

I.6 Particle acceleration
Let's calculate the acceleration of a fluid particle from the Eulerian velocity field

)t,M(V


. Acceleration is the rate of change of the velocity field as it follows a fluid

particle. We therefore have :
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(I.9)
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This gives :
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(I.12)
The acceleration breaks down as follows:

 The first term ( ): is linked to the non-permanent nature of velocity. It's

called the local term.

 The second term .V


: the convective derivative indicates a non-uniform
velocity. It's called the convective term.

I.7 Volume flow and mass flow
To solve fluid mechanics and hydraulics problems, we often use the concepts of

flow rate and mean flow velocity.
Volume flow qv measured in (m3 /s) or (l/s)
Mass flow rate qm measured in (Kg/s)
Volumetric flow is the volume of fluid δvtrav passing through a given surface per unit
time (m3 /s).

δvtrav = qv dt (I.13)

The total volume passing through the surface in question over a period of time (t -t21 )is given by :

2t

1t
vtrav dtqv

(I.14)
The flow rate for a constant velocity perpendicular to a given cross-section of a pipe or
channel (perfect fluid) is :
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qv =V.S (I.15)

qm =ρV.S= ρ.qv (I.16)
(ρ is the density of the fluid)

 Expression of qv as a function of the velocity field on the surface
Volume flow is the flow of the vector V


through the surface in question.


s

v dsn.Vq


(I.17)

 If the flow is in the same direction as the surface normal vector:qv > 0, otherwiseqv< 0
Flux is a synonym for Débit (a 'qtte' which passes through a surface per unit of time,
unit: (''qtte''.s-1 )
Current density means surface flow (or flow per unit area, unit: (''qtte''.m s-2-1 )

 Mass flow is the mass of fluid passing through a given surface per unit time (
Kg.S-1 ).

δmtrav =qm dt (I.18)

 The total mass passing through the surface in question over a period of time (t -
t21 ) is given by :


2t

1t
mtrav dtqm

(I.19)

Mass flow is the flow of the vector through the surface considered:

Figure I.6 Velocity vector flow across a surface
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mtrav dtqm

(I.19)

Mass flow is the flow of the vector through the surface considered:

Figure I.6 Velocity vector flow across a surface
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
s

m dsn.Vq


(I.20)
 If the flow is in the same direction as the surface normal vector :qm >0 Otherwise qm <0

The V


 field thus appears as the mass current density, or surface mass flow.

 In the particular case of a permanent conservative flow through a current tube,
the mass d "bit is conserved: q =qm1m2

 If the fluid is also incompressible: q =qv1v2

I.8 Continuity Equation
It translates the principle of conservation of mass:
The change in mass over time dt of a fluid volume element dv = dx dy dz must be equal
to the sum of the masses of incoming fluid, minus that of outgoing fluid.
Consider a volume element of fluid dv

dv=dx.dy.dz

The mass m=∭ of a portion of fluid volume
bounded by a surface (S) that we follow in its motion

remains constant, so its particle derivative is zero.

(I.21)

I.8.1 Green-Ostrogradsky theorem or divergence theorem

The flux of a vector field )M(A


through a closed surface (S) is equal to the integral
over the volume (v) bounded by (S) of the divergence of the vector field.

Convective

derivative Local derivative

  




Sv v

0dS)n.V(dv
t

dv
dt

d

dt

dm 





A.Adivet

dv).M(AdivdS.n).M(A
S v







 
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(I.22)

So we can write :

(I.23)

0dv)V(divdv
tdt

dm

v v





  





(I.24)

Or still

0dv)V.
t

(
v











(I.25)

Then : On an arbitrary volume (the integral must be zero) this relationship becomes :

(I.26)

0Vdiv
t



 




Is the continuity equation (I.27)

In Cartesian coordinates, this equation is written :

0
z

)w(

y

)v(

x

)u(

t
















 

This is the general continuity equation, applicable to all types of flow, and all types of
compressible and incompressible fluids.

If the fluid is in permanent motion, the density is independent of time, 0



t


and this

becomes :

0
z

)w(

y

)v(

x

)u(












 

0)V(divou 




flow
through the closed surface is

The equation obtained indicates that the
zero (conservation of mass flow).

