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Chapter III

Dimensional analysis and similarities

III.1 Introduction:

Dimensional analysis is a practical method for verifying the homogeneity of a physical
formula through its dimensional equations, i.e. the decomposition of the physical
quantities it involves into a product of basic quantities: length, duration, mass, electrical

intensity, etc., which are irreducible to each other.
Dimensional analysis enables :

 Determine the unit of a quantity

 Check the homogeneity of a formula

 Predict the form of a physical law in order to find the solution to certain
problems without having to solve an equation: for many of the physical
phenomena studied, we can express a magnitude characteristic of the
phenomenon and deduce an order of magnitude.

Dimensional analysis can be applied in almost every field of engineering. What's more,
it's a highly useful additional tool in modern fluid mechanics. It is based on the principle
of dimensional homogeneity and uses the dimensions of the relevant variables affecting
the phenomenon in question.
III.2. Dimensions:

The various physical quantities used in fluid mechanics can be expressed in terms of
fundamental or primary quantities.
In the International System, the primary or fundamental physical quantities are mass,
length, time and sometimes temperature (compressible flows) and are designated
respectively by the letters M,L,T,θ. Quantities that are expressed as a function of
fundamental quantities are called secondary or derived quantities (velocity, area
acceleration....). The expression of a derived quantity as a function of the fundamental
quantity is called the Dimension of the physical quantity.
A quantity can be expressed dimensionally as M,L,T or F,L,T.

For example:

Flow =speed x area = 13
3
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III.3. Principle of dimensional homogeneity
An equation is considered to be dimensionally homogeneous if the form of the equation
does not depend on the units of measurement, or if the two terms of the equation have
the same dimensions.

III.4 Dimensional analysis method

Dimensions can be used to determine whether a literal expression is homogeneous or
not. This allows us to search for possible errors. But dimensional analysis can also be
used to find or guess at physical laws when theoretical resolution is too complex.
When the system under study is too complex to allow complete resolution of the
fundamental equations, or when its behavior is chaotic, dimensional analysis provides
simple access to relationships between the various quantities characterizing the system.
Grouping these different quantities into dimensionless numbers will also enable us to
establish similarities between the behavior of similar but different systems
(prototype/model).
The application of dimensional analysis to a practical problem is based on the
assumption that certain variables affecting the phenomenon are independent. The
number of variables characterizing the problem is equal to the number of independent
variables plus one. One is the number of dependent variables.
Dimensional analysis is used to obtain a functional relationship between dependent and
independent variables.
The first step in dimensional analysis is to determine the variables involved in the
problem. Naming these variables requires a good understanding of the phenomenon.
The second step is to form adimensional groups of these variables.
The Vachy-Buckingham method -π( π Buckingham theorem)is the most widely used
method in dimensional analysis.
Let's take the example of determining regular head losses in a cylindrical pipe:
The various quantities involved are :

L

Pt
Pressure drop per unit length,

D Pipe diameter,
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ε Pipe roughness,
v Average flow velocity (or flow rate),
μ Fluid viscosity,
ρ The density of the fluid.
Consequently, there is a relationship between these different quantities:

),,,,(  vDf
L

Pt 


The function f may be difficult to find, so dimensional analysis will enable us to
establish a simpler relationship between a smaller number of dimensionless quantities.
A systematic method will find 3 dimensionless numbers:
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Dimensional analysis shows that regular pressure drop is a function of Reynolds
number and relative pipe roughness alone.

