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1.1. Elements of Digital Transmission Chain 

Transmission is said to be baseband when the signal does not undergo frequency transposition. In this 

case the signal often has a rectangular appearance, because the modulation function used is 

rectangular. Baseband transmission consists of directly transmitting digital signals in electrical form on 

electrical conductors, over limited distances (of the order of 30 Km). The elements of a digital 

transmission chain are represented in the block diagram in Figure.1.1. 

 

 

Figure.1.1. Elements of a digital transmission chain 

 

-Source coding: the role of source coding is the compression of information, reducing the quantity of 

binary data transmitted (symbols coded by words of variable lengths, for example the Huffman 

algorithm). 

-Channel coding: the goal is the detection and/or correction of errors caused in reception by the 

channel noise (improve the Bit Error Rate (BER)). 

-Line coding: this is the formatting of data in the form of pulses. 

-Channel: is a medium allowing the transmission of a certain quantity of information, from a source to 

a receiver. 

1.2. Line codes 

A line code is the code used for data transmission of a digital signal over a transmission channel. This 

process of coding is chosen so as to avoid for example the overlap and distortion of signal such as 

intersymbol interference. 
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1.2.1. Bipolar NRZ  

Bipolar NRZ (Non-Return to Zero) code is based on the association of an amplitude +𝐴 with the bit 

𝑑𝑘 = 1 and an amplitude −𝐴 with the bit 𝑑𝑘 = 0. This code can be written into symbols 𝑎𝑘 multiplying 

a transmission filter 𝑔(𝑡), the transmit signal 𝑥(𝑡) is written in the following form: 

𝑥(𝑡) =∑𝑎𝑘𝑔(𝑡 − 𝑘𝑇)                                                                                                                                    (1.1)

𝑘

 

where 𝑔(𝑡) = 𝐴. 𝑟𝑒𝑐𝑡 (
𝑡

𝑇
), 𝐴 is the amplitude and 𝑟𝑒𝑐𝑡(. ) is rectangular pulse (Figure.1.2). 

  g(t)   

   +A   

  T 

Figure.1.2. Rectangular pulse 

The symbols 𝑎𝑘 associated with the bits are: 

{
𝑎𝑘 = 1     if      𝑑𝑘 = 1
𝑎𝑘 = −1  if      𝑑𝑘 = 0

 

Example:  

         +A 0 1 0 0 1 1 1 0 0 

                   

                   

         -A          

 

Figure.1.3. Bipolar NRZ 

1.2.2. Unipolar NRZ  

Unipolar NRZ code is similar to bipolar NRZ except that the bit 𝑑𝑘 = 0 is associate with the symbol 

𝑎𝑘 = 0. 
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Example:  

         +A 0 1 0 0 1 1 1 0 0 

                   

                   

         -A          

 

Figure.1.4. Unipolar NRZ 

The main limitations of NRZ signals are the presence of the direct component DC and the lack of ability 

to synchronize. To explain the latter issue, consider that when a long string of 1’s is received for NRZ, 

the output is a constant voltage, and there is no transition that can help align the received clock to the 

middle of the symbol. As such, a drift between transmitter and receiver cannot be corrected based on 

the signal alone. 

1.2.3. Unipolar RZ  

Unipolar RZ associates with the bit 𝑑𝑘 = 1 an amplitude +𝐴 during [0, T/2] and an amplitude 0 during 

[T/2, T], for the bit 𝑑𝑘 = 0  it associates an amplitude 0. 

In this case 𝑔(𝑡) is given as: 

𝑔(𝑡) = {
+𝐴 𝑖𝑓 𝑡 ∈ [0,

𝑇

2
]

0 𝑖𝑓 𝑡 ∈ [
𝑇

2
, 𝑇]

                                                                                                                                 (1.2) 

Example:  

         +A 0 1 0 0 1 1 1 0 0 

                       

                   

         -A          

 

Figure.1.5. Unipolar RZ 

1.2.4. Bipolar RZ  

Bipolar RZ code associates with the bit 𝑑𝑘 = 1 an amplitude +𝐴 during [0, T/2] and an amplitude 0 

during [T/2, T], for the bit 𝑑𝑘 = 0 it associates an amplitude −𝐴 during [0, T/2] and an amplitude 0 

during [T/2, T]. 
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Example: 

         +A 0 1 0 0 1 1 1 0 0 

                       

                        

         -A          

 

Figure.1.6. Bipolar RZ 

1.2.5. Manchester  

This code associates with the bit 𝑑𝑘 = 1  an amplitude +𝐴 during [0, T/2] and an amplitude −𝐴 during 

[T/2, T], for the bit 𝑑𝑘 = 0  it associates an amplitude −𝐴 during [0, T/2] and an amplitude +𝐴 during 

[T/2, T]. 

Example:  

        +A 0 1 0 0 1 1 1 0 0 

          

          

                  

                  

         -A          

 

Figure.1.7. Manchester 

Manchester codes are expected to overcome the disadvantages of NRZ. The Manchester schemes 

require at least one transition per bit time. The Manchester code has several advantages: 

- Synchronization: Since there is a predictable transition during each bit time, the receiver can 

synchronize on the transition. For Manchester, there is always a transition in the middle of each bit 

interval. 

- Manchester code has no DC component. 

1.2.6. Differential Manchester  

In this code, for the bit 𝑑𝑘 = 0 the previous state is repeated and for the bit 𝑑𝑘 = 1 the previous 

state is reversed.  
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Example: 

 

        +A 0 1 0 0 1 1 1 0 0 

          

          

                  

                  

         -A          

 

Figure.1.8. Differential Manchester 

The advantage of the differential Manchester code compared to the Manchester code is there is no 

polarity respected. 

1.2.7. AMI  

AMI (Alternate Mark Inversion) code associates with 𝑑𝑘 = 1  an amplitude +𝐴 and an amplitude −𝐴. 

The bit 𝑑𝑘 = 0   is associated with an amplitude 0. A change of sign is imposed between two successive 

amplitudes representing a bit equal to 1. 

Example: 

 

         +A 0 1 0 0 1 1 1 0 0 

                   

                   

         -A          

 

Figure.1.9. AMI 

1.2.8. Miller  

This code associates with each bit 𝑑𝑘 = 1 either an amplitude +𝐴 during T/2, then an amplitude −𝐴 

during T/2, or an amplitude −𝐴 during T/2 then an amplitude +𝐴 during T/2. To each bit 𝑑𝑘 = 1, it 

associates an amplitude −𝐴 or an amplitude +𝐴 during the entire period of the symbol. The polarity 

of the signal associated with a bit 𝑑𝑘 = 1  is chosen in order to obtain continuity with the previous 

pulse. The polarity of a signal associated with a bit 𝑑𝑘 = o is chosen in order to obtain continuity with 

the previous pulse if it corresponded to a bit 𝑑𝑘 = 1. 
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Example: 

 

        +A 0 1 0 0 1 1 1 0 0 

          

          

             

             

         -A          

 

Figure.1.10. Miller 

1.2.9. NRZI  

For NRZI (NRZ Inverted) code, the value of the transmitted bit is not indicated by the amplitude, but by 

the transitions; if there is a change of state (+𝐴 to −𝐴 or -𝐴 to +𝐴), then the transmitted bit is equal 

to 1; whereas if there is no change of state, the transmitted bit is equal to 0. 

Example: 

 

         +A 0 1 0 0 1 1 1 0 0 

                   

                   

         -A          

 

Figure.1.11. NRZI 

1.2.10. M-ary NRZ 

The M-ary NRZ code is an example of line code that does not modulate bits, but symbols composed 

of a several bits. The symbols 𝑎𝑘 may take more than two values. For M-ary NRZ codes with 𝑀 equal 

to a power of 2, bits are grouped by blocks of 𝑙𝑜𝑔2(𝑀) bits. Each block is then encoded on a symbol 

𝑎𝑘. The Figure.1. shows example of M-ary NRZ code with 𝑀 = 4. 
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Figure.1.12. M-ary NRZ with 𝑀 = 4 

 

1.3. Power Spectral Density 

Each online code is characterized by its own power spectral density (PSD), it can be obtained using 

Bennett formula. The baseband signal 𝑥(𝑡) can be written as:  

𝑥(𝑡) =∑𝑎𝑘𝑔(𝑡 − 𝑘𝑇)                                                                                                                                    (1.4)

𝑘

 

where 𝑎𝑘 are the transmit symbols and 𝑔(𝑡) is the transmission filter. 

