Chapter |
Fluid Kinematics

|.1 Introduction
The study of fluid mechanicsincludes:

Fluid statics: in this case, we study the fluid at rest (course S3) and the
essential law is the fundamental relation of statics.

Fluid kinematics is the analytical description of a system in motion. In other
words, we are interested in the movements of fluids in relation to time,
independently of the causes that provoke them, i.e. without taking into
account the forces that are at their source.

Fluid dynamics, in which fluid motion is studied in the context of
interacting forces.

.2 Mathematical concepts of fluid mechanics

|.2.1 Differential of a function

Consider the function f which depends on the variables x, y and z, f=f(x ,y, 2)
Thetotal differential df iswritten :

df=2d +24 +%24
4] (4] a

)

Cl:lﬁ:
l:.:ll.'.“n:

e Z— Arethe partial derivatives of f with respect to x, y and z

|.2.2 Vector analysis operators

» Operator nabla
[
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» Gradient of ascaar field
19f

:i:ﬂx
grad(f) = Rif = {1

i
Al
19z

» Divergence of a vector field

> Rotational vector fields

v, Wy
fy 1z
rot(v) = v = o TV
Nz X
vy _1vy
ix Ty

» Laplacian of afunction

. 2 2 2
Df:NZf:div(gradf):ﬂ 12:+ﬂ 12:+ﬂ 12:
X y® 1z

|.3 Description of a moving fluid

|.3.1 Thefluid particle
The fluid particle is chosen as the elementary entity for a complete description of flows:
This is a "packet” of molecules surrounding a given point M, all assumed to have the
same velocity at the same instant.

In the study of fluid motion, we generally define at each point M: the velocity V |
the density p and the pressure P (and possibly the temperature T). Describing the
motion of afluid calls on notions different from those developed in point or solid
mechanics. Fluid motion is a flow in which there is continuous deformation of
the fluid. In a similar way to solid mechanics, we can isolate (by thought or by
finding a means of visualization, coloring for example) a restricted part of the
fluid called a particle and "follow" it over time, i.e. know its position at each
instant. This position will be known, for example, by its Cartesian coordinates
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X(t.Xo , Yo » Zo ), Y(t.Xo , Yo » Zo) and z(t,Xo , Yo , Zo ) Where Xq ,yo and z, represent
the coordinates of the chosen particle at timet .
The particle's velocity has the following components

u-ﬂ—xv -ﬂet w—E

Y T " (1.2
The velocity of the fluid particleis then defined by :
g _ X9
(;U——T
o3
7_G 1y~ _
_gv—ﬁ_—V(ro,t)
gW:Ei (1.2)
g

Different types of fluid flow regimes can be observed.
» Permanent (or stationary) regime: quantities do not depend on time. , =

%: 0V V (M) (ditto for p and P)(this does not mean that the fluid has a
constant velocity everywhere, but only that the fluid velocity at a given
point isthe same at every instant.

> Uniform regime: speed does not depend on the point considered =V V (t)

» Laminar regime: fluid layers dside relative to each other, speeds are
continuous.

» Turbulent regime: velocities are discontinuous, fluid layers interpenetrate
randomly.

|.3.2 Lagrange description - Euler description
The fluid in motion can be described in two equivalent ways. We can

choose to follow the fluid particles as they move (L agrange point of view) and
the variablesro =(Xo , Yo , Zp ) and t are called L agrange variables.

L agrange's approach focuses on the trgjectory of fluid particles.

We can take a snapshot of the velocity field of al fluid particles at a given
point in time (Euler's point of view). Euler's point of view focuses on the
evolution of fluid properties at different points and over time.

L agrange's method proves tricky in most cases, since it's not easy to keep
track of the particles: it'srarely used.
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The Euler method consists in knowing the particle velocity over timet a a
given location determined by its coordinates, for example Cartesian x,y and z.

The three projections on a system of Cartesian axes of the velocity V(r,t) of the

fluid particle passing through point M at timet are called Euler variables. This
method is more widely used than L agrange's, as knowledge of the velocity field
is sufficient to describe the fluid in motion.

|.4 Current pathsand lines
|.4.1 Thetrajectory :
The trgjectory of afluid particle is defined by the path followed by the particle

over time, i.e. the set of successive positions of the particle during movement.

Trajectory
y of

Figurel.l Particle trgjectory

The trgjectory can be visualized by injecting a drop of dye and following its
movement.