V




  
vS v

dv)V.(dv).V(divdS).n.V(




0Vdiv
t

V.
t







 







   0dS).n.V(dv).V(div
S v



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For a two-dimensional plane flow we write :

0
y

v

x

u









For one-dimensional flow in the x direction

cteuSqcteu0
x

u
v 




(S flow cross-section)

Special case of an incompressible fluid :
In this case the density ρ =cte

So the continuity equation reduces to : 0Vdiv 


(I.28)

I.8.2 Divergence of a velocity field
I.8.2.1 Definition :

Velocity field divergence ( Vdiv


) is a differential operator with scalar values that
measures changes in the volume of a continuous medium.  A positive (resp. negative)
value is associated with expansion (resp. compression). In Cartesian coordinates, it is
written :

i

i
3

1i i

i

x

v

x

v

z

w

y

v

x

u
Vdiv




















 




In cylindrical coordinates, it is written :

z

vv

r

1

r

)rv(

r

1
Vdiv zr



















We can say that the divergence of the velocity field gives us information about the

change in volume of a fluid element we're following as it moves. If this element
maintains a constant volume, the divergence is zero. If this is true at any point in the

fluid, then the volume of all fluid elements will remain constant throughout the flow:
such a flow is said to be incompressible.

I.9 Some flow examples
I.9.1 Uniform flow
In the absence of deformation and rotation, the flow is said to be uniform. This
movement corresponds to solid translational motion.

0Vdiv0
t







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The pure rotational movement takes place without deformation and is therefore
comparable to solid rotation, as shown in the following figure.

I.9.2 Rotational flow

The rotational velocity field of a flow Vrot


is a vector-valued differential operator that
measures twice the rate of rotation of fluid particles on themselves.
In Cartesian coordinates, the vortex vector is written as :

V

y

u

x

v
x

w

z

u
z

v

y

w

Vrot

















































(I.29)

A rotational flow is characterized by the vortex vector Ω such that :
V


 2
(I.30)

And ω is the turnover rate.
In cylindrical coordinates with )u,u,u(V zr 


,we have :

t=t1 t=t2

M1 M'1

M2
M'2

Figure I.7 Uniform flow without deformation or rotation

A B

D
C

B'

C'

D'
αα

FigureI.8 Deformation-free rotational movement of a volume
of deformation-free fluid
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

































r

zr

z

u

r

)ru(

r

1
r

u

z

u
z

uu

r

1



(I.31)

For a plane flow, this vector has only one non-zero component since
ω =0 and u and v do not depend on z :

ze
y

u

x

v
Vrot


















(I.32)

I.9.3 Current function - Incompressible flow
I.9.3.1Definition :
If the flow of an incompressible fluid is conservative, then the continuity equation is:

0 V.


(eq (I.28))

If we put

A


Is called vector potential
In Cartesian coordinates :

(I.33)

If we consider a flow in the plane  to Oz, and therefore invariant by translation along

z, then: 00 




z

etw from which :

x

A
vet

y

A
u zz








 then: )y,x()y,x(Az  , the function ψ is called the current

function . Therefore :

0 )A.(alorsA,AV


w
y

A

x

A

v
x

A

z

A

u
z

A

y

A

A

A

A

z

y

x

AV

xy

zx

yz

z

y

x








































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


















x
v

y
u





(I.34)

Is the velocity field in Cartesian coordinates.

In cylindrical coordinates, this velocity field is written as :



















r
u

r

1
ur






Or ψ(r, θ) (I.35)

I.9.3.2 Properties of the current function

As we posed
x

v,
y

uet0
y

v

x

u
V.



















Then :

xyyx

22







 

This relationship constitutes Schwartz's theorem. And so dψ is an exact total
differential:

dy
y

dx
x

d












In the plane(x, y), the set of points for which the value of ψ is constant ψ(x,y) = cte
corresponds to the curve y(x) along which dψ=0
On this curve, check that :

(I.36)

Or :
u

v

dx

dy
0udyvdx 

ψ(x,y) = cte then y(x) is such that :

0udyvdxdy
y

dx
x

d 











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(I.37)

Let's calculate the flow between two infinitely adjacent current lines:
Let ψ(x,y) be the current function L and ψ+dψ the adjacent current function M. The
velocity vector V is perpendicular to the line AB and has components u and v in the x
and y directions.