III.5. Vachy-Buckingham's π theorem

The π-Buckingham method expresses the resulting equation in terms of adimensional
groups (π-terms). According to this theorem, if a phenomenon drives p variables: a a
a1,2,3 ,.....,.ap such that one variable a1 depends on the other independent variables a a2,3

,.....,.an , the general functional relationship between dependent and independent
variables can be expressed as follows:

a1 =f(a a2,3 ,...................ap ) (III.1)
Expression (III.1) can be written mathematically as :

 ( a a2,3 ,.........ap )=0 (III.2)
That is, if an equation with p variables is homogeneous, it can be reduced to a
relationship between (p-q) dimensionless independent products, where q is the
minimum number of dimensions required to describe the p variables, and we write:
f(π1 , π2 , π3 ,................................ πp-q )=0 (III.3)
In problems where all fundamental dimensions are considered, we recommend selecting
repeated variables using the following guidelines:
 Select the first variable repeated from those describing the flow geometry.
 Select the second variable repeated from those representing fluid properties.
 Select the third variable repeated from those characterizing fluid movement.

To illustrate this statement, let's return to the previous example:
We had p=6 variables (requiring a minimum of q=3 dimensions (M,L,T).
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Consequently, the equation linking the 6 variables can be reduced to an equation linking

p-q = 3 dimensionless products:
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Buckingham's π theorem, therefore allows the passage :

To apply this theorem, we need to use a systematic method:

 List the variables in the problem p

 Write the equation in dimensions for each of the p variables

 Determine q, and thus p-q the number of dimensionless products

characterizing the problem.

 Among the p variables, choose a number q that are dimensionally

independent q primary variables

 Form the p-q products π by combining the p-q non-primary variables with

the q primary ones to obtain dimensionless quantities.

 Formulate the relationship between the p-q products π found.

We'll apply the method to the example of flow around a vertical plate, to write the drag

force exerted by the flow on the plate in dimensionless form.

The force F


exerted by a flow on an object in the direction parallel to the flow is called

the drag force. Let's look at a rectangular flat plate.

),,V,,D(f
L

p t 


 ),( 321  
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The problem variables are :

F,h,L, ,ρ p = 6

F: drag force
h: plate height
L: plate width
vmean flow velocity
fluid viscosity :fluid

density

1.   Variables F,h,L,V, ,ρ p = 6 M,L,T q=3
2. Dimensional equations :

  2TMLF 

  11TML 

  1LTV 

  Lh 

  LL 

  3ML

3. Number of products π dimensionless: (p- q) = 6 - 3 = 3

4. Choice of q= 3 dimensionally independent primary variables:

(For example h, and v)

5. Formation of the 3 π products: by combining primary and non-primary variables.

6/Formulate the relationship between the 3 products

found:

With
vh3 
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
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Or :

111 cba
1 vhF  

),,v,L,h(fF 
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Form factor

Nature of flow

III.5.1 Illustrating the benefits of the method :

If F1 is the drag force measured on a plate of dimensions L1 x h1 when subjected to a

flow of velocity v1 , then :

)Re1,hL(
hv

F
1112

1
2
1

1 
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

 11
1

hv
Re 

Dimensional analysis using Buckingham's theorem shows that for a plate with

dimensions L2 x h2 such that :

1122 hLhL  Shape similarity

If 2122111
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1
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III.6 Common dimensionless coefficients

There are a number of dimensionless quantities which can characterize the nature of a
flow:

viscositédeforces
inertied’forces

(III.4)
 Reynolds number =

General importance for all types of flow

 Froude number =
gL

V
Fr 

gravitédeforces
inertied’forces

(III.5)




VL
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Importance for free-surface flows.

 Euler number =
2V

p
Eu





inertied'deforces

pressiondeforces

(III.6)
Important if there are large pressure differences within the flow.

=
ilitécompressibdeforces

inertied’forces

(III.7)
Mach number

Importance for compressible fluid flows.

With 1c  the speed of sound.

