
1

CHAPTER 2

II. Integral conservation laws
The fundamental law of dynamics can be written as:

 extF
dt

)Vm(d 


surfacedeforcesvolumedeforcesFext 


The forces of volume are the forces of gravity
Surface forces are pressure forces + friction forces (shear forces).
Shear forces are assumed to be negligible, and only inertia and pressure forces are associated with
motion.

And so   extF
dt

)Vm(d 


pressiondeforcesgravitédeforces 

• We'll apply Reynolds' transport theorem to successively find the conservation equations for
mass, momentum and energy.

 Simplify the conservation equations for one-dimensional steady-state flow in a non-viscous
fluid.

 The evolution of physical quantities (mass, momentum, energy) is analyzed
using integral balance equations on macroscopic domains. It is therefore necessary to establish
a correspondence between a balance sheet and the transport of physical quantities by flow.

II.1 Control volume V(C)
A control volume is an imaginary volume through which fluid can flow. The focus is on the physical
quantities passing through the surface.

II.2 Control surface S(C)
The envelope of a control volume is called the control surface. It can be fixed or mobile.
A control volume is an open system
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II.3 Material volume V(M)
A material volume is a portion of fluid that moves and deforms, but remains made up of the
same set of particles.

II.4 Material surface S(M)
The envelope of a material volume is called the material surface. Each point of this envelope is a fluid
particle.

A material volume is a closed system!

The closed system (VM) is associated with Lagrangian kinematics, while the open system (VC) with the
Eulerian approach.
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Although the control volume (CV) is often fixed, it can also move or deform.

V(C) deformable

II.5 Reynolds transport theorem
Before looking at the Reynolds Transport Theorem, we need to introduce a few basic concepts.
II.5.1 Flow concept

To measure the quantity of matter passing through a surface (S) per unit of time and surface
area, we introduce the notion of flow: flow of mass, momentum, energy, etc.

 Volume and mass flow
The elementary volume flow dqv through a surface dS
is the volume of fluid dv that passes through this surface in a
time interval dt, i.e.:


s

v dsn.Vq


ds.n.Vsd.V
dt

dv
q v




Then, the total flow Q over a surface S is  ds.n.Vq v


Likewise for mass flow: q = qmv or again  ds.n.Vq m




 Intensive quantitiesAn extensive quantity is proportional to the mass of the system.We therefore have the following relationships: 
v

dvm 

 ds.n.V
dt

dm
q m


Mass m is an extensive quantity, as are the other two quantities of interest in mechanics, namelymomentum m.
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 Extensive quantitiesIntensive quantities, independent of the mass of the system. In particular, we'll be looking atquantities associated with mass m, momentum mV and energy E.To do this, we reduce each of the properties (m, mV,E) by the mass m, to obtain the intensivequantities (1,V,e).These relationships can be generalized for any extensive quantity B with a correspondingintensive quantity, i.e. per unit mass, b = B /m:

v

bdvB  
s

dsVb
dt

dB
B


 

 Net flow from BConsider a volume VC (fixed) bounded by Sc, through which flows a fluid carrying B

The net flow of B across the control surface (SC) can therefore be written as :

 
SeSs

dsVbdsVb
dt

dB
B


 



Sc

net dsVbB


 

with b = B /m:

The flow rate netB across the surface of a control volume, corresponds to the quantity of B that
"accumulates" (negative or positive) per unit of time in the control volume. This variation in B in the
control volume can be written:









VcVc

bdv
dt

d

dt

dB


Accumulation over time in the control volume.
 Assessment of a control volume

For a control volume, in the absence of sources (wells), we recognize the following principle:
Accumulation (in V(c) + balance of flows(through S(c)=0

In mathematical form, we write the above principle as.
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Special case for mass
In the case of conservation of mass, for example, the general equation.

0dsn.Vbbdv
dt

d

ScVc

 




For b=1

Mass accumulation + Mass flow through surface
in volume over time









temps

masse








temps

masse

On the material (moving) volume VM, we can look at the entire quantity B as 
)t(VM

bdvB 

To obtain the temporal variation of B, we need to calculate: 
)t(VM

bdv
dt

d

dt

dB


This evaluation has one drawback, since VM is also a function of time! In other words, the
system is moving and deforming: VM(t+dt) VM(t)

0ds)n.V(bbdv
dt

d

dt

dB

ScVc

 




=                                                   +

II.5.2 Formulation of the Reynolds Transport Theorem, TTR

0ds)n.V(bbdv
dt

d

dt

dB

ScVcsystème

 




This relationship was presented for a fixed control volume.

If the control volume deforms, consider the relative velocity sfluidrel VVV


 between the velocity V of

the fluid and that Vs of the volume Vc.