Trajectories are generally calculated by eliminating time from the expressions
expressing the position of afluid particle at each instant:

OM= r(t) = (X(t),y(t),Z(1))

If we know the velocity in Eulerian description, we can determine the
particle trajectories by integrating this velocity with respect to time.

gU(X,y,zt) 8
Consider the given sp%d\7(r,t)=\7(x,y,z,t)=gv(x,y,z,t)% in
EW(X,y,2t)g

Eulerian description.
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2 dx 0
(;X:—T
6 dt -
o odr (& dy”
By definitionV = — =¢y = —+ (1.3
y a8 s Y
¢ dz~
Z=—x
¢
%ﬁzu(x,y,z,t)g
gdt -
L : : cdy +
This gives us the differential systemga =Vv(X,Y,Zt) -

g%:v\(xyzt):
gdt T (14

By integrating this system with the initial conditionsry =( Xg =X(to ), Yo = Y(to ),
z0=z(t, )), we obtain the position at each instant:

t
r(t) = (x(t), y(t),z(t)) = ro + § V (1o, t)ct
0

By eliminating time, we obtain arelationship between the variables (x, y, z)
corresponding to the equation of the particle's trgjectory.

[.4.2 Current lines:
Let's adopt Euler's approach and assume that we know at each instant t the velocity

vector of a fluid particle located at M. The velocity vector V(M,t) then designates a
vector field.

Power line
at t=tg

Power line
at t=t,

Figurel.2 Current lines
5
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By definition, astreamline or flowline is avelocity vector field line, i.e. acurve C such
that at a fixed instant t, for any point M €C,V(M,1t) is tangent to C at M. When the

velocity field does not depend on time, flowlines do not change over time: the flow
regimeissaid to be stationary or per manent.

LetdM  be an element of the current line,,dM = (dx,dy,dz) dm  isparalél in
M to the speedV(M,t) :dM //V O dM UV =0

Gold

2U(X,Y,Zt) gwdy - v dzp 200
V(M t)=V(x,y,zt)= gv(x,y,z,t) -PdM UV = g udz - wax = = 80%

EW(X,Y.Zt)g & vdx-udy 5 £0j

(1.5)
Finally, we obtain the relationships defining the current lines
dx : dy a dz
u(x,y,zt) v(xy,zt) wxy,zt) (1.6)

Figurel.3 Current lines around an obstacle

Note:
» Current lines are generally time-dependent, so they deform over time.

> In steady state (stationary flow), velocities no longer depend on time, and the two
previous conditions coincide with :

dx _ dy _ dz
u(x,y,z) vxYy,z) WXxY,z) (1.7)

6
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The particles continuoudly follow the same trgectories, generating the same
streamlines. In this particular case, trgectory and current lines are one and the
same.

Other quantities characterizing fluid motion can also be defined:

[.4.3 Current tube:

A current tubeisthe set of current lines supported by a closed contour.

Contour
/ /‘\\

|

o~ \ ¥
4

Figurel.4 Contour current tube

|.4.4 Emission lines:
Emission lines are the set of al particles that have coincided at an earlier instant with a
fixed point E.

&
Irajecteire braiecicir
rajecioire
tragectoine coahs ?!l% L
L af, i i irajecioie

] : .-
t : - o

frajectoire de kB carloue
F-émiseenEaf:
-

ligne d'émission
ralative 3= 2t

Figurel.5 Emission lines

To visualize emission lines, dye can be injected continuously at point E. The
colored curves correspond to the emission lines.

|.5 Particle derivative
Consider alocal physical quantity G(M, t) attached to afluid particle located in M

at timet . We can think of temperature, pressure, density and so on. Let's calculate the
rate of change of this quantity as we follow the particle. This quantity is called the

D
particle derivative and is denoted byD—.



Chapter | Fluid Kinematics

The fluid particle at time t+dt will be at the point with coordinates x+udt, y+vdt, z+wdt
The variation of the G function will therefore be equal to :

1G wat + TG g
0t

IS vdt +

dG =G(x+ udt,y +vdt,y + wdt ) - G(x,y,z)= Eudt +
fix fy Nz

d D
The derivatived— D—and called the particle derivative, isequal to:

DG _dG_1G 16, ., 96, ﬂGdt:\7@6+E

Dt dt fx fy 9z Tt Tt (1.8)

This derivative appears as the sum of two terms:

- the firgt, called convective or advective, is due to the non-uniformity of the flow,
- the second, called tempor al, is due to the unsteady nature of the flow

|.6 Particle acceleration
Let's calculate the acceleration of a fluid particle from the Eulerian velocity field

V(M,t) . Acceleration is the rate of change of the velocity field as it follows a fluid
particle. We therefore have :
DV _Du  Dv_ Dw
u+ \'% w
Dt Dt Dt Dt (1.9)

_Gu_flu fu Tx_ fufy fufz ¢

a-"—=—+— —+— L+ —— — =

S S TR VO T VX TR P T
dv _ v JIvix v Ty, iv iz

Yodt Tt ‘Hx It ﬂy ‘Ht Mz 9t
dW ﬂw Tw ﬂx Tw ﬂy w 'ﬂz_

N S T AL T VAL T it 5

DO v v O vO vOEB
QO
1
1

QO

(1.10)
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(1.12)
Thisgives:
2 Du _ fu 0
=—=—+(VN)u
gax Bt ."t+( )u+
gay F\tl 1111—\:+(VN)V:
(éaz-%—"t" %+(VN)WZ
(1.12)

The acceleration breaks down as follows:

d
- Thefirst term ( ﬂ—): is linked to the non-permanent nature of velocity. It's
called the local term.