𝛾𝑋𝑋(𝑓) =
1

𝑇
|𝐺(𝑓)|2𝛾𝐴𝐴(𝑓)                                                                                                                               (1.5) 

 where 𝐺(𝑓) is the spectrum of 𝑔(𝑡), 𝛾𝐴𝐴(𝑓) = ∑ 𝑅𝑎𝑎(𝑛)𝑒
−𝑗2𝜋𝑓𝑛𝑇

𝑛  and 𝑅𝑎𝑎(𝑛) is the 

autocorrelation. 

Some PSDs of the codes seen previously are given below.  

-NRZ 

𝛾𝑋𝑋(𝑓) = 𝐴
2𝑇 𝑠𝑖𝑛 𝑐2 (𝜋𝑓𝑇)                                                                                                                             (1.6) 

 

Figure.1.13. PSD of NRZ 
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-Unipolar RZ 

𝛾𝑋𝑋(𝑓) =
𝐴2𝑇

16
𝑠𝑖𝑛 𝑐2 (𝜋𝑓

𝑇

2
) +

𝐴2

16
∑𝛿 (𝑓 −

𝑖

𝑇
) 𝑠𝑖𝑛 𝑐2 (𝜋𝑓

𝑇

2
)

𝑖

                                                            (1.7) 

  

Figure.1.14. PSD of unipolar RZ  

 

- Bipolar RZ 

𝛾𝑋𝑋(𝑓) =
𝐴2𝑇

4
𝑠𝑖𝑛 𝑐2 (𝜋𝑓

𝑇

2
)                                                                                                                           (1.8) 

 

Figure.1.15. PSD of bipolar RZ  

- Manchester 

𝛾𝑋𝑋(𝑓) = 𝐴
2𝑇 𝑠𝑖𝑛 𝑐2 (𝜋𝑓

𝑇

2
) 𝑠𝑖𝑛2 (𝜋𝑓

𝑇

2
)                                                                                                    (1.9) 
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Figure.1.16. PSD of Manchester 

-M-ary NRZ 

 

Figure.1.17. PSD of M-ary NRZ with 𝑀 = 4 

 

1.4. Criteria for Choosing a Line Code 

The choice of a line code is made according to the power spectral density of the code and the noise 

resistance. The criteria for choosing a line code are: 

-Noise sensitivity. 

-Bandwidth. 

-Synchronization (Clock recovery at the receiver).  

-DC component. 

 

 



14 
 

1.5. Exercises 

Exercise 1: 

1- Reminder the principles of the following line codes: NRZ, NRZI, RZ, AMI, Manchester, differential 

Manchester and Miller. 

2- Represent the binary sequence 0100001010000111 in baseband coded according to the NRZ, NRZI, 

Manchester, differential Manchester and Miller. 

3- Represent this sequence with 4-ary code. 

Exercise 2: 

1- Consider the following binary sequence: 110010. Draw the chronogram of this sequence using the 

Miller code, differential Manchester and the bipolar RZ code. 

2- What line code corresponds to the following chronogram? Give the corresponding binary sequence? 

 

 

 

Exercise 3: 

The elements of a sequence 𝑎𝑛 are independent and equiprobable binary random variables taking 

values of ±1. This data sequence is used to modulate the base pulse g(𝑡) shown in the following figure:  

 

 

 

The modulated signal is given by: 

𝑥(𝑡) = ∑ 𝑎𝑛g(𝑡 − 𝑛𝑇)

+∞

𝑛=−∞

 

Using Bennett's formula, determine the power spectral density 𝛾𝑥𝑥(𝑓) of 𝑥(𝑡). 

Bennett’ formula: 

𝛾𝑋(𝑓) =
1

𝑇
|𝐺(𝑓)|2∑𝑅𝑎(𝑛)𝑒

−𝑗2𝜋𝑓𝑛𝑇

𝑛

 



15 
 

where 𝑅𝑎(𝑛) is the autocorrelation. 
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2.1 Structure of M-signals Receiver 

In this chapter, the channel is considered additive white Gaussian noise (AWGN) channel. This channel 

is mathematically described as: 

𝑟(𝑡) = 𝑠𝑖(𝑡) + 𝑛(𝑡) 

where 𝑟(𝑡) is the received signal, 𝑠𝑖(𝑡) is the transmitted signal which is one of M possible signals and 

𝑛(𝑡) is the white Gaussian noise.  

The main objective of the optimum receiver is the finding of the transmitted signal by the minimizing 

the error rate. The Figure 2.1 show the structure of the optimal receiver. 

 

Figure.2.1. Receiver structure 

 

The detection is performed by two steps, demodulation and the detection. The first step consists to 

maximizes the signal to noise ratio (SNR) using the reception filter ℎ(𝑡) and then the signal will be 

sampled at 𝑡 = 𝑇. After that, the detection step is performed using threshold comparison to decide 

which signal is sent. The reception filter can be a correlator filter or matched filter.  

2.2. Vector View of Signals and Noise 

We define an N-dimensional orthogonal space by a set of orthogonal bases 𝜓𝑗(𝑡). The basis functions 

must satisfy the condition: 

∫ 𝜓𝑗(𝑡)𝜓𝑘(𝑡) = {
1     𝑓𝑜𝑟 𝑗 = 𝑘
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

+∞

−∞

                                                                                                                 (2.1) 

Any arbitrary signal  𝑠𝑖(𝑡) can be expressed as linear combination of N orthogonal bases 𝜓𝑗(𝑡) as: 

𝑠1(𝑡) = 𝑎11𝜓1(𝑡) + 𝑎12𝜓2(𝑡) + ⋯+ 𝑎1𝑁𝜓𝑁(𝑡) 

𝑠2(𝑡) = 𝑎21𝜓1(𝑡) + 𝑎22𝜓2(𝑡) +⋯+ 𝑎2𝑁𝜓𝑁(𝑡) 

. 

. 

. 

𝑠𝑀(𝑡) = 𝑎𝑀1𝜓1(𝑡) + 𝑎𝑀2𝜓2(𝑡) +⋯+ 𝑎𝑀𝑁𝜓𝑁(𝑡) 

The general form can be expressed as: 

h(t) 
si(t) r(t) 

n(t)   (AWGN) 

z(t) 

t=T 

z(T) 𝑠Ƹ i(t) 
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𝑠𝑖(𝑡) =∑𝑎𝑖𝑗𝜓𝑗(𝑡)

𝑁

𝑗=1

          
𝑖 = 1,… ,𝑀

𝑁 ≤ 𝑀
                                                                                                         (2.2)  

where  

𝑎𝑖𝑗 = ∫𝑠𝑖(𝑡)𝜓𝑗(𝑡)𝑑𝑡

𝑇

0

                                                                                                                                        (2.3) 

2.2.1. Waveform Energy 

The energy of the waveform 𝑠𝑖(𝑡) over symbol time 𝑇 can expressed as: 

𝐸𝑖 = ∫𝑠𝑖
2(𝑡)𝑑𝑡

𝑇

0

                                                                                                                                                   (2.4) 

     = ∫ [∑𝑎𝑖𝑗𝜓𝑗(𝑡)

𝑁

𝑗=1

]

2

𝑑𝑡

𝑇

0

 

     = ∫∑𝑎𝑖𝑗𝜓𝑗(𝑡)

𝑁

𝑗=1

.∑𝑎𝑖𝑗𝜓𝑗(𝑡)

𝑁

𝑗=1

𝑑𝑡

𝑇

0

 

     = ∫∑𝑎𝑖𝑗𝑎𝑖𝑗𝜓𝑗(𝑡)𝜓𝑗(𝑡)

𝑁

𝑗=1

𝑑𝑡

𝑇

0

 

      = ∑𝑎𝑖𝑗𝑎𝑖𝑗

𝑁

𝑗=1

∫𝜓𝑗(𝑡)𝜓𝑗(𝑡)𝑑𝑡

𝑇

0

 

