CHAPTER 2

[1. Integral conservation laws
The fundamental law of dynamics can be written as:

d(mV) - &%

a ot = forces de volume+forces de surface

The forces of volume are the forces of gravity
Surface forces are pressur e for ces + friction for ces (shear forces).

Shear forces are assumed to be negligible, and only inertia and pressure forces are associated with
motion.

Andso ——= d(mV) a = forces de gravité+forces de pression

*  WEeIl apply Reynolds' transport theorem to successively find the conservation equations for
mass, momentum and energy.
Simplify the conservation equations for one-dimensional steady-state flow in a non-viscous
fluid.
The evolution of physical quantities (mass, momentum, energy) is anayzed
using integral balance equations on macroscopic domains. It is therefore necessary to establish
acorrespondence between a balance sheet and thetransport of physical quantities by flow.

[1.1 Control volume V(C)

A control volume is an imaginary volume through which fluid can flow. The focusis on the physical
quantities passing through the surface.
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[1.2 Control surface S(C)

The envelope of a control volume is called the control surface. It can be fixed or mobile.
A control volumeis an open system




1.3 Material volumeV(M)
A materia volumeis aportion of fluid that moves and deforms, but remains made up of the
same set of particles.
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1.4 Material surface S(M)
The envelope of amaterial volume s called the materia surface. Each point of this envelopeisafluid
particle.
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A materia volumeisaclosed system!

The closed system (VM) is associated with Lagrangian kinematics, while the open system (VC) with the
Eulerian approach.

Systame farmea (VM) Systeme ouvert (Vi)

Volume de contrale



Although the control volume (CV) is often fixed, it can also move or deform.

' mobile, non
déformable, Ty constante

V(C) deformable

1.5 Reynoldstransport theorem
Before looking at the Reynolds Transport Theorem, we need to introduce a few basic concepts.
[1.5.1 Flow concept

To measure the quantity of matter passing through a surface (S) per unit of time and surface

area, we introduce the notion of flow: flow of mass, momentum, energy, etc.

VVolume and mass flow

The elementary volume flow dg, through a surface dS

is the volume of fluid dv that passes through this surfacein a

timeinterval dt, i.e.
gy =@®V.ndsgq, = ‘;—‘t’ = V.ds= Vids

S

gy = VAids

Then, the total flow Qover a surface Sis

Likewise for mass flow: q = qmr'v or againgy = rV.nds
Intensive quantities

An extensive quantity is proportional to the mass of the system.

We therefore have the following relationships m= rdv

\
dm
dt

Mass m is an extensive quantity, as are the other two quantities of interest in mechanics, namely
momentum m.

U = ——=( rV.ids



Extensive quantities
Intensive quantities, independent of the mass of the system. In particular, we'll be looking at
quantities associated with mass m, momentum mV and energy E.
To do this, we reduce each of the properties (m, mV,E) by the mass m, to obtain the intensive
quantities (1,V,e).
These relationships can be generalized for any extensive quantity Bwith a corresponding
intensive quantity, i.e. per unit mass, b =B /m

B = () rbav B:d—B:(‘)rb\7dS
\ dt S
Net flow from B

Consider a volume VC (fixed) bounded by .S¢ through which flows a fluid carrying 7

Bilan = F| — F . S=S8.45,
mn Fd‘l'l I‘1:|'£T -’r__,.-"’ \II
quantite de 8 quantite de B
sortant par 5, entrant par S

The net flow of B across the control surface (SC) can therefore be written as:

B= a8 _ 0 rbVds- 0 rbVds

dt
Ss Se
B ret- () FOVds
0 $.=8.48
Wlth b =B/m: il sy { 'l.'ll
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The flow rateB,, across the surface of a control volume, corresponds to the quantity of B that
"accumulates’ (negative or positive) per unit of time in the control volume. This variation in B in the
control volume can be written:
B~ 4 rbay
¢ dt g, dt Ve
Accumulation over timein the control volume.
Assessment of a control volume
For a control volume, in the absence of sources (wells), we recognize the following principle:
Accumulation (in V(c) + balance of flows(through S(c)=0

In mathematical form, we write the above principle as.
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Special case for mass
In the case of conservation of mass, for example, the general equation.

s rbdv + § rbV.ids = 0
tVC Sc

For b=1

%()rdv+ grvids=0

Ve Sc

Mass accumulation + M ass flow through surface

in volume over time
é massell é massell
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On the material (moving) volume VM, we can look at the entire quantity B asB = (j rbdv
VM(t)

To obtain the temporal variation of B, we need to calculate: %—? :% ( rbdv

VM (t)
This evauation has one drawback, since VM is aso afunction of time! In other words, the
system is moving and deforming: VM (t+dt)* VM (t)
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[1.5.2 Formulation of the Reynolds Transport Theorem, TTR

dB
dt

a § rodv + g rb(V.i)ds=0
systéme dt Ve Sc
This relationship was presented for a fixed control volume.
If the control volume deforms, consider the relative velocityV , = V4 - V. between the velocity V of

the fluid and that Vs of the volume Vc.