- The second term V .N : the convective derivative indicates a non-uniform
velocity. It's called the convective term.

|.7 Volume flow and mass flow

To solve fluid mechanics and hydraulics problems, we often use the concepts of
flow rate and mean flow velocity.
Volume flow g, measured in (m*/s) or (I/s)
Mass flow rate g,,, measured in (Kg/s)
Volumetric flow isthe volume of fluid dvy, 5, passing through a given surface per unit
time (m3/s).

Vi = G dit (1.13)

The total volume passing through the surface in question over a period of time (t -t21)
isgiven by :
t2
Vtrav = qudt
1 (1.14)
The flow rate for a constant velocity perpendicular to a given cross-section of a pipe or
channel (perfect fluid) is:
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Qv =V.S (1.15)

Om :pV'SZ P-Qv
(p is the density of the fluid) (1.16)

Expression of g, asa function of the velocity field on the surface
Volume flow is the flow of the vector V through the surface in question.

qy = g V.ids (1.17)

S

Figurel.6 Velocity vector flow across a surface

If the flow isin the same direction as the surface normal vector:q, > 0, otherwise
Q<0
Flux isasynonym for Débit (a'gtte’ which passes through a surface per unit of time,
unit: ("qtte".st)
Current density means surface flow (or flow per unit area, unit: ("'qtte".m s2-1)

Mass flow is the mass of fluid passing through a given surface per unit time (
Kg.St).

OMyray =Qm dt (1.18)

The total mass passing through the surface in question over a period of time (t -
tr1 ) isgiven by :
t2
mtrav = qudt
! (1.19)

Mass flow isthe flow of the vector through the surface considered:

10
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Om = g rV.nds
S

(1.20)

If the flow isin the same direction as the surface normal vector :

gdm >0 Otherwise gm <0

TherV field thus appears as the mass current density, or surface mass flow.
> In the particular case of a permanent conservative flow through a current tube,
the mass d "bit is conserved: 4 =Qmim>
> If thefluid isalso incompressible: q =qy1v2

|.8 Continuity Equation
It translates the principle of conservation of mass:

The change in mass over time dt o afluid volume element dv = dx dy dz must be equal
to the sum of the masses of incoming fluid, minus that of outgoing fluid.
Consider a volume element of fluid dv

dv=dx.dy.dz

ST ) The mass m=[ff p  of aportion of fluid volume

bounded by a surface (S) that we follow in its motion
remains constant, so its particle derivativeis zero.

am _ %000 rav = jj) %dv + 3y r(V.A)ds=0
v v S

dt
T (1.21)

Local derivative ’

Convective

1.8.1 Green-Ostrogradsky theorem or divergence theorem

The flux of avector field A( M ) through a closed surface (S) is equal to the integral
over the volume (v) bounded by (S) of the divergence of the vector field.

00 A(M).i.dS= () divA(M).dv
S . _»v 11
et divA=NA
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(1.22)

So we can write:
00 r(V.i).dS = 4y div (rv).dv = g3y (N.rv)dv
° Y v (1.23)

dm_ ... qr U

e 090 ot dv + 090 div(rV)dav=0 (1.24)
Or still
AL
000 (ﬁ+ N.rv)av =0 (1.25)

Then : On an arbitrary volume (the integral must be zero) this relationship becomes :

ir ¢ o _Tr . o_
ﬁ+ N.rv = 0 +divrV =0 (1.26)
fr

ﬁ+ divrV = Olsthe continuity equation (1.27)

In Cartesian coordinates, this equation is written :

H+ fi(ru) N fi(rv) N T(rw) _ 0
it T Ty iz

This is the general continuity equation, applicable to al types of flow, and al types of
compressible and incompressible fluids.

r
If the fluid is in permanent motion, the density is independent of ti me,jT—t =0 and this

becomes :

T(ru) + 1(rv) + Tlrw) _ 0 ou div(rv)=0
Ix fy Tz

The equation obtained indicates that the
zero (conser vation of mass flow).

rv flow through the closed surfaceis

00 = 000 div(rV).dv = jg r(V.f).ds= 0
S v
12
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For atwo-dimensional plane flow we write :

ﬂ_u+ﬂ_V:

0
ix Ty
For one-dimensional flow in the x direction
fu
ﬂ—X:OD u=cteP g, = uS=cte

(Sflow cross-section)

Special case of an incompressiblefluid : 0" )
In this case the density p =cte b Y =0b divw =0

So the continuity equation reducesto : diw =0 (1.28)

|.8.2 Diver gence of a velocity field

1.8.2.1 Definition :

Velocity field divergence (diWW ) is a differential operator with scalar values that
measures changes in the volume of a continuous medium. A positive (resp. negative)
value is associated with expansion (resp. compression). In Cartesian coordinates, it is
written :

In cylindrical coordinates, it iswritten :

_19(v,) , 1V, , TV,
r- fr rfg 19z

We can say that the divergence of the velocity field gives us information about the

change in volume of a fluid element we're following as it moves. If this element

maintains a constant volume, the divergence is zero. If thisis true at any point in the

fluid, then the volume of all fluid elements will remain constant throughout the flow:

such aflow is said to be incompressible.

divv

.9 Some flow examples
[.9.1 Uniform flow
In the absence of deformation and rotation, the flow is said to be uniform. This

movement corresponds to solid translational motion.

13
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t=t, t=t,

Figurel.7 Uniform flow without deformation or rotation

The pure rotational movement takes place without deformation and is therefore
comparable to solid rotation, as shown in the following figure.

a a
A L\ B
Figurel .8 Deformation-free rotational movement of a volume

of deformation-free fluid

|.9.2 Rotational flow

The rotational velocity field of a flow rotV is avector-valued differential operator that
measures twice the rate of rotation of fluid particles on themselves.
In Cartesian coordinates, the vortex vector iswritten as:

2w _ vo
¢ iy 1Tz
oy =21 _Tws_ gy
Gz 1x
fv_ful
% (1.29)
A rotational flow is characterized by the vortex vector Q such that :
W=2w =NLV (1.30)

And w is the turnover rate.
In cylindrical coordinates withV (U, ,u, ,u,) ,we have:

14
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19y, Ty,

riqg 1z
fu, _fu,

9z qir
1/(rug) _ flu,

ri qr fig

=
I

(1.31)

For a plane flow, this vector has only one non-zero component since
w =0 and u and v do not depend on z :

rotV = gﬂ - moe

fix Tys” (1.32)

1.9.3 Current function - Incompressible flow
1.9.3.1D€finition :
If the flow of an incompressible fluid is conservative, then the continuity equation is:

NV =0 (eq (1.28))

I we ot V=NLA [ Aadors KN.(NLA)=0

A Iscalled vector potential
In Cartesian coordinates :

1 1A 1A
™ (A, | Ty Az
lL A ﬂAX ﬁ:
y T Tx

A
ﬂ Z 1 1y ﬂA
iz X }/ (1.33)

If we consider aflow in the pl ane’\ to Oz, and therefore invariant by translation along

z,thennw=0 et l =0 from which:

Nz

<
I
2t
=
>
I

1A,

fy
function . Therefore:

etv= —ﬂﬂ% then: A,(X,¥) =y (X,y) , thefunction Y is called the current

15
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i Ty

Y 1.34)
e 1Y ¢
T x

Isthe velocity field in Cartesian coor dinates.

In cylindrical coordinates, thisvelocity field iswritten as:

1, -1y
£
. Y Or y(r, 8) (1.35)
T 0

1.9.3.2 Properties of the current function
As we posed N.V:ﬂ—u+ﬂ_\’:o et u:ﬂ_y,\,: _Ty

x Ty Ty Mx
Then:
Ty _ Ty
xTy  fiylix

This relationship constitutes Schwartz's theorem. And so dy is an exact total
differential:

_Ty Ty
dy = x dx + fy dy
In the plane(x, y), the set of points for which the value of y is constant Y(x,y) = cte
corresponds to the curve y(x) along which dy=0

On this curve, check that :

dy = ﬂ—ydx +ﬂ—ydy =-vdx+udy=0
X y (1.36)

dy _v
dx u
W(x,y) = cte then y(x) is such that :

Or: -vdx+udy=0pP

16
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dy _ Y
dx u
—— e
pente dela courbe pente du vecteur
y=f(x) vitesse  V
(1.37)
Y a Current line Y(x,y)

»
»

X
Figure 1.9 Qualitative representation of the current line in the (x, y) plane

Let's calculate the flow between two infinitely adjacent current lines:

Let Y(x,y) be the current function L and y+dy the adjacent current function M. The
velocity vector V is perpendicular to the line AB and has components u and v in the X
and y directions.