𝐸𝑖 =∑𝑎𝑖𝑗
2

𝑁

𝑗=1

                                                                                                                                                          (2.5) 

2.2.2. Representation of the AWGN Noise  

The AWGN noise can be expressed as a combination of orthogonal bases in the same way as signals: 

𝑛(𝑡) =∑𝑛𝑖𝜓𝑗(𝑡)

𝑁

𝑗=1

𝑑𝑡                                                                                                                                        (2.6) 

where 

𝑛𝑖 = ∫𝑛(𝑡)𝜓𝑗(𝑡)𝑑𝑡

𝑇

0

                                                                                                                                          (2.7) 

The power spectral density (PSD) of the AWGN noise is 𝑁0/2 for all frequencies from −∞ to +∞, the 

variance of the AWGN noise (the noise is zero mean) is: 

𝜎0
2 = 𝑉𝑎𝑟[𝑛(𝑡)] = ∫

𝑁0
2
𝑑𝑓

+∞

−∞

= ∞                                                                                                                (2.7) 

The variance of AWGN at the output of the correlator for finite symbol time 𝑇 is given as: 
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𝜎0
2 = 𝑉𝑎𝑟[𝑛(𝑡)] = 𝐸 {[∫𝑛(𝑡)𝜓𝑗(𝑡)𝑑𝑡

𝑇

0

]

2

} =
𝑁0
2
                                                                                      (2.7) 

2.3. Matched Filter 

The matched filter provides the maximum signal to noise ratio. At 𝑡 = 𝑇, the sampler output 𝑧(𝑇) 

contain 𝑎𝑖  signal component and 𝑛𝑜 noise component. so, the SNR is: 

(
𝑆

𝑁
)
𝑇
=
𝑎𝑖
2

𝜎0
2                                                                                                                                                            (2.9) 

The goal is to find the transfer function 𝐻0(𝑓) that maximizes the SNR. The signal 𝑎𝑖(𝑡) at the output 

of the filter can be express as: 

𝑧(𝑡) = ∫ 𝐻(𝑓)𝑆(𝑓)𝑒𝑗2𝜋𝑓𝑡𝑑𝑓                                                                                                                    (2.10)
+∞

−∞

 

The power of the noise at the output of the filter is: 

𝜎0
2 =

𝑁0
2
∫ |𝐻(𝑓)|2𝑑𝑓                                                                                                                               (2.11)
+∞

−∞

 

where 𝑁0/2 is the PSD of the noise. 

The SNR will be expressed as: 

(
𝑆

𝑁
)
𝑇
=
|∫ 𝐻(𝑓)𝑆(𝑓)𝑒𝑗2𝜋𝑓𝑇𝑑𝑓
+∞

−∞
|
2

𝑁0
2 ∫

|𝐻(𝑓)|2𝑑𝑓
+∞

−∞

                                                                                                           (2.12) 

using the Schwarz’s inequality: 

|∫ 𝑓1(𝑥)𝑓2(𝑥)𝑑𝑥
+∞

−∞

|

2

≤ ∫ |𝑓1(𝑥)|
2𝑑𝑥

+∞

−∞

∫ |𝑓2(𝑥)|
2𝑑𝑥

+∞

−∞

                                                                     (2.12) 

The equality is holds if 𝑓1(𝑥) = 𝑘𝑓2
∗(𝑥), where k is constant and * is the complex conjugate. If we put 

𝑓1(𝑥) = 𝐻(𝑓) and 𝑓2(𝑥) = 𝑆(𝑓)𝑒
𝑗2𝜋𝑓𝑇 , we obtain: 

|∫ 𝐻(𝑓) 𝑆(𝑓)𝑒𝑗2𝜋𝑓𝑇𝑑𝑓
+∞

−∞

|

2

≤ ∫ |𝐻(𝑓)|2𝑑𝑓
+∞

−∞

∫ |𝑆(𝑓)𝑒𝑗2𝜋𝑓𝑇|
2
𝑑𝑓

+∞

−∞

                                                                                                  (2.13) 

and the SNR became: 

(
𝑆

𝑁
)
𝑇
≤
2

𝑁0
∫ |𝑆(𝑓)|2𝑑𝑓
+∞

−∞

                                                                                                                            (2.14) 

so, 

𝑚𝑎𝑥 (
𝑆

𝑁
)
𝑇
≤
2𝐸

𝑁0
                                                                                                                                              (2.15) 
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where 𝐸 = ∫ |𝑆(𝑓)|2𝑑𝑓
+∞

−∞
 is the energy of the input signal. 

The Schwarz’s equality is holds if 𝑓1(𝑥) = 𝑘𝑓2
∗(𝑥), so: 

𝐻(𝑓) = 𝐻0(𝑓) = 𝑘𝑆
∗(𝑓)𝑒−𝑗2𝜋𝑓𝑇                                                                                                                 (2.16) 

or 

ℎ(𝑡) = 𝐹𝑇−1{𝑘𝑆∗(𝑓)𝑒−𝑗2𝜋𝑓𝑇}                                                                                                                      (2,17) 

The final expression of the matched filter is: 

ℎ(𝑡) = {
𝑘𝑠(𝑇 − 𝑡)        0 ≤ 𝑡 ≤ 𝑇
0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                               (2.18) 

The impulse response of a filter that maximizes the SNR is the mirror image of the message signal 𝑠(𝑡) 

delayed by a symbol time duration T as shown in figure 2.2. 

 

 

 

 

 

 

 

Figure 2.3. Matched filter transfer function 

The structure of the receiver with matched filter is represented in Figure.2.4. 

 

 

 

Figure.2.4. Structure of receiver with matched filter 

 

The signal at the output of the matched filter is: 

𝑧(𝑡) = 𝑟(𝑡) ∗ ℎ(𝑡)                                                                                                                                            (2.19) 

  

𝑧(𝑡) = ∫ 𝑟(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
𝑡

0

                                                                                                                               

𝑧(𝑡) = ∫ 𝑟(𝜏)𝑠(𝑇 − (𝑡 − 𝜏))𝑑𝜏
𝑡

0

 

𝑧(𝑡) = ∫ 𝑟(𝜏)𝑠(𝑇 − 𝑡 + 𝜏)𝑑𝜏                                                                                                                       (2.20)
𝑡

0

 

at 𝑡 = 𝑇  

𝑧(𝑇) = ∫ 𝑟(𝜏)𝑠(𝑇 − 𝑇 + 𝜏)𝑑𝜏
𝑇

0

 

s(t) s(-t) h(t)=s(T-t) 

T -T T 

ℎ(𝑡) = 𝑠(𝑇 − 𝑡) r(t) z(t) 



21 
 

𝑧(𝑇) = ∫ 𝑟(𝜏)𝑠(𝜏)𝑑𝜏
𝑇

0

                                                                                                                                    (2.21) 

We observe that the adapted filter provides the same result as the correlator filter. 

The Structure of the receiver with correlator filter is shown in Figure.2.5. 

 

 

 

 

 

Figure.2.5. Structure of receiver with correlator filter 

2.4. Optimal Detector 

The objective of the optimal detector is to determine the symbol most likely transmitted. Assuming 

that the emitted signal 𝑠𝑖  with conditional probability 𝑝(𝑠𝑖/𝑧), where 𝑧 is the received signal after the 

matched filter.  

2.4.1. Maximum A Posteriori (MAP) Decision Rule 

The MAP detector is based on finding over all possible transmitted signals 𝑠𝑖  the signal 𝑠Ƹ with the 

maximum conditional probability as: 

𝑠Ƹ = 𝑎𝑟𝑔𝑚𝑎𝑥⏟    
𝑠𝑖

{𝑝(𝑠𝑖/𝑧)}                                                                                                                                   (2,22) 

using Bayes theorem: 

𝑝(𝑠𝑖/𝑧) =
𝑝(𝑧/𝑠𝑖)𝑝(𝑠𝑖)

𝑝(𝑧)
                                                                                                                                 (2.23) 

where  𝑝(𝑧/𝑠𝑖) is the conditional probability density function (pdf) of the observed vector 𝑧 given 𝑠𝑖, 

𝑝(𝑠𝑖) is a priori probability of the transmitted symbols and 𝑝(𝑧) is the probability of the received signal.  

