2. Le modèle EPM à l'aide du logiciel ArcGIS

2.1. Introduction

Le modèle EPM "Erosion Potential Method" de Gavrilovic a été conçu dans les années 50 par Gavrilovic pour des bassins versants d'Ex-Yougoslavie. La méthode a été développée pour la prédiction des taux d'érosion annuel des sols d'un ensemble de type d'érosion (érosion en nappes, érosion en rigoles et en ravins et sapement de berges) pour la gestion des pratiques de lutte contre l'érosion. II se base sur la cartographie et la combinaison de six paramètres qui sont :

- La pente.
- La sensibilité des sols a l'érosion.
- L'état érosif, la protection des sols.
- La température et les précipitations.

L'application du modèle de Gavrilovic a nécessité la cartographie et l'intégration dans un SIG de tous les paramètres nécessaires à l'application du modèle empirique et l'utilisation des techniques d'analyse spatiale pour évaluer les pertes en sols et estimer le poids de chaque facteur et de leurs effets combines d'une part et de démêler leur interdépendance d'autre part. Les paramètres utilisés ont été étudiés grâce à la télédétection et aux données collectées sur le terrain puis intégrés dans le SIG. Ces paramètres sont :

A- Les facteurs permanents de l'érosion hydrique sont :

- La sensibilité à l'érosion,

- La pente et l'état érosif.

B- Les facteurs dynamiques sont :

- Les précipitations,
- Les températures.
- L'utilisation des sols.

C- Les processus et formes de l'érosion réelle et leur hiérarchisation en fonction du degré du risque.

2.2. La méthodologie

Le volume annuel moyen des sédiments érodés désigné par la lettre (W) est déterminé de la manière suivante :

$$W = T * H * \pi * \sqrt{Z^3}$$

Où :

W : volume annuel moyen des sédiments érodés (m³/km²/an)

T : Coefficient de la température

$$T=\sqrt{\frac{t_0}{10}+0.1}$$

Avec :

- t_0 : Température moyenne annuelle en (C°)
- H : Précipitation moyenne annuelle en (mm)
- Z : Coefficient d'érosion

$$Z = X_a * Y * \left(\varphi + \sqrt{J_a}\right)$$

 X_a : Coefficient de protection du soldu bassin versant, se rapportant à la protection des sols par la couverture végétale, des influences des phénomènes atmosphériques des forces érosives liées aux conditions naturelles.

Y : Coefficient d'érosion du sol, indique la sensibilité des sols à l'érosion dépend de la géologie du bassin versant

 φ : Coefficient de type et d'étendue de l'érosion équivalant numérique des processus visibles et nettement prononcés dans le bassin versant

 J_a : Pente moyenne de la zone d'étude en (%)

Organigramme du modèle Gavrilovic « EPM » Baali. S.2018

2.3. Coefficient de température T en °C

La température est un facteur d'érosion très important dans ce modèle, car elle a un effet évident sur l'eau dans le sol. La température maximale permet d'augmenter l'évaporation et la transpiration et conduit à l'apparition des fissures qui permettent de démanteler les formations argileuses en particulier, et les variations thermiques successives permettent le démantèlement des composants des roches et des formations de surface.

$$T=\sqrt{\frac{t_0}{10}+0.1}$$

 t_0 : Température moyenne annuelle en (C°)

Nous avons besoins de deux cartes satellitaires band 10 et band 11 et le fichier texte MTL pour les images satellitaires landsat 08 et band 6 pour les images satellitaires landsat TM 5 et 07.