We know that g, = V.fids

Flow through AB= flow through AO+flow through OB
Vds= udy-vdx

Vds= ﬂ—ydy+ ﬂ—ydx =dy
Ty fix

And so dg, =dy therefore, between any two current lines of constants Pa and s :
B B

d, =(0dd, =Qdy =Yg -VYa
A A (1.38)

17
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Power lines

\
L \Lp/ W+dy

Figurel.10 Flow between two points and its relationship to current lines

1.9.4 Irrotational flows - velocity potential
1.9.4.1 Definition:
Flow is said to be irrotational when the fluid particles do not undergo pure rotations:

Q=0.i.e rotV =0

aé o -w, W o0 W. i
W=¢W, 0 -W==0 P Wy=0
w, ow, o0, w, b

=) Wz%NUV:G
In other words, the rotation rate w is zero in an irrotational flow.
From a mathematical point of view, the relationship N U (Kj) =0, *"j
We can then define a scalar @ such that : V=Nj @ is called the velocity potential. In
the Cartesian reference frame and considering a plane flow, we can therefore write :

v=Nj b u-‘”J : v:‘”—J et W:ﬂ—'l (1.39)
fix fy 4
If we assume that the fluid is incompressible, we must verify :
Rv=0 p M, IV, ﬂ—W:o

Thisleadsto the relati onshly

ﬂ—Jz —J lﬁi Laplace equation

> Ty
18
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We therefore conclude that the velocity potential must satisfy Laplace's
equation.

Note:
If the flow isirrotational, the current function must also satisfy Laplace's equation :
1Y /Ty aéﬂ/‘ﬂxg 2 1Y /1y 0
V={-1Y/fx and RUV=0 B {1/Ty:U¢-TY/Ix:=0
I o 8 0 g o =
I 0
- J
Y
2 2
py=0 U -1X_T¥_q
™~ Ty

1.9.4.2 Properties of the velocity potential

When aflow is plane, the equationj ( x,y) = C*® defines, in the plane of the
flow, a curve caled "equipotential”.
Along thiscurve, sincej (x,y)= c'® ,wemust verify: dj =0
The differential can be writtenas: dj = %dx +%dy
And as along an equipotentialdj =0 , then :
dj :de+ﬂdy20 P udx+vdy=0

x fy

P g = _E
dx % (1.40)

d u :
y__4 relationship to be verified at any point on the equipotential.

dx \Y;

At any point M(x,y) in the flow plane, the streamline and equipotential are
orthogonal.

Y s % W(x,y)=Cste

¢(x,y)=Cste

»
»

19

X

Figurel.11 Qualitative representation of the current line and
equipotential in the (x, y) plane
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1.9.4.3 Cauchy-Riemann equations
We can conclude from what we have seen above that :

» The velocity potential(@) exists only for an irrotational flow.

» The current function({) is applied for rotational and irrotational flow (stationary
and incompressible).

» In the case of irrotational flow, the current function and velocity potential both
satisfy L aplace's equation.
Therefore, for an irrotational and incompressible flow, the following relationship

x Ty
= 10

can be verified: (1.42)
= ﬂy

Ty  fx
These equations are called Cauchy-Riemann equations.

1.9.4.4 Calculating the length of an arc element along a current line

We want to calculate the arc on the current line (U(x,y)=cste).
Wehave: ds,_.. = dx* +dy?
-_ 13 1
dj = —dx +——d
Gold: ix Ty Y
= udx + vdy
In addition, along the current line we have (x,y)=cste , i.e.: g—z = % therefore:
v : .
dy = —dx by replacing we then obtain
u

2 2 2
dj = udx + dx =LV gy
u v (1.42)

20
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eV
Hence: dy-—u2+v2dj
_u
dx_—u2+v2 dj
Then:
u?+v? j
ds,_. = {dx?+dy? = _gj? =3 (1.43)
i (u2+v2) JuZ+v?
: _dj
So: dSY:C‘e —v

The distance between two equipotentialsis inversely proportional to the flow velocity.
One of the properties of the current function is that the difference in the current
function between two points represents the fluid flow through any line joining
the points.

If two points lie in the same streamline, in this case there is no flow between
these two points and therefore Y -y1, =0 we then have Y(X,y)=cste

Similarly, @=cste , represents the case where the velocity potential is the same at
each point, and is said to represent an equipotential line.

Given two curves @=cste and J=cste , these two curves intersect at every point.

At the point of intersection of these curves, the slopes are :

i
For the curve @=cste: slope Jy_ax U
x 3 v
ix
Ty
For curve =cste: slope “W_mx_-v__ Vv
x Ty wu u
ix
The product of the slopes of these curvesis:: %’ —% =-1

This shows that equipotential lines and current lines form an orthogonal network at all
points of intersection.