The 𝑝(𝑧) probability is common for all signals, so, the MAP detector rule becomes: 

𝑠Ƹ = 𝑎𝑟𝑔𝑚𝑎𝑥⏟    
𝑠𝑖

{𝑝(𝑧/𝑠𝑖)𝑝(𝑠𝑖)}                                                                                                                          (2.24) 

2.4.2. Maximum Likelihood (ML) Decision Rule 

MAP rule requires the knowledge of both 𝑝(𝑧/𝑠𝑖) and 𝑝(𝑠𝑖), in some applications 𝑝(𝑠𝑖) is unknown at 

the receiver. If all 𝑠𝑖  symbols are equally probable:  𝑝(𝑠𝑖) =
1

𝑀
, 𝑖 = 1,… ,𝑀. The ML decision rule is 

given as: 

∫ (. )𝑑𝑡
𝑇

0

 r(t) 

s(t) 

z(t) 
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𝑠Ƹ = 𝑎𝑟𝑔𝑚𝑎𝑥⏟    
𝑠𝑖

{𝑝(𝑧/𝑠𝑖)}                                                                                                                                   (2.25) 

2.5. Exercises 

Exercise 1: 

1-The figure (a) bellow shows a set of three waveforms 𝑠1(𝑡), 𝑠2(𝑡) and 𝑠3(3). Demonstrate that these 

waveforms do not form an orthogonal set. 

 

                                                      Figure (a) 

2-The Figure (b) shows a set of two waveforms 𝜓1(𝑡)  and 𝜓2(𝑡). Verify that these waveforms form an 

orthogonal set. 

  

                                    Figure (b) 

3- Show that the three waveforms 𝑠1(𝑡), 𝑠2(𝑡) and 𝑠3(3) can be expressed as a linear combination of 

the orthogonal set in part 2.   

Exercise 2: 

A matched filter has the frequency response: 

𝐻(𝑓) =
1 − 𝑒−𝑗2𝜋𝑓

𝑗2𝜋𝑓
 

1. Determine the impulse response ℎ(𝑡) corresponding to 𝐻(𝑓). 

2. Determine the signal waveform to which the filter characteristic is matched. 

Exercise 3: 

Consider the signal: 
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𝑠(𝑡) = {
(𝐴/𝑇)𝑡 𝑐𝑜𝑠 2𝜋𝑓𝑐𝑡          0 ≤ 𝑡 ≤ 𝑇
0                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 1. Determine the impulse response of the matched filter for the signal. 

2. Determine the output of the matched filter at 𝑡 = 𝑇. 

3. Suppose the signal 𝑠(𝑡) is passed through a correlator that correlates the input 𝑠(𝑡) with 𝑠(𝑡). 

Determine the value of the correlator output at 𝑡 = 𝑇. Compare your result with that in part 2. 
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3.1. Introduction 

In many applications such as mobile communications and satellite communications, the bandwidth is 

limited and the objective is to transmit with the highest possible data rate in the given bandwidth. The 

transmit filter’s frequency response defines the spectral characteristics of the transmission. Since the 

signal has a limited bandwidth, the transmit filter cannot be a rectangular function of duration T. 

Indeed, the frequency response of such a transmit filter is 𝐺(𝑓) =
sin (𝜋𝑡/𝑇)

𝜋𝑡/𝑇
, whose spectral band is 

infinite. As a result, it is necessary to determine finite-band transmit filters that allow us to remove 

intersymbol interference (ISI) at the receiver.  

Intersymbol interference occurs when a pulse spreads out in a way that it interferes with adjacent pulse 

at the sample instant as shown in Figure.3.1. 

 

 

 

 

 

 

 

 

 

Figure.3.1. Intersymbol Interference 

 

3.2. Intersybol Interference 

We assume that the signal transmitted on band-limited channel as shown in Figure.3.2, where 𝑎𝑘  is a 

set of real symbols, and ℎ𝑡(𝑡) is the transmit filter. This signal is then modified by the transmission 

channel, which is in general modelled by a linear filter with impulse response ℎ𝑐(𝑡). Also, the channel 

adds white Gaussian noise 𝑏(𝑡). 

 

Figure.3.2. Band-Limited Channel 

The signal 𝑒(𝑡) in the output of the transmit filter is: 

𝑒(𝑡) 
𝑎ො𝑘  

 

𝑦(𝑡 + 𝑘𝑇) 

𝑥(𝑡) 

ℎ𝑡(𝑡) 

Transmit 

filter 

Reception 

filter 

detection 

𝑏(𝑡) 

ℎ𝑟(𝑡) 
ℎ𝑐(𝑡) 

𝑦(𝑡) 

𝑎𝑘  

0 T -T 

δ1(t) δ3(t) 

δ2(t) 

t 



26 
 

𝑒(𝑡) = ∑ 𝑎𝑘ℎ𝑡(𝑡 − 𝑘𝑇)

+∞

𝑘=−∞

                                                                                                                              (3.1) 

The received signal 𝑥(𝑡) is: 

𝑥(𝑡) = 𝑒(𝑡) ∗ ℎ𝑐(𝑡) + 𝑏(𝑡) 

          = ∫ ℎ𝑐(𝜏)𝑒(𝑡 − 𝜏)𝑑𝜏 + 𝑏(𝑡)                                                                                                             (3.2) 

+∞

−∞

 

The signal 𝑦(𝑡) after the reception filter ℎ𝑟(𝑡) is then written as: 

𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ𝑐(𝑡) ∗ ℎ𝑟(𝑡) + 𝑛(𝑡)                                                                                                                (3.4)  

where 𝑛(𝑡) = 𝑏(𝑡) ∗ ℎ𝑟(𝑡) 

 𝑦(𝑡) = ∑ 𝑎𝑘ℎ𝑡(𝑡 − 𝑘𝑇)

+∞

𝑘=−∞

∗ ℎ𝑐(𝑡) ∗ ℎ𝑟(𝑡) + 𝑛(𝑡)                                                                                   (3.5) 

𝑦(𝑡) = ∑ 𝑎𝑘𝑝(𝑡 − 𝑘𝑇)

+∞

𝑘=−∞

+ 𝑛(𝑡)                                                                                                                   (3.6) 

where 𝑝(𝑡) = ℎ𝑡(𝑡) ∗ ℎ𝑐(𝑡) ∗ ℎ𝑟(𝑡) the equivalent filter of the impulse response of the convolution 

of the transmit filter, transmission channel and receive filter. Its frequency response is: 

𝑃(𝑓) = 𝐻𝑡(𝑓).𝐻𝑐(𝑓).𝐻𝑟(𝑓)                                                                                                                            (3.7) 

𝑦(𝑡) is then sampled at symbol period 𝑘𝑇: 

𝑦(𝑘𝑇) = ∑ 𝑎𝑖𝑝(𝑘𝑇 − 𝑖𝑇)

+∞

𝑖=−∞

+ 𝑛(𝑘𝑇) 

             = 𝑎𝑘ℎ(0) +∑𝑎𝑖𝑝(𝑘𝑇 − 𝑖𝑇)

+∞

𝑖≠𝑘

+ 𝑛(𝑘𝑇)                                                                                           (3.8) 

This expression contains three elements: 

– The first element is proportional to the 𝑘𝑡ℎ transmitted symbol. 

– The second element is the contribution of all other transmitted symbols on sample 𝑦(𝑘𝑇) and 

represent the intersymbol interference. 
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– The third element is the noise contribution. 

Both intersymbol interference and noise decrease the performances of the transmission system, since 

they prevent the receiver from correctly estimating the symbol transmitted at time 𝑘𝑇. As a result, 

both transmit and receive filters must be chosen so as to minimize them. 

3.3. Nyquist Criterion 

To ensure that no intersymbol interference, the complete filter 𝑝(𝑡) must verify the following 

condition: 

𝑝(𝐾𝑇) = {
1        𝑖𝑓    𝑘 = 0
0       𝑖𝑓     𝑘 ≠ 0

                                                                                                                               (3.9) 

In the frequency domain, Nyquist criterion becomes: 

∑ 𝑝(𝑓 +
𝑖

𝑇
)

+∞

𝑖=−∞

= 𝑇                                                                                                                                         (3.10) 

The channel transmission’s bandwidth 𝐵 is defined by 𝐻𝑐(𝑓) = 0 when 𝑓 > 𝐵. The Nyquist criterion 

depends on the bandwidth 𝐵 and the symbol period 𝑇. There are three cases as shown in Figure.3.3. 