0dsn.Vdv
dt

d

ScVc

 




Time variation of B when
following the system

Time variation of B when
following the system

Net flow of B through surface
Sc of volume Vc
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0ds)n.V(bbdv
dt

d

dt

dB

Sc

rel

Vcsystème

 


 with sfluidrel VVV


 , Vs=0 if Vc is fixed

B b=dB/dm
Mass m 1

Q.mouv mV V
Energy E e

B: extensive property. A quantity in the closed system
B: intensive property. Property B per unit mass
Density of the fluid

V


: fluid velocity

VVrel


 :if the surface of the control volume is fixed

srel VVV


 if the surface of the control volume is moving at speed sV


(like a beating heart)

dS: elementary area on the control surface, Sc
n


outward unit normal of the elementary SC dS
dv: volume element in the Vc

II.6 Conservation of mass

In this case, let's analyze the conservation of mass with B=m and b=B/m=1.
Even if the material volume deforms, the mass in it remains the same over time.

0q
dt

dm

dt

dB
m

systèmesystème



(The mass of a system remains constant over time)
Since there is no accumulation (or loss) of mass takes place in the control volume. The sum of positive
and negative flows (volumes) is zero.
The conservation of mass equation takes the form:

0ds)n.V(dv
dt

d

ScVc

 




We have   m

Sc

qds)n.V(


 sum of mass flows.

**If the control volume is fixed, 0Vs 


and VVrel


 (the flow velocity) and the flow is steady-state,

then:

0ds)n.V(dv
dt

d

ScVc

 




0ds)n.V(
Sc





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0dv
dt

d

Vc

 

**If the fluid is incompressible ρ=cte, then we have, even in unsteady conditions,

0ds)n.V(
Sc




 , 0dv
dt

d

Vc

 

In the case of uniform inputs and outputs (1D), the above equations become :

 
entrée

j
sortie

ij
entrées

jji
sortie

ii

Sc

qmqmSVS
s

V0ds)n.V( 


(Mass flow rates)

 
entrée

j
sortie

ij
entrées

ji
sortie

i

Sc

qvqvSVS
s
V0ds)n.V(


(Volumetric flow rates)

In practice, we often find applications with a single inlet and outlet, such as a pipe carrying water, or a
ventilation passage in a building. These types of problems are modeled using the notion of a current
tube.
This is a conceptually fictitious pipe (sometimes
corresponding to a physical tube) with an inlet cross-section Ae, an outlet cross-section As , both flat,
and side walls Ap tangent to the velocity vector.

Given that at the side walls n.V


=0 the surface integral only needs to consider the inlet and outlet, i.e. :





0

ScSsSeSc

dA)n.V(dA)n.V(dA)n.V(dA)n.V(



  

In incompressible conditions (ρ=cste) and if the velocities ue and us are considered uniform, then..:

eee

Se

QvAudA)n.V( 


sss

Ss

QvAudA)n.V( 


seeess QvQvAuAu  (Constant volume flows)

When cste, we have u A = u Aeeesss

II.7 Conservation of momentum
II.7.1 Application of the TTR for momentum:

 
Sc

rel

Vcsystème

ds)n.V(bbdv
dt

d

dt

dB 


with VVrel




For momentum, VmB


 and therefore
V

dm

dB
b




the TTR gives :
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 
ScVcsystème

ds)n.V(VdvV
dt

d

dt

)Vm(d 




 syst
système

F
dt

dB 

So
 
ScVc

syst ds)n.V(VdvV
dt

d
F




(since at an instant t, the material volume (in motion) coincides with the control volume, (fixed) we
have the expression):

 
ScVc

VC ds)n.V(VdvV
dt

d
F




Note that forces on the control volume are sources (+) or sinks (-) of momentum. A source (force
experienced by the fluid) corresponds to an increase in its momentum. A sink (force exerted by the

fluid) corresponds to a decrease in its momentum.
The momentum equation is a vector equation, so it can be written for the 3 velocity components u, v and
w, or in index notation for Vi with i=1,2,3.

 
Sc

rel

Vc

VC ds)n.V(VdvV
dt

d
F




 
Sc

reli

Vc

isyst ds)n.V(VdvV
dt

d
F




With Vi are the components u,v and w
Fi are Fx , Fy , Fz

If the control volume does not deform, VVrel


 and if the flow is permanent, we have:

 
Sc

rel

Vc

VC ds)n.V(VdvV
dt

d
F




If, moreover, the inputs and outputs have uniform speeds, the integral over the SC is replaced by the
balance of the incoming and outgoing flows, then,

 
SC qmSc

dsn.VVds)n.V(V 


 So  
Entrés

jj
Sortie

iiVC VqmVqmF


Note: The summations over i and j correspond to the input/output numbers

Forces exerted on the
VC

Variation in the qtty of
M in the VC

Flow of M qte through
the SC



9

In the case of a single input and output we have:

)VV(qmF entréesortieVC




We can use the current tube as an example.

)VV(qmF entréesortieVC




11112222VC V)AV(V)AV(F


 

rpFppFpFpFPF 21VC