We know that  dsn.Vqv



Flow through AB= flow through AO+flow through OB
Vds= udy-vdx




ddx
x

dy
y

Vds 







And so dqv =dψ therefore, between any two current lines of constants ψA and ψB :
AB

B

A

B

A

vv ddqq   
(I.38)

x

y

u

v

Current line ψ(x,y)

Figure I.9 Qualitative representation of the current line in the (x, y) plane

 

Vvitesse
vecteurdupente

)x(fy
courbedelapente

u

v

dx

dy






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I.9.4 Irrotational flows - velocity potential
I.9.4.1 Definition:
Flow is said to be irrotational when the fluid particles do not undergo pure rotations:

Ω=0, i.e. 0Vrot


In other words, the rotation rate ω is zero in an irrotational flow.
From a mathematical point of view, the relationship   ,0)(



We can then define a scalar φ such that : 


V φ is called the velocity potential. In
the Cartesian reference frame and considering a plane flow, we can therefore write :

z
w

y
v,

x
uV















 et


(I.39)

If we assume that the fluid is incompressible, we must verify :

This leads to the relationship :

0  Laplace equation

0V

00

0

0

0

2
1

z

y

x

xy

xz

yz



















































0
z

w

y

v

x

u
0V. 















0
zyx 2

2

2

2

2

2











 

Figure I.10 Flow between two points and its relationship to current lines

v
u V


B

A

d

y
d

x

udy

x

y
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-

vd

x
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We therefore conclude that the velocity potential must satisfy Laplace's
equation.

Note:
If the flow is irrotational, the current function must also satisfy Laplace's equation :













0

x

y

V 



and 0

0

x

y

0

y

x

0V









































 


 0 0
yx 2

2

2

2












I.9.4.2 Properties of the velocity potential

When a flow is plane, the equation teC),( yx defines, in the plane of the

flow, a curve called "equipotential".

Along this curve, since teC),( yx , we must verify : 0d 

The differential can be written as : y
y

x
x

ddd












And as along an equipotential 0d  , then :

0y
y

x
x

d 







 dd


 0yvxu  dd

v

u

x

y


d
d

(I.40)

So
v

u

x

y


d
d

relationship to be verified at any point on the equipotential.

At any point M(x,y) in the flow plane, the streamline and equipotential are
orthogonal.

M

Figure I.11 Qualitative representation of the current line and
equipotential in the (x, y) plane

x

y

u

v

ψ(x,y)=Cste

v

-u
φ(x,y)=Cste

x

y

d
d
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I.9.4.3 Cauchy-Riemann equations

We can conclude from what we have seen above that :

 The velocity potential(φ) exists only for an irrotational flow.

 The current function(ψ) is applied for rotational and irrotational flow (stationary

and incompressible).

 In the case of irrotational flow, the current function and velocity potential both

satisfy Laplace's equation.

Therefore, for an irrotational and incompressible flow, the following relationship

can be verified:

xy
v

yx
u























(I.41)

These equations are called Cauchy-Riemann equations.

I.9.4.4 Calculating the length of an arc element along a current line

We want to calculate the arc on the current line (ψ(x,y)=cste).
We have : 22 yxs ddd teC




Gold :
yvxu

y
y

x
x

dd

ddd














In addition, along the current line we have ψ(x,y)=cste , i.e.:
u

v

x

y


d
d

therefore:

x
u

v
y dd  by replacing we then obtain

x
u

v
xu

2

ddd  y
v

vu 22

d



(I.42)
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Hence : dd 22 vu

v
y




dd 22 vu

u
x




Then :

(I.43)

So :
V

s




d
d teC




The distance between two equipotentials is inversely proportional to the flow velocity.

 One of the properties of the current function is that the difference in the current
function between two points represents the fluid flow through any line joining
the points.