– if 𝐵 <
1

2𝑇
, then there is no filter 𝑝(𝑓) that verifies the Nyquist criterion; 

– if 𝐵 =
1

2𝑇
 , a unique solution exists: 𝑝(𝑓) must be the frequency response of a perfect lowpass filter 

with cutoff frequency 𝐵: 

𝑝(𝑓) = {𝑇       𝑖𝑓 |𝑓| < 𝐵 =
1

2𝑇
0                  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                                                                                                    (3.11) 

Its impulse response is: 

𝑝(𝑡) =
sin (𝜋𝑡/𝑇)

𝜋𝑡/𝑇
                                                                                                                                           (3.12) 

This perfect lowpass filter with cutoff frequency 𝑓 =
1

2𝑇
 cannot physically be implemented. In addition, 

the impulse response of this filter has a low decrease and is of infinite duration. 

– if 𝐵 >
1

2𝑇
, then several filters 𝑝(𝑓) verify the Nyquist criterion. Among these filters, we find the 

raised cosine filters. 
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Figure.3.3. Frequency responses of Nyquist criterion cases 

The frequency response of a raised cosine filter is: 

𝑝(𝑓) =

{
  
 

  
 𝑇                                                                 𝑖𝑓 0 ≤ |𝑓| ≤

1 − 𝛼

2𝑇

𝑇𝑐𝑜𝑠2 (
𝜋

4𝛼
(2𝑓𝑇 − (1 − 𝛼)))        𝑖𝑓 

1 − 𝛼

2𝑇
< |𝑓| <

1 + 𝛼

2𝑇

0                                                                          𝑖𝑓 |𝑓| ≥
1 + 𝛼

2𝑇

                                                (3.13) 

Where 𝛼 is the roll-off factor, lying between 0 and 1. The perfect lowpass filter with minimum 

bandwidth is obtained when 𝛼 = 0 and the bandwidth is maximum when 𝛼 = 1. 

The frequency response of a raised cosine filter is represented in Figure.3.4 for α = 1 and α = 0.35. 

Its impulse response 𝑝(𝑡) is given as: 

𝑝(𝑡) = 𝑠𝑖𝑛𝑐(𝜋𝑡/𝑇)
cos (𝛼𝜋𝑡/𝑇)

1 − 4𝛼2𝑡2/𝑇2
                                                                                                              (3.14) 

The Figure.3.5 represent the Impulse response of the raised cosine filter for several values of 𝛼. 

In practice, the raised cosine filter is separated into two identical receive and transmit filters called 

root raised cosine filters, whose frequency response is: 
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𝐻𝑡(𝑓) = 𝐻𝑟(𝑓) = √𝑝(𝑓) =

{
  
 

  
 √𝑇                                                                 𝑖𝑓 0 ≤ |𝑓| ≤

1 − 𝛼

2𝑇

√𝑇𝑐𝑜𝑠 (
𝜋

4𝛼
(2𝑓𝑇 − (1 − 𝛼)))        𝑖𝑓 

1 − 𝛼

2𝑇
< |𝑓| <

1 + 𝛼

2𝑇

0                                                                          𝑖𝑓 |𝑓| ≥
1 + 𝛼

2𝑇

          (3.15) 

 

Figure.3.4. Frequency response of the raised cosine filter 

 

Figure.3.5. Impulse response of the raised cosine filter 
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3.4. Eye diagram 

An eye pattern is a pattern displayed on the screen of an oscilloscope. The shape of this pattern 

resembles the shape of the human eye. therefore, it is called an eye pattern. The eye pattern is a 

practical way to study intersymbol interference and its effects on data communication system. The eye 

pattern is produced by the synchronized superposition of (as many as possible) successive symbol 

intervals of the distorted waveform appearing at the output of the receive filter as shown in Figure.3.6. 

The interior region of the eye pattern is called the eye-opening. The eye pattern provides a great deal 

of information about the performance of the system.  

 

Figure.3.6. Eye diagram 

The information obtained from Eye pattern (Figure.3.7) are: 

• The width of the eye-opening defines the time interval over which the received wave can be 

sampled, without an error due to ISI. the best time for sampling is when the eye is open widest. 

• The height of eye-opening at a specified sampling time defines the margin over the noise. 

• When the effect of ISI is severe, the eye is completely closed and it is impossible to avoid error 

due to the combined presence of ISI and noise in the system. 

 

Figure.3.7. Information obtained from Eye pattern 
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Figures 3.8 and 3.9 show two examples for a binary signal (𝑎𝑘 = ±1) where the total filter is a raised 

cosine. The Figures graphically illustrate the impact of intersymbol interference and noise on the eye 

diagram. We can notice that even in the absence of noise, the chosen filter tends to close the eye 

diagram, which may make the decisions on the sampling time and on the symbol’s amplitude more 

complicated.  

 

Figure.3.8. Eye diagram of binary signal with raised cosine filter for 𝛼 = 1 

 

Figure.3.9. Eye diagram of binary signal with raised cosine filter for 𝛼 = 0.35 
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3.5. Exercises 

Exercise 1: 

We consider a baseband transmission with alphabet of 8 symbols on an AWGN channel, the bandwidth 

of the channel is 𝐵 = 70 kHz. The power spectral density of the noise is 𝑁0/2, the ratio [𝐸𝑏/𝑁0] dB (𝐸𝑏 

is the energy per bit) is a function of the bit rate 𝐷𝑏 as shown in the figure.3.9.  

1) How many bits does each transmitted symbol carry? 

2) To cancel intersymbol interference, we use raised cosine filtering with a Roll-Off factor 𝛼 = 0.4  

The duration 𝑇𝑠 of each symbol must then verify: 𝐵 ≥
1+𝛼

2𝑇𝑠
. Calculate the maximum rate 𝐷𝑏𝑚𝑎𝑥 

without ISI. 

3) We want that the error probability per symbol do not exceed 10-5. According to the curves below, 

does the bit rate previously calculated achieved this performance? If not, what is the value of the bit 

rate? Does it allow transmission without ISI? 
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4.1. Binary Detection in AWGN Channel 

For any binary channel, the transmitted signal over a symbol interval [0, T] is represented by: 

𝑠𝑖(𝑡) = {
𝑠1(𝑡)           0 ≤ 𝑡 ≤ 𝑇       for a binary 1

𝑠2(𝑡)            0 ≤ 𝑡 ≤ 𝑇       for a binary 0 
                                                                                     (4.1) 

The signal at the output of the simpler is: 

𝑧(𝑇) = 𝑎𝑖(𝑇) + 𝑛0(𝑇)                                                                                                                                       (4.2) 

Where 𝑛0(𝑇) is the noise. 

The probability density function (PDF) of the Gaussian random noise   𝑛0 is expressed as: 

𝑝(𝑛0) =
1

𝜎0√2𝜋
𝑒𝑥𝑝 [−

1

2
(
𝑛0
𝜎0
)
2

]                                                                                                                    (4.3) 

Where 𝜎0
2 is the noise variance. 

 

Figure.4.1. Gaussian distribution 

The conditional PDFs  𝑝(𝑧/𝑠1) and  𝑝(𝑧/𝑠2) can be expressed as: 

   

𝑝(𝑧/𝑠1) =
1

𝜎0√2𝜋
𝑒𝑥𝑝 [−

1

2
(
𝑧 − 𝑎1
𝜎0

)
2

]                                                                                                        (4.3) 

and 

𝑝(𝑧/𝑠2) =
1

𝜎0√2𝜋
𝑒𝑥𝑝 [−

1

2
(
𝑧 − 𝑎2
𝜎0

)
2

]                                                                                                        (4.4) 
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Figure.4.2. The conditional PDFs  𝑝(𝑧/𝑠1) and  𝑝(𝑧/𝑠2) 

The detection is performed by choosing the hypotheses that results from the threshold measurement: 

𝑧(𝑇)

𝐻1
>
<
𝐻2

𝛾0                                                                                                                                                           (4.5) 

where 𝐻1 and 𝐻2 are the two possible binary hypotheses.  