.10 Flow representation by complex functions

Many classical plane flows can be represented by complex functions. Let

f(2) = J(x,y) +iy(x,y) Where z=x+iy isthe complex variable associated with the

complex potential function f(z) (¢ and Y represent the potential and current functions
21
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respectively). For this function f(z) to be analytic, its derivative must be defined
everywhere, i.e.

lim %B—fZE tends towards the same value regardless of howD z tends towards O.
2®0¢ DZ g
~ 1IDx®O0 iDx=0
If weask: Dz®0 U :' ou :’
7Dy=0 1Dy®0

AndD z can be made to tend towards 0 in the following two ways:

Therefore:

. gDfg_,. &DJ+iDYO0 . &Dj+iDY 0 _df
limg—==limg——+——z=limg————1=—
bzeog Dzg E08 Dx+iDy g Dx0g Dx +iDy g4 dz

img2d DY g B, DY
px®0a DX DX g Dy®og Dy Dyyg
3 3

ﬂq.iﬁ:ﬂ _iﬂ+ﬂ:_iﬂ

ix Ix Ix iy 1Ty y
Thisgives:

ﬂ+iﬂ:_iu+ﬁ hence:ﬂ:ﬁ et ﬂ:_ﬁ

ix  Ix fy 1Ty x Ty Ty ix

This system of equations constitutes the Cauchy-Riemann relations which verify the
relations found above.
Finally, forf(z) = j(x,y) +i Y(x,y) tobean anaytic function, j (X,y) andY(x,y) must

verify these Cauchy relations.

For a plane flow, which can be described by means of a current functionY (x,y) and a
velocity potential j(x,y) , these Cauchy relations are well verified:
u= H = ﬂ et VvV = ﬂ = ﬂ

x Ty Ty
Conseguently, the flow can also be described by means of the complex analytical
function :

f(2)=3(x,y)+i Y(xy) Where z=x+iy
Thisfunction is known as the "complex velocity potential™.
Properties:

We have seen that for a flow to be described by means of a current function ¢ and a
velocity potential ¢, these two functions must verify Laplace’s equation (Ay=0 and
A@=0).

22
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L et there be two flows such that :

‘:,Dy1 =0 e Dj1=0 | ‘:, f1(z)=J1+iy1

iDy2=0 e Dj2=0 ¢f2(z)=J2+iy2

Since the Laplacian operator islinear, thisimpliesthat :
‘:,D(I1y1+ 1,y,)=1Dy, +1,Dy,

T D(0.J.1,3,)=1,D),+1,D0],

Wepose:i){ ) ID_/1+ |2>_/2 b‘:'m_/ =0

T3 =lui+l22 D0j=0

And so:f(2) =3,y =1f(2+1,f,(2) , f(z) describes the flow resulting from the
superposition of the two flows f; and f, . Consequently, several elementary flows can be
superimposed to create more complex flows, smply by adding the corresponding
complex potentials.

[.10.1 Uniform flow

Consider the plane flow modeled by the complex velocity potential :
f(z) = Uz
Wethenhave: j(x,y)+i Y(x,y)=U(x+iy)=Ux+iUy
By identification, we obtain :
J(x,y) =Ux
Y (x,y) = Uy
The current lines are such that Y (x,y) = Uy = C*
P y=C"*"x Thesearehorizontal lines.
The equipotentialsare such that : j(x,y) = Ux =C'"
P x=C"*"y arevertical straight lines.
Determining the velocity field :

i :ﬂ:ﬂY_
g=1 T Ty

IV:ﬂ_J:_ﬁ_

T Ty x

The speed isuniform: v=Ug,
Current lines: Y(x,y)=Uy=C"*®Py=C""x (horizonta lines)

Equipotential: j(x,y)=Ux=C*® P x=C"*""y (vertical lines)
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Figurel.12 Uniform flow (2) = Uz
[.10.2 Plane flow around a source or well
Consider the plane flow modeled by the complex velocity potential :
f(z)=Clnz Wherez= x+iy=reld and C area constant.

b f(z):Clngreiqg=C(|nr+iQ)

We can then deduce the current function and velocity potential :

J(r,g)=Cinr
Y(rg)=Cq

The current linesare such that : Y(r,q)=Cq =C'€
b q= c'® **r these are straight lines passing through the origin
The equipotentials are such that : j(r,q)=Clnr =C®

b r=ct® "*q These are concentric circles centered on the origin.

Determining the velocity field :
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p=cste

Figurel.13 Uniform flow with complex potential
f(z)=Clnz

1 17 _17Y
.I.Vr_ =
v=7 TIr_r1g
TV _EM:_H
T r 19 I
ivp =C -
oriv= =M g-Cq
™vg =0 r

Speed istherefore radial and inversely proportional to distance from the origin.
If C>0, then flow is directed outwards

P Divergent flowP source at origin.
If C<0, then the flow is directed towards the origin

P Convergent flowl> well at origin.
Physical meaning of the constant C :

The volume flow of thisradial flow (source or well) is calcul ated:
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Qy = @8\7 ndS  Where Sisaclosed surface surrounding the origin.