 If two points lie in the same streamline, in this case there is no flow between
these two points and therefore ψ -ψ12 =0 we then have ψ(x,y)=cste

 Similarly, φ=cste , represents the case where the velocity potential is the same at
each point, and is said to represent an equipotential line.

Given two curves φ=cste and ψ=cste , these two curves intersect at every point.
At the point of intersection of these curves, the slopes are :

For the curve φ=cste: slope =
v

u

x

x
x

y















For curve ψ=cste: slope =
u

v

u

v

x

x
x

y


















The product of the slopes of these curves is : 1
u

v

v

u


This shows that equipotential lines and current lines form an orthogonal network at all
points of intersection.

I.10 Flow representation by complex functions
Many classical plane flows can be represented by complex functions. Let

)y,x(i)y,x()z(f   Where z=x+iy is the complex variable associated with the

complex potential function f(z) (φ and ψ represent the potential and current functions

  22

2
222

22
22

vuvu

vu
yxs
















d
dddd teC
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respectively). For this function f(z) to be analytic, its derivative must be defined
everywhere, i.e.









 z

f
lim

0z 



tends towards the same value regardless of how z tends towards 0.

If we ask:















0y

0x

0y

0x
0z







 ou

And z can be made to tend towards 0 in the following two ways:

Therefore :

z

f

yix

i
lim

yix

i
lim

z

f
lim

0y
0x

0y
0x0z d

d



































 




















 

 x
i

x
lim

0x 






, 










 yy
ilim

0y 







 

x

f

x
i

x 








 

y

f
i

yy
i















This gives :

yy
i

x
i

x 












 

hence :
xyyx 












 

et

This system of equations constitutes the Cauchy-Riemann relations which verify the

relations found above.

Finally, for )y,x(i)y,x()z(f   to be an analytic function, ),( yx and )y,x( must

verify these Cauchy relations.

For a plane flow, which can be described by means of a current function )y,x( and a

velocity potential )y,x( , these Cauchy relations are well verified:

xy
v

yx
u



















et

Consequently, the flow can also be described by means of the complex analytical
function :

)y,x(i)y,x()z(f   Where yixz 

This function is known as the "complex velocity potential".
Properties :
We have seen that for a flow to be described by means of a current function ψ and a
velocity potential φ, these two functions must verify Laplace's equation (Δψ=0 and
Δφ=0).
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Let there be two flows such that :
















222

111
0202

0101






izf
izf

et

et

)(

)(

Since the Laplacian operator is linear, this implies that :








 22112211

22112211

)(

)(




We pose :















0

0

2211

2211






And so: )z(f)z(f)z(f 2211i    , f(z) describes the flow resulting from the

superposition of the two flows f1 and f2 . Consequently, several elementary flows can be
superimposed to create more complex flows, simply by adding the corresponding
complex potentials.
I.10.1 Uniform flow

Consider the plane flow modeled by the complex velocity potential :

Uz)z(f 

We then have : UyiUx)yix(U)y,x(i)y,x(  

By identification, we obtain :

Uy)y,x(

Ux)y,x(







The current lines are such that teC Uy)y,x(

xy  teC These are horizontal lines.

The equipotentials are such that : teC Ux)y,x(

yx  teC are vertical straight lines.

Determining the velocity field :































0
xy

v

U
yx

u
v 




The speed is uniform: xeUv




Current lines: teC Uy)y,x( xy  teC (horizontal lines)

Equipotential: teC Ux)y,x( yx  teC (vertical lines)
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Speed field :

xeUV




I.10.2 Plane flow around a source or well

Consider the plane flow modeled by the complex velocity potential :

zzf lnC)(  Where ieryixz  and C a real constant.

  irierzf 




 lnClnC)(

We can then deduce the current function and velocity potential :




C),(

lnC),(




r

rr

The current lines are such that : teCC),(  r

r teC these are straight lines passing through the origin

The equipotentials are such that : teClnC),(  rr 

 teCr These are concentric circles centered on the origin.

Determining the velocity field :

V


V


V


V


V


V


V


xx

yy
teC

teC

V


xe


ye


Figure I.12 Uniform flow Uz)z(f 
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


























rr
v

rrrv
v









1

1


Or :








0v

rv
v

rC
re

r
V

 C


Speed is therefore radial and inversely proportional to distance from the origin.