 Strouhal number =
V

L
St




sconvectiveinertied'forces
localesinertied’forces

(III.8)
Importance for non-stationary flows

III.7. Similarity in differential equations

To carry out a complete analysis of a flow, we first need to make the appropriate
simplifying assumptions. Evaluating the various dimensionless flow coefficients
(Reynolds, Froude, etc.) will simplify the equations to be solved.
Let's consider the conservation of momentum equations (the Navier-Stockes equations)
for an incompressible flow along x, y and z, written in the form:
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Let's consider the (z) component of these equations and write it in dimensionless
form:

g
z

w

y

w

x

w

z

p

z

w
w

y

w
v

x

w
u

t

w
2

2

2

2

2

2

 













































Let's introduce some dimensionless variables:
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Where L, V, p ,0 are characteristic quantities of the system under study.
We have :
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By replacing in our equation we obtain :
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We can then write :
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This can be interpreted as follows:
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 If St is very small: the instantaneous derivative can be neglected and the
flow can be considered stationary.

 If Eu is very low, the pressure gradient can be neglected.
 If Re is very large: we can neglect the fluid's viscosity and treat it as a

perfect fluid.
 If Fr is very large: the effects of gravity can be neglected.

III.8. Similarity and model tests
To find out about the performance of mechanical or hydraulic structures or machines
(pumps, turbines, ....) before they are built or manufactured, the study is carried out on a
model, which is a representation on a different scale of the system or structure
(prototype) to be tested.

 The small-scale model reproducing the current structure
 The prototype is the structure or machine

Virtual model Laboratory model Prototype

The study of fluid mechanics and hydraulics problems leads to:
 Geometric similarity
 Kinematic similarity
 Dynamic similarity

III.8.1 Geometric similarity
For there to be a geometric similarity between a model and a prototype, the
length ratios must be the same, and the angles between the dimensions must also
be the same.

Lm : model length
Hm : model height
Dm : model diameter
Am : the area of the model
vm : model volume
And let Lp ,Hp ,Dp ,Ap and vp be the corresponding prototype values.



Chapter III Dimensional analysis and similarities

76

For a geometric similarity we have :
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Ther is called the scale factor
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 Ar is the ratio of areas (III.10)
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v
 vr is the volume ratio (III.11)

III.8.2 Kinematic similarity
Kinematic similarity is similarity of motion.
If, at the points corresponding to the model and the prototype, the velocity and
acceleration ratios are the same, as well as the velocity in the same directions, the two
flows are said to be kinematically similar.
(V )1m : fluid velocity at point 1 of the model
(V )2m : fluid velocity at point 2 of the model
(a )1m : fluid acceleration at model point 1
(a )2m : fluid acceleration at model point 2
And (V )1p ,(V )2p ,(a )1p ,(a )2p , the corresponding velocities and accelerations at points
in the prototype fluid.
For a kinematic similarity we have :
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Vr velocity ratio
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ar the acceleration ratio
The direction of velocity in the model and in the prototype must be the same.

III.8.3 Dynamic similarity
Dynamic similarity is similarity of forces. The forces in the model and the prototype are
similar.
If at the corresponding points, identical types of force are parallel and give the same
ratio.
(F )im : the inertial force at the model point
(F )vm : viscous force at the model point
(F )gm : the force of gravity at the model point
And (F ) ,ip (F )vp , (F )gp are the forces corresponding to the prototype.
For a dynamic similarity we have :
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Fr the balance of power
The directions of the forces in the model and in the prototype must be the same.
To ensure dynamic similarity between model and prototype, the dimensionless numbers
of the model and prototype must be the same.
This condition cannot be satisfied for all dimensionless numbers, so models are
designated on the basis of the forces that dominate them. This flow situation is called
the law of similitude.

 Reynolds Model Law
In a flow situation where, in addition to inertial forces, viscous forces predominate. The
flow similarity between the model and the prototype can be established if the Reynolds
numbers are the same for both systems.
(Re )model=(Re )prototype (III.15)
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Where the different index quantities r represent the scaling ratios.
Similarly, we have :

Time scale
r

r
r V

L
T 

(III.17)

The scale of acceleration
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The force scale Fr = (mass X acceleration)= mr .a = ρ Arrrr V.ar= ρ L Vrr
22

r . (III.18)
The flow rate scale qr = (ρAV) =ρ Arrrr = V ρ L Vrr

2
r (III.19)
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