𝐻1 is chosen if  𝑧(𝑇) > 𝛾 , and it is equivalent to deciding that the signal 𝑠1(𝑡) was sent. 

𝐻2 is chosen if  𝑧(𝑇) < 𝛾 , and it is equivalent to deciding that the signal 𝑠2(𝑡) was sent. 

4.2. Maximum Likelihood (ML) Detector 

Based on the MAP criterion, we obtain: 

if 𝑝(𝑠1/𝑧) > 𝑝(𝑠2/𝑧) ⇒ 𝐻1, if not 𝑝(𝑠2/𝑧) > 𝑝(𝑠1/𝑧) ⇒ 𝐻2, we can write this as: 

𝑝(𝑠1/𝑧)

𝐻1
>
<
𝐻2

𝑝(𝑠2/𝑧)                                                                                                                                              (4.6) 

using Bayes theorem: 

𝑝(𝑠𝑖/𝑧) =
𝑝(𝑧/𝑠𝑖)𝑝(𝑠𝑖)

𝑝(𝑧)
                                                                                                                                    (4.7) 

we obtain: 

𝑝(𝑧/𝑠1)𝑝(𝑠1)

𝑝(𝑧)

𝐻1
>
<
𝐻2

𝑝(𝑧/𝑠2)𝑝(𝑠2)

𝑝(𝑧)
                                                                                                                      (4.8) 

If the symbols are equally probable 𝑝(𝑠1) = 𝑝(𝑠2): 
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𝑝(𝑧/𝑠1)

𝐻1
>
<
𝐻2

𝑝(𝑧/𝑠2)                                                                                                                                              (4.9) 

𝑝(𝑧/𝑠1)

𝑝(𝑧/𝑠2)

𝐻1
>
<
𝐻2

1                                                                                                                                                         (4.10) 

Now, substituting the likelihood 𝑝(𝑧/𝑠1) and 𝑝(𝑧/𝑠2) from equations (4.3) and (4.4), we obtain: 

𝑒𝑥𝑝 [
(𝑧 − 𝑎2)

2

2𝜎0
2 −

(𝑧 − 𝑎1)
2

2𝜎0
2 ]

𝐻1
>
<
𝐻2

1                                                                                                                 (4.11) 

applying the ln and after some simplifications, the detection rule is obtained as follow: 

𝑧

𝐻1
>
<
𝐻2

𝑎1 + 𝑎2
2

= 𝛾0 (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)                                                                                                                     (4.12) 

4.3. Error Probability 

The error probability when 𝑠1(𝑡) was sent is: 

𝑝(𝑒/𝑠1) = 𝑝(𝐻2/𝑠1) = ∫ 𝑝(𝑧/𝑠1)𝑑𝑧

𝛾0

−∞

                                                                                                       (4.13) 

Similarly, the error probability when 𝑠1(𝑡) was sent is: 

𝑝(𝑒/𝑠2) = 𝑝(𝐻1/𝑠2) = ∫ 𝑝(𝑧/𝑠2)𝑑𝑧                                                                                                       (4.14)

+∞

𝛾0

 

So, the global error is the sum of the probabilities: 

𝑝𝐵 =∑𝑝(𝑒, 𝑠𝑖) =∑𝑝(𝑒/𝑠𝑖)𝑝(𝑠𝑖)

2

𝑖=1

2

𝑖=1

     

     = 𝑝(𝑒/𝑠1)𝑝(𝑠1) + 𝑝(𝑒/𝑠2)𝑝(𝑠2) 

     = 𝑝(𝐻2/𝑠1)𝑝(𝑠1) + 𝑝(𝐻1/𝑠2)𝑝(𝑠2)                                                                                                       (4.15) 

For the case where the symbols are equiprobable 𝑝(𝑠1) = 𝑝(𝑠2): 

𝑝𝐵 =
1

2
𝑝(𝐻2/𝑠1) +

1

2
𝑝(𝐻1/𝑠2)                                                                                                                    (4.16) 
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and because of the symmetry of the PDFs: 

𝑝𝐵 = 𝑝(𝐻2/𝑠1) = 𝑝(𝐻1/𝑠2)                                                                                                                          (4.17) 

𝑝𝐵 = ∫ 𝑝(𝑧/𝑠2)𝑑𝑧

+∞

𝛾0

 

       = ∫
1

𝜎0√2𝜋
𝑒𝑥𝑝 [−

1

2
(
𝑧 − 𝑎2
𝜎0

)
2

]

+∞

𝛾0

𝑑𝑧                                                                                                   (4.18) 

In order to evaluate this integral we use the complimentary error function 𝑄(𝑥) given as: 

𝑄(𝑥) = ∫
1

√2𝜋
𝑒𝑥𝑝 [−

𝑢2

2
]𝑑𝑢                                                                                                                  (4.19)

+∞

𝑥

 

let  𝑢 =
𝑧−𝑎2

𝜎0
⇒ 𝑑𝑧 = 𝜎0𝑑𝑢 

𝑧 → +∞ ⇒ 𝑢 → +∞ 

𝑧 = 𝛾 =
𝑎1 + 𝑎2
2

⇒ 𝑢 =
𝑧 − 𝑎2
𝜎0

=
𝑎1 − 𝑎2
2𝜎0

 

𝑝𝐵 = ∫
1

𝜎0√2𝜋
𝑒𝑥𝑝 [−

𝑢2

2
]𝜎0𝑑𝑢

+∞

𝑎1−𝑎2
2𝜎0

 

      = 𝑄 (
𝑎1 − 𝑎2
2𝜎0

)                                                                                                                                            (4.20) 

The error probability can be approximated using the nearest neighbor approximation as: 

𝑝𝐵 ≈
1

𝑀
∑𝑁𝑛

𝑁

𝑛=1

𝑄(√
𝑑𝑚𝑖𝑛
2

2𝑁0
)                                                                                                                          (4.21) 

where 𝑀 is the number of signals and 𝑁𝑛 is the number of neighbors at distance 𝑑𝑚𝑖𝑛, 𝑁0 is the power 

spectral density PSD of the noise. 

In our case:                       

                                                              𝑠2                                 𝑠1 

                                                              𝑎2                                 𝑎1 

𝑀 = 2,𝑁 = 1 

𝑑𝑚𝑖𝑛 = 𝑎1 − 𝑎2 
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𝑁0 = 2𝜎0
2 

𝑝𝐵 ≈
1

2
(1 + 1)𝑄 (√

(𝑎1 − 𝑎2)
2

2(2𝜎0
2)

) = 𝑄 (
𝑎1 − 𝑎2
2𝜎0

)                                                                                   (4.22) 

This error probability can be rewritten in terms of the difference energy between the signals 𝑠1 and 𝑠2 

as: 

We have 𝐸𝑑 = (𝑎1 − 𝑎2)
2 and 𝜎0

2 =
𝑁0

2
, so: 

𝑝𝐵 = 𝑄(√
𝐸𝑑
2𝑁0

)                                                                                                                                              (4.23) 

The 𝐸𝑑 ca be expressed as: 

    −+=−=

T TTT

d
dttstsdttsdttsdttstsE

0 0

21

0

2

2

2

1

0

2

21
)()(2)()()()(

 

-For antipodal signal 

 

  =++=−+=

T T

bbbb

T

d EEEEdttstsdttsdttsE
0 0

21

0

2

2

1 42)()(2)()(

 

𝑝𝐵 = 𝑄(√
2𝐸𝑏
𝑁0
)                                                                                                                                              (4.24) 

-For orthogonal signal  

 

  =++=−+=

T T

bbb

T

d EEEdttstsdttsdttsE
0 0

21

0

2

2

1 20)()(2)()(

 

𝑝𝐵 = 𝑄(√
𝐸𝑏
𝑁0
)                                                                                                                                                (4.25) 
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-For unipolar signal  

 

𝐸𝑑 = ∫ 𝑠1
2(𝑡)𝑑𝑡 +∫ 𝑠2(𝑡)𝑑𝑡

𝑇

0

− 2∫ 𝑠1(𝑡)𝑠2(𝑡)𝑑𝑡 = 𝐸𝑏 + 0 + 0 = 𝐸𝑏

𝑇

0

𝑇

0

 

𝑝𝐵 = 𝑄(√
𝐸𝑏
2𝑁0

)                                                                                                                                              (4.26) 

We observe that antipodal signals offer better performance compared to orthogonal signals 

(Figure.4.3). 