If C>0, then flow is directed outwards

 Divergent flow source at origin.

If C<0, then the flow is directed towards the origin

 Convergent flow well at origin.

Physical meaning of the constant C :

The volume flow of this radial flow (source or well) is calculated:

Ψ=cste

φ=cste

x

y

xe


ye


Figure I.13 Uniform flow with complex potential
zzf lnC)( 
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
S

SnVvq d.


Where S is a closed surface surrounding the origin.

renetre
r

V



C

This is a linear flow taking place in the direction to the z axis, in the (xy) plane we can

consider as the integration surface a cylinder of height z=1, and therefore :

 


 dd z
S

S

Since the flow is on a plane, we integrate on a circle of any radius r centered on the

origin.





d. rnVzvq 


d.

2

0
nVrz


where







ren
rerV




C




d
C

2

0 r
rzvq 




2

0
d

C
r

rz z C2

volumetric flow rate per

unit height

2
vq

 C and therefore: zvq
zf ln)(

2
 qv >0: source flow rate

qv <0: well flow rate

I.10.3 Vortex or free vortex

Consider the plane flow modeled by the complex velocity potential :

zlni)z(f C where ieryixz  and C a real constant.

  riiriierizf lnCClnClnC)( 




 

We can then deduce the current function and the velocity potential :








rr

r

lnC),(

C),(




The current lines are such that : teClnC),(  rr 

1
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 teCr These are concentric circles centered on the origin.

The equipotentials are such that : teCC),(   r

r teC These are straight lines passing through the origin.

Determining the velocity field :



















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
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

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rrrv
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

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
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1

1


Or :











r
v

rv
V C

0




er

V
 C



Velocity is therefore ortho-radial and inversely proportional to distance from the origin.

If C>0, then the flow is around the origin in the trigonometric direction.

If C<0, then the flow is clockwise around the origin.

Physical meaning of the constant C :

Let's calculate the velocity "circulation" around the origin:







d.V Where runs an arbitrary current line, i.e. a circle of radius r.

With: er
V

 C
 and  er





dd  



2

0

r
r

d
C

C2
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So
2

C


 and therefore zln
2

i)z(f



 where is the vortex circulation (free vortex).

If >0, the vortex rotates in the trigonometric direction.

If <0, the vortex rotates clockwise.

I.10.4 Corners and stopping points
A "stopping point" is a point where the speed is zero.
Consider the plane flow modeled by the complex velocity potential :

1mz)z(f  C Where
2
1m

In cylindrical coordinates: ierz  and therefore )1m(i1m er)z(f  C

Then we have :
 
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The velocity field is obtained by :
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We find :
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
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V
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
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

Figure I.14 Uniform flow with complex potential
zlni)z(f C
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Note that vr = v = 0 for r = 0 the origin is the stopping point.

The current line passing through the stop point must therefore verify :

A
teC  ),r( Where   0)1m(sinr),r( 1m  

AAAAA C 

The equation for this current line is then written :

  0)1m(sinr 1m  C  







r0)1m(sin

0r




Stop point




 r
)1m(

n
 rn)1m(  

if n=0: r 0  half-right Ax

Since current lines can be likened to impassable barriers, those passing through the

stopping point form "corners": these are the stopping corners.

Let's now analyze the fluid flow between these stop wedges for a few specific values of
m.

1 mzzf C)( where
2
1m

 Case where m=1

x

y

α

2α

A
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  teCsinC)(r,   22r And 



21




m
right-angle corner

teCcossinCcossinC)(r, 


x

r

y

rr  222

teCCteC)(r,  yx2

x
y

teC
 inside this corner, the current lines are hyperbolas

As equipotentials are at all points, they are also hyperbolas.