Zo e nsg

V=
Thisisalinear flow taking place in the direction” to the z axis, in the (xy) plane we can
consider as the integration surface a cylinder of heightD z=1, and therefore :

W\

ngds:@momz
S g

Since the flow is on a plane, we integrate on acircle of any radius r centered on the

origin.
- %p iV = e
Qy = Dz@V.ﬁrdq = Dzr OV.ﬁdq where | S:/rer
{ 0 TnN=¢
\ 2p C C \ 2p
DqV:Der —dg :Dzr—Odq =2pCDz
o T Vo 1
volumetric flow rate per
unit height
_ Qv . _ Qv :
b C= 5 and therefore: f(z) = ZInz gy >0: source flow rate

gv <0: well flow rate

1.10.3 Vortex or freevortex
Consider the plane flow modeled by the complex velocity potential :

f(z)=-iClnz wherez=x+iy=re" and C areal constant.
= f(z)=—iCIn§reiq g= -ic(inr+ig)=Cq -iClnr

We can then deduce the current function and the velocity potential :

1J(rg)=Cq
':‘Y(r,q):—CInr

The current linesaresuchthat: Y(r,g)=-Clnr = cte
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b r=ct® "*q These are concentric circles centered on the origin.

The equipotentials are such that ; j(r,q)=Cq =C'

b q= c'®*r Theseare straight lines passing through the origin.
Determining the velocity field :

i 13 _17%Y
SRR B
=i rrfq
W | I )4
Vy = —— = ———
Tq r 1q s
=0 B
Or V=! C DV:Eéq
..Vq:— r
T r

Velocity istherefore ortho-radial and inversely proportional to distance from the origin
If C>0, then the flow is around the origin in the trigonometric direction.

If C<O0, then the flow is clockwise around the origin.

Physical meaning of the constant C :

Let's calculate the velocity "circulation” around the origin:

G=MV.d/

D-

Where runs an arbitrary current line, i.e. acircle of radiusr.

Ke)

2p

= -~ N\ C
With:V=—6, andd/=rdg&gy b G= ~rdg=2pC
req q &y OO rrq p
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Figurel.14 Uniform flow with complex potential
f(z) = -iClnz

SoC = Zi and thereforef (z) = —iz%lnz whereG isthe vortex circulation (free vortex).

IfG >0, the vortex rotates in the trigonometric dir ection.

IfG <0, the vortex rotates clockwise.

1.10.4 Cor ners and stopping points
A "stopping point" is apoint where the speed is zero.
Consider the plane flow modeled by the complex velocity potential :

f(z)=Cz™ Where m3 -%

In cylindrical coordinates: z=r el and therefore f(z) = Crmig(maa

1j(r,q) = Cr™* cos[(m+1)q]

Then we have: i _
TY(r,0) = Cr™sin[(m+1)q]

i, -O_17v¥

Thevelocity field isobtained by : V= Irs 3,
T - = = -
Tvq r 19 qIr

Wefind:

- _Iv, =C(m+Dr" cos[(m+1)q]

1V, = -Cm+Drmsin[(m+1)q]
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Note that v, = vy = 0 for r = O the origin is the stopping point.
The current line passing through the stop point must therefore verify :

Y(r,g=C*=Y, Where Y, =Y(r,,q,)= CrAm+1sin[(m+1)qA]: 0

The equation for this current line is then written :

N _
Cr™isin[(m+Dq]=0b | “ Stop point
i

Asin[(m+1)q]: 0''r

p'r U (m+Dg=np"'r

_n
= mey

if n=0:q =0"'r b half-right Ax

Since current lines can be likened to impassabl e barriers, those passing through the

stopping point form "corners': these are the stopping corners.

A

x‘}

Let's now analyze the fluid flow between these stop wedges for a few specific values of
m.

f(z)=Cz™1 where m= —%

» Casewherem=1
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Y(rg)=Crlsn[y]=c® Anda-= mp+1: % b right-angle corner

2

— ; — ; _ ~te
P Y(r,)=2Cr“singcosq =2Crsingrcosq =C

y X

Yrg)=C® O 2cxy=ct®

te
y= CT inside this corner, the current lines are hyperbolas

As equipotentials are™ at al points, they are also hyperbolas.