 

Figure.4.3. Error probability of antipodal and orthogonal signals 

The values of the 𝑄(𝑥) function for 0 ≤ 𝑥 ≤ 9 are given in the Table 4.1 below: 
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Table 4.1: Values of 𝑄(𝑥) for 0 ≤ 𝑥 ≤ 9 

 

 For 𝑥 > 3 the values of 𝑄(𝑥) can be calculated approximately by: 

𝑄(𝑥) =
1

𝑥√2𝜋
𝑒𝑥𝑝 (−

𝑥2

2
) 

4.4. Exercises 

Exercise 1:  

We consider the transmission of binary equiprobable symbols over AWGN channel. After matched 

filtering and sampling, the received sample is 𝑧 = 𝑠𝑖 + 𝑏, where b is Gaussian noise with the probability 
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density function defined as: 𝑝(𝑏) =
1

𝜎√2𝜋
𝑒𝑥𝑝 (−

1

2
(
𝑏

𝜎0
)
2
) with zero mean and variance 𝜎0

2 =
𝑁0

2
, (
𝑁0

2
 : 

is PSD). The constellation of the received signals is: 

 

 

1- Express the conditional PDFs 𝑝(𝑧/𝑠𝑖) then plot them in the same figure. 

2- Formulate the decision rule using the Maximum Likelihood detector. 

3- Express the error probability per bit as a function of 𝑑12 (the distance between the two points 𝑠1 

and 𝑠2) and 𝑁0. Make the numerical application in the case: 𝑎1 = 2, 𝑎2 = −2 and 𝑁0 = 2. 

Exercise 2: 

A binary digital communication system employs the signals: 

𝑠0(𝑡) = 0;        0 ≤ 𝑡 ≤ 𝑇 

𝑠1(𝑡) = 𝐴;        0 ≤ 𝑡 ≤ 𝑇 

For transmitting the information. This is called on-off signaling. The receiver correlates the received 

signal 𝑟(𝑡) with 𝑠(𝑡) and samples the output at 𝑡 + 𝑇. 

1-Determine the optimum detector for an AWGN channel assuming that the signals are equally 

probable. 

2-Determine the probability of error as a function of the SNR. How does on-off signaling compare with 

antipodal signaling? 

Exercise 3: 

Consider a signal detector with an input: 

𝑟 = ∓𝐴 + 𝑛 

where +𝐴 and −𝐴 occur with equal probability and the noise variable 𝑛 is characterized by the 

(Laplacian) PDF shown in Figure bellow.  

1. Determine the probability of error as a function of the parameters 𝐴 and 𝜎. 

2. Determine the SNR required to achieve an error probability of 10−5. How does the SNR compare with 

the result for a Gaussian PDF? 

Ψ(t) 
s2 

a2 

s1 

a1 
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Laplacian PDF 
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Chapter 5 

Narrowband Digital Modulations 
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5.1. Introduction  

The process of mapping a digital sequence to signals for transmission over a communication channel 

is called digital modulation. In a digital modulation scheme, the binary sequence is parsed into sub-

sequences of length k, and each sub-sequence is mapped into one of the 𝑠𝑚(𝑡), 1 ≤ 𝑘 ≤ 2
𝑘, signals. 

This modulation scheme is equivalent to a mapping from 𝑀 = 2𝐾 messages to 𝑀 possible signals, as 

shown in Figure.5.1. 

 

 

Figure.5.1. Digital modulation 

The general form of the carrier wave is: 

𝑠(𝑡) = 𝐴(𝑡) cos[𝑤0𝑡 + ∅(𝑡)]                                                                                                                          (5.1) 

where 𝐴(𝑡) is the amplitude, 𝑤0 is the radian frequency and ∅(𝑡) is the phase. 

5.2. Amplitude Shift Keying (ASK)   

ASK modulations are linear modulations that only modify the amplitude of the signal. The general 

analytic expression is: 

𝑠𝑖(𝑡) = √
2𝐸𝑖
𝑇
cos(𝑤0𝑡 + 𝜑)              

0 ≤ 𝑡 ≤ 𝑇

𝑖 = 1,… ,𝑀
                                                                                        (5.2) 

where the amplitude √
2𝐸𝑖

𝑇
 takes 𝑀 discrete values. The phase 𝜑 is an arbitrary constant.         

The general form of the amplitude √
2𝐸

𝑇
  is derived as: 

𝑠(𝑡) = 𝐴 cos 𝑤𝑡 

where 𝐴 is the peak value of the waveform.  

𝐴 = √2𝐴𝑟𝑚𝑠 

where 𝐴𝑟𝑚𝑠 is the root mean square value. 
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𝑠(𝑡) = √2𝐴𝑟𝑚𝑠 cos𝑤𝑡 

         = √2𝐴𝑟𝑚𝑠
2 cos𝑤𝑡 

𝑠(𝑡) = √2𝑃 cos𝑤𝑡 

where 𝐴𝑟𝑚𝑠
2 = 𝑃 is the average power. Replacing 𝑃 watts by 𝐸 joules/T seconds we get: 

𝑠(𝑡) = √
2𝐸

𝑇
cos𝑤𝑡 

The 𝑀 = 2𝑛 symbols set can be chosen as follow: 

𝐶 = {−(𝑀 − 1),−(𝑀 − 3),… ,−1,1, … , (𝑀 − 3), (𝑀 − 1)}𝐴                                                                (5.3) 

During the symbol time 𝑇, the transmitted symbol takes a value from 𝐶. 

5.2.1. B-ASK (Binary ASK) 

In this case, the amplitude takes two values 
T

E2
 and 0 Figure5.2. It called also OOK (On-Off Keying),  

 

Figure.5.2. OOK modulation 

5.2.2. Constellation Diagram 

The constellation is the representation in the complex plane of all the points associated with the 

modulated symbols. 

We have:  
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𝑠(𝑡) = 𝐴 cos(𝑤0𝑡 + 𝜑) 

         = 𝐴 cos(𝑤0𝑡) cos(𝜑) − 𝐴 sin (𝑤0𝑡) sin(𝜑) 

𝑠(𝑡) = 𝐼 cos(𝑤0𝑡) + 𝑄 sin(𝑤0𝑡)                                                                                                                   (5.4)  

We have two bases set functions ∅1(𝑡) = cos(𝑤0𝑡) and ∅1(𝑡) = sin(𝑤0𝑡). The signal 𝑠(𝑡) is represent 

as point as shown in the Figure.5.3. 

 

 

 

Figure.5.3. Constellation 

The Figures.5.3 and 5.4 represent two examples of ASK modulations of orders 4 and 8. 

 

Figure.5.4. 4-ASK modulation 

 

Figure.5.5. 8-ASK modulation 

The important characteristic of a constellation is the minimum Euclidean distance between two points 

in the constellation 𝑑𝑚𝑖𝑛. 

kj
jk

dd


= minmin  where 
22

jkkj ccd −=  
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5.2.3. Detection of B-ASK Signals 

-Noncoherent Detection of B-ASK Signals: 

The receiver consists of a band-pass filter, followed by an envelope detector, then a sampler, and finally 

a decision-making device, as depicted in Figure.5.6. The band-pass filter produces a pulsed sinusoid for 

symbol 1 and, ideally, no output for symbol 0. Next, the envelope detector traces the envelope of the 

filtered version of the B-ASK signal. Finally, the decision-making device working in conjunction with the 

sampler, regenerates the original binary data stream by comparing the sampled envelope-detector 

output against a preset threshold every T seconds. 

 

Figure.5.6. Noncoherent detection of B-ASK 

-Coherent Detection of B-ASK Signals: 

The block diagram of the coherent detection of B-ASK signals is given in Figure5.4. To detect the original 

binary sequence of 1 and 0, the BASK signal at the channel output is applied to a receiver that consists 

of four sections, as depicted in Figure.5.7. 