Ouvrir arc map - band 10

Ouvrir le fichier texte MTL

LC08_L1TP_194035_20	191224_20200110_01_T1_MTL - WordPad
Affichage	
Courier New G I S abe X2 Police	Image Image <td< th=""></td<>
· 2 · 1 · 1 · 1 · · · 🔀 · 1 ·	1 • • • 2 • • • 3 • • • 4 • • • 5 • • • 6 • • • 7 • • • 8 • • • 9 • • • 10 • • • 11 • • • 12 • • • 13 • • • 14 • • • 1
	RADIANCE_MULT_BAND_2 = $1.3290E-02$ RADIANCE_MULT_BAND_3 = $1.2247E-02$ RADIANCE_MULT_BAND_4 = $1.0327E-02$ RADIANCE_MULT_BAND_5 = $6.3197E-03$ RADIANCE_MULT_BAND_6 = $1.5716E-03$ RADIANCE_MULT_BAND_7 = $5.2973E-04$ RADIANCE_MULT_BAND_8 = $1.1687E-02$ RADIANCE_MULT_BAND_9 = $2.4699E-03$ RADIANCE_MULT_BAND_10 = $3.3420E-04$ RADIANCE_MULT_BAND_11 = $3.3420E-04$ RADIANCE_MULT_BAND_2 = -66.45961 RADIANCE_ADD_BAND_2 = -66.45061 RADIANCE_ADD_BAND_3 = -61.23367 RADIANCE_ADD_BAND_5 = -31.59846 RADIANCE_ADD_BAND_6 = -7.85825 RADIANCE_ADD_BAND_7 = -2.64865

- radiance multi bande 10=0.000334
- Radiance add band 10= 0.1000

Spatial analyst tools - map algebra - raster calculator - ouvrir

RADIANCE MULTI BAND 10 x BAND 10 + RADIANCE ADD BAND 10

0.000334 x BAND 10 + 0.1

Kaster Calculator	🗖 🗖 💌 🐨 🕞 Conditional
Map Algebra expression Rad10 ordre_stream LC08_Dec19_B04 LC08_Dec19_B05 LC08_Dec19_B10 LC08_Dec19_B10 LC08_Dec19_B10 V K_formule_2 0.0003342 * LC08_Dec19_B10" + 0.1 Output raster E: Exemple MNT/RAD_10	tt raster put raster resulting e Map Algebra ision. → Extract by Attributes → Extract by Mask → Extract by Mask → Extract by Mask → Extract by Mask → Extract by Polygon → Extract by Rectangle → Extract by Rectangle → Extract Values to Points → Extract Values to Points → Extract Values to Points → Extract Values to Points → Sample ⊕ Generalization ⊕ Hydrology ⊕ Interpolation ⊕ Local
	Help
	Keighborhood

OK

FICHIER TEXTE

K1 CONSTANT BAND 10 = 774.8863

K2 CONSTANT BAND 10 = 1321.0789

Spatial analyst tools - map algebra - raster calculator - ouvrir

TB= CONSTANT BAND 10/Ln (CONSTANT BAND 10/(Rad10+1))-273.15

= (1321.0789/Ln(774.8853/RAD10+1))-273.15

Raster Calculator			🗉 🗞 Conditional
			🗉 🗞 Density
Map Algebra expression		Output raster	🗉 🗞 Distance
		· ·	🖃 🇞 Extraction
ALC08 Dec19 86	Math	The output raster resulting	Extract by Attributes
	Abs	from the Map Algebra	Extract by Circle
	7 8 9 / == != & Exp ≡	expression	Extract by Mask
	Exp10	chiprocessin.	Extract by Points
RAD11	4 5 6 * > >= Exp2		Extract by Points
♦ TB10			Extract by Polygon
Rad10	1 2 3 - < <= ^ Int		Extract by Rectangle
♦ ordre_stream			Extract Multi Values to
♦ I C08_Dec19_B04			Extract Values to Points
			🔨 Sample
(1321.0789 / Ln(774.8853 / "Rad10" + 1)) - 2	3.15		🗉 🗞 Generalization
			🗉 🗞 Groundwater
			🗉 🗞 Hydrology
Output raster			🗉 🚳 Interpolation
E:\Exemple MNT\TB10			🗉 🚳 Local
			🗆 🍋 Man Algebra
			Rester Calculator
1		•	Math
	OK Cancel Environments	Tool Help	
		Toornep	🗄 🐝 Muitivariate
			🕀 👒 Neighborhood

OK

TB10

Remarque : Les mêmes procédures pour la band 11

Le résultat TB11

of Contents	Ψ×	
😔 📮 🗉		
TB11 Value High: 25.1195 Low: -1.40155		Surger
□ □ RAD11 Value High : 8.72838 Low : 5.85726		
□ □ TB10 Value High : 17.5969	ш	a for the for the former of th
Low : -9.2637		
🖃 🔲 Rad10		

Calcul de NDVI

NDVI= band4-band3/band4+band3 pour Landsat TM5 NDVI= band5-band4/band5+band4 pour landsat LC08