B \ o Lo o
d = 95 rbdv + § rb(V,,.)ds = Owith V., =V, - V. , Vs=0if Vc isfixed
Sc

dt systéme dt Ve
B b=dB/dm
Mass m 1
Q.mouv mV \
Energy E e

B: extensive property. A quantity in the closed system
B: intensive property. Property B per unit mass
rDensity of the fluid

V : fluid velocity

V., = V:if the surface of the control volumeis fixed

V., =V - V,if the surface of the control volume is moving at speed V. (like a beating heart)

dS: elementary area on the control surface, Sc
noutward unit normal of the elementary SC dS
dv: volume element inthe V¢

1.6 Conservation of mass

In this case, let's analyze the conservation of mass with B=m and b=B/m=1.
Even if the material volume deforms, the mass in it remains the same over time.

a8l _dm
dt oystéme dt

(The mass of a system remains constant over time)

Since there is no accumulation (or loss) of mass takes place in the control volume. The sum of positive

and negative flows (volumes) is zero.
The conservation of mass equation takes the form:

:qm:O

systeme

%()rdv+(‘)r(\7 fi)ds=0

Ve Sc

We have ) r(V .A)ds= éqm sum of mass flows.
Sc

**|f the control vol umeisfixed,\7S =0 and\7re| =V (theflow velocity) and the flow is steady-state,
then:

a grav+gr(v fyds=0

dt Ve Sc

gr(V fyds=0

Sc



E(‘)rdv:O
dt .

**|f the fluid isincompressible p=cte, then we have, even in unsteady conditions,

gr(V fyds=0 ,ﬂ(‘)rd\/:o

Sc dt Vc

In the case of uniform inputs and outputs (1D), the above equations become :
yr(v Ads=0Pk {rVs = §rVs P aam = aam, (Massflow rates)

i Vi
sortieS entrées sortie entrée

®

(V. RAds=0Pb VS = Vs b §av. = aav, (Volumetric flow rates)
Sc

sortieS entrées sortie entrée

In practice, we often find applications with asingle inlet and outlet, such as a pipe carrying water, or a
ventilation passage in abuilding. These types of problems are modeled using the notion of a current
tube.

Thisis aconceptually fictitious pipe (sometimes

corresponding to a physical tube) with an inlet cross-section Ae, an outlet cross-section As, both flat,
and side walls Ap tangent to the velocity vector.

—— Parciimpermesoic

-l = TR | Rl |

~ Eri mipermss bie
Given that at the sidewallsV . =0 the surface integral only needs to consider theinlet and outlet, i.e. :
gr(V A)dA = gr(V f)dA + gr(V f)dA + yr(V fi)dA
Se Ss Sc

Sc

-
=0

In incompressible conditions (p=cste) and if the velocities u. and us are considered uniform, then..:
0(V A)dA = -uA, =Qv,
Se

§(V f)dA = uA, = Qu,
Ss
P uA,=uA, b Qv, = Qv (Constant volume flows)

Whenr cste, wehave u A = U Areeel sss

[1.7 Conservation of momentum
[1.7.1 Application of the TTR for momentum:

L - § roav + § rb(v,, f)ds L
dt systéme dt Ve Sc with Vre| =V
- b= d_B =V
For momentum, B = MV and therefore m the TTR gives



d

VY - 9 v+ V(v s
dt Ve Sc

dt

systéme

dB

° —
=aFf.
dt

systeme

aFf,. = —rVdv+§rVv(Vv f)ds
S0 th Sc

(since a an instant t, the material volume (in motion) coincides with the control volume, (fixed) we
have the expression):

AF.c= E grvav+ OrV(V f)ds

Ve

o/ Flow of M gte through
Forces exerted on the vaial o_n Inthe gty of the SC
VC M intheVC

Note that forces on the control volume are sources (+) or sinks (-) of momentum. A source (force
experienced by the fluid) corresponds to an increase in its momentum. A sink (force exerted by the

fluid) corresponds to a decrease in its momentum.

The momentum equation is a vector equation, so it can be written for the 3 velocity components u, v and
w, or in index notation for Vi withi=1,2,3.

QF.= dﬂ grvav+ 0 rv (v, .n)ds

Ve

aF, = %Orv dv + OrV (V,4.0)ds

Ve

With V; are the components u,v and w
Fi al’eFx y Fy y Fz

V., =V

If the control volume does not deform, and if the flow is permanent, we have:

AF.= o OrVdv + 0 rv(V,,.h)ds
Ve
If, moreover, the inputs and outputs have uniform speeds, the integral over the SC is replaced by the
bal ance of the incoming and outgoing flows, then,
0rV(V f)ds=V(jrVids So §F.= §amV, - §amV,
Sc scT Sortie Entrés

Note: The summations over i and | correspond to the input/output numbers
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In the case of asingle input and output we have:

o — — —
a I:VC = qm(vsortie - Ventrée)

We can use the current tube as an example.
é. I:VC = qm(vsortie - Ventrée)
ér:vc = (rzvaz)vz - (r1V1A1)\71

Qo

R,c =P+Fp, +Fp, + Fpp+ Frp
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