(i) Product modulator, which is also supplied with a locally generated reference signal that is a replica 

of the carrier wave. 

(ii) Low-pass filter, designed to remove the double-frequency components of the product modulator 

output and pass the zero-frequency components. 

(iii) Sampler, which uniformly samples the output of the low-pass filter at where the local clock 

governing the operation of the sampler is synchronized with the clock responsible for bit-timing in the 

transmitter. 

(iv) Decision-making device, which compares the sampled value of the low-pass filter’s output to an 

externally supplied threshold, every seconds. If the threshold is exceeded, the device decides in favor 

of symbol 1; otherwise, it decides in favor of symbol 0. 
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Figure.5.7. Coherent detection of BASK 

5.3. Frequency Shift Keying (FSK) 

The general analytic expression of the FSK modulation is given as: 

𝑠𝑖(𝑡) = √
2𝐸

𝑇
cos(𝑤𝑖𝑡 + 𝜑)              

0 ≤ 𝑡 ≤ 𝑇

𝑖 = 1,… ,𝑀
                                                                                        (5.5) 

where the frequency 𝑤𝑖 has 𝑀 discrete values and the phase 𝜑 is an arbitrary constant. The Figure.5.8 

shows example of FSK modulation. 

 

Figure5.8. FSK modulation 

5.3.1. Noncoherent Detection of B-FSK Signals 

The receiver consists of two paths, one dealing with 𝑓1 frequency (i.e., symbol 1) and the other dealing 

with 𝑓2 frequency (i.e., symbol 0), Figure.5.9: 

-Path 1 uses a band-pass filter of mid-band frequency 𝑓1. The filtered version of the incoming B-FSK 

signal is envelope-detected and then sampled at time 𝑡 = 𝑖𝑇𝑏 to produce the output 𝑣1. 
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-Path 2 uses a band-pass filter of mid-band frequency 𝑓1. The filtered version of the BFSK signal is 

envelope-detected sampled at time 𝑡 = 𝑖𝑇 to produce the output 𝑣2. 

The outputs of the two paths, 𝑣1 and 𝑣2 are applied to a comparator, where decisions on the 

composition of the B-FSK signal are repeated every 𝑇𝑏 seconds. Recognizing that the upper path 

corresponds to symbol 1 and the lower path corresponds to symbol 0, the comparator decides in favor 

of symbol 1 if 𝑣1 is greater than 𝑣2 at the specified bit-timing instant; otherwise, the decision is made 

in favor of symbol 0. 

 

Figure5.9. Noncoherent detection of BFSK 

 5.4. Phase Shift Keying (PSK) 

The general analytic expression of PSK is: 

𝑠𝑖(𝑡) = √
2𝐸

𝑇
cos(𝑤0𝑡 + 𝜑𝑖)              

0 ≤ 𝑡 ≤ 𝑇

𝑖 = 1,… ,𝑀
                                                                                        (5.6) 

where the phase 𝜑𝑖  takes 𝑀 discrete values, typically given as: 

𝜑𝑖 =
2𝜋𝑖

𝑀
,   𝑖 = 1,… ,𝑀                                                                                                                                      (5.7) 

The Figure.5.10 shows the principle of PSK modulation. 
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Figure.5.10. PSK modulation 

The Figure.5.11. shows the constellations of B-PSK, Q-PSK and 8-PSK. 

 

Figure.5.11. Constellations of B-PSK, Q-PSK and 8-PSK. 

5.5. Quadrature Amplitude Modulation (QAM) 

Quadrature phase amplitude modulation is a technique that employs a combination of phase and 

amplitude modulation. The Figure.5.12. shows example of 4-QAM modulation. 
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Figure.5.12. 4-QAM modulation 

The Figure5.13. illustrates examples of constellations of 8-QAM and 16-QAM. 

 

Figure.5.13. 8-QAM and 16-QAM constellations 

5.6. IQ Modulator/Detector 

5.6.1. IQ Modulator 

To generate the IQ signal, the incoming binary data stream is first converted into polar form by a non-

return-to-zero level encoder. The resulting binary wave is next divided by means of a demultiplexer 

(consisting of a serial-to-parallel converter) into two separate binary waves consisting of the odd- and 

even numbered input bits. The demultiplexed binary waves 𝑎1(𝑡) and 𝑎2(𝑡) are used to modulate the 

pair of quadrature carriers. Finally, the two BPSK signals are subtracted to produce the desired QPSK 

signals, as depicted in Figure.5.14. 
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Figure.5.14. IQ Modulator 

5.6.2. IQ Detector 

The IQ receiver consists of an in-phase (I)-channel and quadrature (Q)-channel with a common input, 

as depicted in Figure.5.15. Each channel is itself made up of a product modulator, low-pass filter, 

sampler, and decision-making device. Under ideal conditions, the I- and Q-channels of the receiver, 

respectively, recover the demultiplexed components 𝑎1(𝑡) and 𝑎2(𝑡) responsible for modulating the 

orthogonal pair of carriers in the transmitter. Applying the outputs of these two channels to a 

multiplexer (consisting of a parallel-to-serial converter), the receiver recovers the original binary 

sequence. 

 

Figure.5.15. IQ Detector  
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5.7. Exercises 

Exercise 1: 

We consider 4-QAM modulation where its constellation is depicted below, with A=0.5V,  f0=5 KHz and 

the symbol time is Ts=0.4 ms. 

In order to generate the modulate signal V4-QAM, we use the modulator below, where V0=E0cos(2πf0t) 

and E0=2 V. 

1- Express the VI signal levels as a function of E0, A and K parameters. 

2- Represent the VI  signal and the V4-QAM  signal when the binary sequence to be transmitted is as 

follows : 01, 10, 00, 11, 01, 00. 

 

 

 

 

 

Exercise 2: 

Consider the chronogram of a B-PSK transmission, where the vertical dotted lines separate the bits. 

 

 

 

 

Determine: 

-The transmitted bits. 

-The bit rate. 

-The bandwidth for this transmission. 

Exercise 3: 

Consider the IQ demodulation system shown in the following figure, assuming that 𝑠(𝑡) =

𝑠𝐼(𝑡) sin(2𝜋𝑓𝑐𝑡) − 𝑠𝑄(𝑡) cos(2𝜋𝑓𝑐𝑡). The phase shifts in the carriers are non-zero but known.  

 

V0 

VI V4-QAM 

Multiplier, K=0.1 V-1 

Q 

I 

11        10        00       01 

A          A          A 

30 ms 
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B 

B 

 

 

 

 

 

 

- Express the demodulator outputs as a function of the original signals 𝑠𝐼(𝑡) and 𝑠𝑄(𝑡). 

Exercise 4: 

Consider the two following constellations: 

 

 

 

 

 

                                         (a)                                                                           (b) 

1- What is the type of modulation corresponding to each constellation? justify? 

2- Determine the minimum distance dmin for the two constellations. 

3- Determine the average energy per symbol for the two constellations. 

4- Determine the error probability of the two constellations. 

Exercise 5: 

Consider the two digital modulations 16-QAM and 16-PSK. The minimum distance in the 16-QAM 

constellation is 2B. The points of the 16-PSK constellation are located on a circle of radius A. 

1- Determine the energy per symbol and the energy per bit for the two constellations. 

2- Assuming that A is fixed, express B as a function of A so that the energy per symbol of 16-QAM is 

equal to the energy per symbol of 16-PSK. Comparing the minimum distance for the two constellations, 

what can we deduce about the performance? 

 

A 
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Exercise 6: 

Assuming that binary PSK is used for transmitting information over an AWGN with a power spectral 

density of 
𝑁0

2
= 10−10 W/Hz. The transmitted signal energy is 𝐸𝑏 =

1

2
𝐴2𝑇 , where 𝑇 is the bit interval 

and 𝐴 is the signal amplitude. Determine the signal amplitude required to achieve an error probability 

of 10−6 when the data rate is: 

1)  10 Kbits/s 

2)  100 Kbits/s 

3)  1 Mbits/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

B 

2B 

2B 
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