Map Algebra expression						Î	Output raster
Layers and variables Band04_corr Band03_corr Xa_Dec19 NDVI_bv_D19 Reclass_W_TK1 W_TKM2 Reclass_W_EP1	^	7 8 4 5 1 2 0	9 / 6 * 3 -	== != & > >= < <= ^ () ~	Abs Exp Exp10 Exp2 Float Int Ln Log10	4 III +	The output raster resulting from the Map Algebra expression.
Float("Band04_corr" - "Band03	_corr") / Float("E	3and04_corr*	+ "Band03_co	סיר")			
Float("Band04_corr" - "Band03 Output raster	_corr") / Float("E	3and04_corr*	+ "Band03_co	orr")			
Float("Band04_corr" - "Band03 Output raster D:\Erosion EPM 2020\Erosion E	_corr") / Float("B PM.gdb\ndvi_bv	Band04_corr*	+ "Band03_co	orr")			
Float("Band04_corr" - "Band03 Output raster D:\Erosion EPM 2020\Erosion E	_corr") / Float("E PM.gdb\ndvi_bv	3and04_corr"	+ "Band03_co	orr")			

Spatial analyst tools - map algebra - raster calculator - ouvrir

 $PV = ((NDVI - NDVI_{min})/(NDVI_{max} - NDVI_{min}))^2$

ok

Spatial analyst tools - map algebra - raster calculator - ouvrir

E = 0.004* PV+0.986

OK

Spatial analyst tools - map algebra - raster calculator - ouvrir

```
T=TB /(1+(LAMDA *TB10/C2)*Ln(e)
```

 $\lambda = 10.8$ pour landsat 8 band 10 Et 12 pour band 11

C2=14388

```
"TB10" / (1 + (10.8 * "TB10" / 14388) * Ln("e_cor"))
```

Output: LST10

🔨 Raster Calculator				🕀 🗞 Conditional
Map Algebra expression	Abs Exp Exp 10 Exp 2	*	Map Algebra expression The Map Algebra expression you want to	B S Density So Distance So Extraction Construct Attribut Construct Attribut Construct But Circle Detract by Mask
NUVI_DEC19_C ↓ LC08_DEC19_B5c ↓ LC08_DEC19_B5c ↓ LC08_DEC19_B6 ↓ LC08_DEC19_B6 ↓ LC08_DEC19_B2 "TB10" / (1 + (10.8 * "TB10" / 14388) * Ln	4 5 6 * >>= I Float 1 2 3 - <=		run. The expression is composed by specifying the inputs, values, operators, and tools to use. You can type in the expression directly or use the buttore and controle to	 Extract by Points Extract by Polygor Extract by Rectang Extract Values to P Sample S Generalization S Groundwater
Output raster			help you create it.	 ★ Wydrology ★ Wydrology
E: (Exemple Mar (LST10		-	 The Layers and variables list identifies the 	⊕ Socal ⊖ Socal ⊖ Socal ⊖ Socal ⊖ Socal ⊖ Socal ⊖ Map Algebra √ Raster Calculator
	OK Cancel Environments << Hide Help		Tool Help	 Math Multivariate Neighborhood Source Overlay

ok

Les mêmes procédures pour l'image satellitaire band 11

LST11

Spatial analyst tools – local – cell statistics $% \left({{{\mathbf{r}}_{i}}} \right)$ -ok

INPUT: LST10 LST11

OUTPUT: STATEMP1011

Snapping • 🔿 🖽 🗆 🎵	🖃 🚳 Spatial Analyst Tools
Cell Statistics	🕀 🚯 Conditional
	🗉 🇞 Density
Input rasters or constant values Output raster	🕀 🏷 Distance
	Extraction
The output raster.	🕀 🖏 Generalization
◆LST11_c +	🗄 🏷 Groundwater
◆LST10_c The value is determined by	🗄 🗞 Hydrology
Applying the specified	Interpolation
statistic type to the input	E Stocal
Idsters.	Cell Statistics
	Combine
	Equal To Frequency
	Greater Than Frequency
	Highest Position
Output raster	Less Than Frequency
E: Exemple MNT (stattemp 1011	Lowest Position
Overlay statistic (optional)	Popularity
MEAN -	Kank
Innore NoData in calculations (optional)	🖂 👒 Map Algebra
•	Nasier Calculator
OK Cancel Environments << Hide Help Tool Help	🗄 🥎 Multivariata
	South and the second seco

OK

Spatial analyst tools - map algebra - raster calculator

Ok

2.4. Facteur Précipitation moyenne annuelle H

La précipitation joue le premier rôle dans la provocation de l'érosion hydrique, en commençant par les gouttes de pluie qui ont frappé la surface et l'écoulement superficiel et en fin le drainage principal dans les cours d'eau principales.