» Case where m>1
a=_ P P
m+1 2
> CasewhereO<m<1 P <a=-P _<p
2 m+1
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> Casewhere—% <m<0, p <a =P

y
vy

v~ 11’

1 > Where

1.10.5 Doublet and dipole

We know that for a flow to be described by a current function and a velocity potential,
both functions must satisfy Laplace's equation :
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DY=0 AndDj=0b f(z2)=j+iY
Let'sconsider 2 flowssuch as:
1) DY,=0 and Dj1=0P f,(2)=],*iY;
2) DY,=0and Dj,=0b f,(2)=],+iY,
Since Laplace's equation islinear :
D(1,j,+1,j,)=1.Dj,+1,0j,=0
D(l,Y,+1,Y,)=1DY,+1,DY,=0
Soifweputj=1j,+1,J, andY =11Y7 + 12Y> then:
DY=0AndDj =0 f(2)=j+iY=1,f(2)+1,f,(2)

Consequently, f(z) describes the flow resulting from the superposition of the two flows
f, and f,

Several elementary flows can therefore be superimposed to create more advanced flows,
simply by adding the corresponding complex potentials.

[.10.6 Association of a source and awsell :

Let's consider a source with flow rate +q, located at x=a, onto which we superimpose a
sink with flow rate -q, located at x=-a.
The resulting complex potential iswritten as:

f(2) = +i|n(z B T L
2p "z =z+a=r,e%

Hence:

f(z)— (Inz —Inz) ;p(lnr1+iq1—lnr2—iq2)

1._q,n
_agn,. o uo HipM™,
b f(2)= ng r2+l(q1 qz)HD : q
TYZE(Ql‘QZ)
:":':ilnr—l
,l 2p 1 Therefore, the current lines are such that
%Y:i(ql d,)
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Figurel.15 Current linesfor a source and asink

Let's extend the distance between the well and the sourceto O

f(Z)_+2p|n(Z a) 2p|n(z+a) eZ+ag 2p z(1+a/z)g
2l 1 ..
f(z)= g1+a/zg here Z/4/4%@1 a/z

So f(z)»— = In@(l a/z)

Let 2aq = p bethe dipole moment : f(z)= _1p

p z

1p__1 p _ 1p_-ig 1p o
f(z)=-— =-——¢e =-—>2(cosg-ising)=§+iY
(D= " o q op 7 \C01 -ising) =3

13 -
v=ct O LPgng=ce
1Y = —Pgng /——#’ 2pr
pr

Current line equation

P ?smq—CteD rsinq:Cterle y:Cte(x2+y2)I:> y Cte(x +y<)

b x +y2—Ctey:0I:>x2+y2—Ky=0ID\)<2+(y—K/2)2:(K/2)j2

equation of acircle with center (CDIQZ) and radius K/2
Current lines are circles all centered on the y axis, and all passing through the origin
Flow generated

by a dipole
f(z2)=-—2P

2p z

v=cte O
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Figurel.16 Current linesfor adipole

[.10.7 Uniform flow around a circular cylinder with circulation

Let's consider a uniform flow around a circle in the presence of acirculationG centered

g a’o

at the origin. The complex potential function iswritten: f(z) = Vog z+ ?i —i 2%In z
0
In view of the logarithmic singularity, the complex plane will be equipped with the half-
axis cutoff
x30
The complex velocity of thisflow is expressed as:

-
0 . . . :
a _Izipz It cancels out at points with affixes z, such that :

z5 - z,-a°=0

2pV,
This provides two stopping points:
2
G .1 492 G

20V, 2\ 4p?V?

Z, =2, =i
There are several cases depending on the descriminant:

17 O£ GE£ 4pav, Cases
The discriminant is then positive and the affixes of the two points have the same

modul us;
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Figurel.17 Flow around a cylinder with circulation (low circulation)

16p2V2 16p2VZ

XA - yA‘

— :\/16p2a2V02—GZ+ G2

The two stopping points are therefore on the circle of radius a, in symmetrical positions
with respect to axis Oy. They are marked by the polar anglesb and m-b respectively
with:

sinb =

4paV,,
The general flow configuration is shown in figure (1.17).
Without traffic, there are two stopping points at the intersection of the circle and the real
axis. We can therefore see that the influence of traffic is equivalent to shifting the two
stopping points symmetrically with respect to Oy by an ordinate proportional to the
value of the traffic.

peme G = 4paV, Cases
For this critica traffic value, the two stop points merge with the intersection of the

circle and the Oy axis( =bb '=m/2). This gives the configuration shown in figure (1.18).
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Figurel.18 Flow around a cylinder with circulation (critical circulation)

3éme

G > 4paV, Cases
The discriminant of the equation of the affixes of the stopping points is then negative,
so the roots take the form:

Z, =2, = i(GiJG2 - 4a’pV? )/4paV0

These are pure imaginary, which means that the two stopping points are on the oy axis.
The product of the roots is worth in modulus & . This leads to the configuration shown
in figure(1.19).

Figurel.19 Flow around a cylinder with circulation (strong circulation)
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