 Case where m>1

21


 




m

 Case where 0<m<1 









12 m

x

y

x

y
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 Case where
2
1 <m<0, 


 2

1





m

 Where

 2

I.10.5 Doublet and dipole

We know that for a flow to be described by a current function and a velocity potential,

both functions must satisfy Laplace's equation :

x

y

x

y

2
1m 
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0 And 0  i)z(f 

Let's consider 2 flows such as :

1) 01  and 01  111 i)z(f  

2) 02  and 02  222 i)z(f  

Since Laplace's equation is linear :

0)( 22112211  

0)( 22112211  

So if we put 2211   and 2211   then :

0 And 0 )z(f)z(fi)z(f 2211  

Consequently, f(z) describes the flow resulting from the superposition of the two flows
f1 and f2

Several elementary flows can therefore be superimposed to create more advanced flows,
simply by adding the corresponding complex potentials.

I.10.6 Association of a source and a well :

Let's consider a source with flow rate +q, located at x=a, onto which we superimpose a
sink with flow rate -q, located at x=-a.
The resulting complex potential is written as :

)azln(
2

q
)azln(

2

q
)z(f 
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Therefore, the current lines are such that :

teC )(
2

q
21 



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0 And 0  i)z(f 

Let's consider 2 flows such as :

1) 01  and 01  111 i)z(f  

2) 02  and 02  222 i)z(f  

Since Laplace's equation is linear :

0)( 22112211  

0)( 22112211  

So if we put 2211   and 2211   then :

0 And 0 )z(f)z(fi)z(f 2211  

Consequently, f(z) describes the flow resulting from the superposition of the two flows
f1 and f2

Several elementary flows can therefore be superimposed to create more advanced flows,
simply by adding the corresponding complex potentials.

I.10.6 Association of a source and a well :

Let's consider a source with flow rate +q, located at x=a, onto which we superimpose a
sink with flow rate -q, located at x=-a.
The resulting complex potential is written as :
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Therefore, the current lines are such that :
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0 And 0  i)z(f 

Let's consider 2 flows such as :

1) 01  and 01  111 i)z(f  

2) 02  and 02  222 i)z(f  

Since Laplace's equation is linear :

0)( 22112211  

0)( 22112211  

So if we put 2211   and 2211   then :

0 And 0 )z(f)z(fi)z(f 2211  

Consequently, f(z) describes the flow resulting from the superposition of the two flows
f1 and f2

Several elementary flows can therefore be superimposed to create more advanced flows,
simply by adding the corresponding complex potentials.

I.10.6 Association of a source and a well :

Let's consider a source with flow rate +q, located at x=a, onto which we superimpose a
sink with flow rate -q, located at x=-a.
The resulting complex potential is written as :
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Let's extend the distance between the well and the source to 0.
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Let's extend the distance between the well and the source to 0.
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Let's extend the distance between the well and the source to 0.
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I.10.7 Uniform flow around a circular cylinder with circulation

Let's consider a uniform flow around a circle in the presence of a circulation  centered

at the origin. The complex potential function is written: zln
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In view of the logarithmic singularity, the complex plane will be equipped with the half-
axis cutoff

The complex velocity of this flow is expressed as:
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There are several cases depending on the descriminant:

 1er Cases

The discriminant is then positive and the affixes of the two points have the same

modulus:

Figure I.16 Current lines for a dipole
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The two stopping points are therefore on the circle of radius a, in symmetrical positions

with respect to axis Oy. They are marked by the polar angles and π- respectively

with:

0aV4
sin




 

The general flow configuration is shown in figure (I.17).

Without traffic, there are two stopping points at the intersection of the circle and the real

axis. We can therefore see that the influence of traffic is equivalent to shifting the two

stopping points symmetrically with respect to Oy by an ordinate proportional to the

value of the traffic.

 2ème Cases

For this critical traffic value, the two stop points merge with the intersection of the

circle and the Oy axis( = '=π/2). This gives the configuration shown in figure (I.18).

Figure I.17 Flow around a cylinder with circulation (low circulation)
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 3ème Cases

The discriminant of the equation of the affixes of the stopping points is then negative,

so the roots take the form:

  0
2222
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These are pure imaginary, which means that the two stopping points are on the oy axis.

The product of the roots is worth in modulus a2 . This leads to the configuration shown

in figure(I.19).

Figure I.18 Flow around a cylinder with circulation (critical circulation)
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Figure I.19 Flow around a cylinder with circulation (strong circulation)