En plus les orages soudains qui érode des grandes quantités de sol, en particulier les zones ont une pente importante et dans le cas d'absence de la couverture végétale et l'exploitation excessive de la terre.

2.4.1. Implantation des stations pluviométriques

Arc catalogue – cliquer à droite sur le dossier – new – shapfile – point – renommé : stations_pluvios – edit : système de coordonnées : utm zone 31 - ok

Cliquer à droite sur station_pluvios puis edit feature - start editing -ok

Cliquer sur stations pluvios - point pour planter les stations pluviométriques

2.4.2. Introduire les valeurs de H pour chaque station pluviométrique

Cliquer à droite sur le nom : stations_pluvios – table attribute - add filed – (ajouter collone H)

Layers	_																		-	S. Local
D:\Erosion EPM 2020\Eri Table																				
Stations_kebir	ions, kebir 🛛 🗧 + I 🔀 + I 🔚 👦 🖸 🐗 🗙																			
□ stream_t500	Sta	itions_kebir																		
_		OBJECTID_1 *	Shape *	OBJECTID	stationANR	X	Y	JAN	FEV	MAR	AVR	MAI	JUN	JUIL	OUT	SEP	OCT	VEV	DEC	Pannuel
BV_ben_haroun	Þ	1	Point	1	AIN EL KEBCH	262091.32	4050810.75	171	132	97	78	66	26	5	12	43	82	117	163	992
	Н	2	Point	2	TLEGHMA	232641.9	4045616.91	136	102	76	65	54	21	4	10	37	65	86	121	777
Iimite kebir rhumel	Н	3	Point	3	Ain Fakroun	281922.97	4033083.45	109	85	71	58	55	22	5	9	35	59	75	102	685
	Н	4	Point	4	AIN SMARA	253584.09	4027932.3	127	105	83	65	62	28	6	12	37	62	90	118	795
ubbasin kehir	Н	5	Point	5	El Meridj	212161.919	4023883.183	117	94	68	61	52	24	6	12	39	49	78	105	705
arideede	Н	6	Point	6	Sidi Knelifa	291906.21	4023773.37	97	/9	/1	57	54	24	5	11	35	54	70	95	652
gnacode	Н	/	Point	/	Hamma Bouziane	2/3233.27	4018110.65	81	68	64	55	50	24	/	10	33	49	66	/9	586
9	Н	8	Point	8	HAMALA	219320.131	4013709.457	100	82	68	57	53	27	8	14	41	48	75	95	668
10	L .																			
21	L .																			
22	L .																			
32	1																			
45																				
50	P	• • 1	· · ·	- (0 out	of 8 Selected)															
Reclass_Recl1W	St	ations_kebir																		
1																			÷) 🧞 Surface

Editor - start editing - stations_pluvios

i Editor • ► 🛌 ∠ ∠ ∠ - 🕸 🖾 🖽 🖷	📄 🍟 RAS Geometry 👻 RAS Mappi
Start Editing	×
This map contains data from more than one database Please choose the layer or workspace to edit. BV_polygone Con_flow_acc.vat Con_flow	e or folder.
Source E:\Exemple MNT : \exemple mnt\	Type Shapefiles / dBase Files ArcInfo Workspace
About editing and workspaces	OK Cancel

Ok

Puis editor – save editing – stop editing

la	ble									
0	🗄 • 🖶 • 🖷 🚱 🛛 🚳 🗙									
Sta	Stations_kebir									
Γ	AVR	MAI	JUN	JUIL	OUT	SEP	OCT	VEV	DEC	Pannuel
	78	66	26	5	12	43	82	117	163	992
	65	54	21	4	10	37	65	86	121	777
	58	55	22	5	9	35	59	75	102	685
	65	62	28	6	12	37	62	90	118	795
	61	52	24	6	12	39	49	78	105	705
	57	54	24	5	11	35	54	70	95	652
	55	50	24	7	10	33	49	66	79	586
	57	53	27	8	14	41	48	75	95	668

Spatial analyst tools – interpolation – IDW

Input: stations_pluvios

Z: H

Output: Facteur_H

√ IDW					
Input point features				_	Output raster
Stations_kebir				- 🖻	
Z value field					The output interpolated
Pannuel				-	sunace raster.
Output raster					It is always a floating-point
D: Erosion EPM 2020 Erosion EPM.	gdb\Facteur_H			2	raster.
Output cell size (optional)				E	
170.405154799998					
Power (optional)					
				2	
Search radius (optional)					
Variable 🔻					
Search Radius Settings					
Number of points:	12				
Maximum distance:				-	
		OK Canc	el Environments	<< Hide Help	Tool Help

Spatial analyst tools - Extraction - Extract by mask

Input: facteur_H

Input raster or feature mask data : BV_polygon

Output: H

Ktract by Mask		
_ Input raster	^	Output raster
Facteur_H	- ≧	
Input raster or feature mask data		The output raster
BV_ben_haroun		extracted from the input
Output raster		raster.
D:\Erosion EPM 2020\Erosion EPM.gdb\H	2	
	-	-
OK Cancel Environments	s << Hide Help	Tool Help

Ok

2.5. Le coefficient de protection du sol (Xa)

Le coefficient de protection du sol (*Xa*) liée directement à la couverture végétation qui joue un rôle important dans la réduction de l'érosion en protégeant le sol pendant les pluies et l'augmentation de la perméabilité du sol. L'indice de couverture végétale est lié au type d'arbres, d'arbustes et des herbes ainsi de leur hauteur et à leur densité. Dans les terres cultivées, plantées ou pâturées, la couverture varie selon les variétés cultivées, le cycle agricole, ainsi que la quantité et la qualité des résidus végétaux après la récolte. L'état de surface varie selon les saisons et les travaux agricoles, car il y a des étapes où le sol est plus sensible à l'érosion et d'autres qui sont protégés par un couvert végétal dense.

NDVI

NDVI varie entre 0 et 0.86 dans l'exemple ci-dessus et Xa varie théoriquement

entre 0.05 et 1

A	В
NDVI	ХА
0	1
0.86	0.05

Nous cherchons la relation entre NDVI et Xa

Pas de variation de Xa de 0.01

Pas de variation de NDVI= ((0.86-0)/(1-0.05))/100

Le résultat dans le tableau suivant :

С	D	
NDVI	XA	
0	1	
0.01	0.99	
0.02	0.98	
0.03	0.97	
0.04	0.96	
0.05	0.95	
0.05	0.94	
0.06	0.93	
0.07	0.92	
0.08	0.91	
0.09	0.90	
0.10	0.89	
0.11	0.88	
0.29	0.68	
0.43	0.53	
0.43	0.52	
0.44	0.51	
0.45	0.50	
0.46	0.49	
0.47	0.48	
0.48	0.47	
0.49	0.46	
0.66	0.27	
0.67	0.26	
0.68	0.25	
0.69	0.24	
0.70	0.23	
0.81	0.11	
0.84	0.07	
0.85	0.06	
0.86	0.05	

Il existe une relation linéaire entre NDVI et Xa

Xa= -1.1047*NDVI+1 donc Xa aussi :

Xa=(NDVI- 0.91)*(-1.10)

Spatial analyst tools - map algebra - raster calculator

🔨 Raster Calculator	
Map Algebra expression Ma_Leclas NDVI_bv_D19 Reclass_W_TK1 Reclass_W_EP1 Reclass_W_W_EP1 Reclass_W_W_EP1 Reclass_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_W_	Map Algebra expression The Map Algebra expression you want to run. The expression is composed by specifying the inputs, values, operators, and tools to use. You can type in the expression directly or use the buttons and controls to help you create it. The expression directly or use the buttons and controls to help you create it.
D:\Erosion EPM 2020\Erosion EPM.gdb\Xa_dec19.img	 The Layers and variables list identifies the
OK Cancel Environments << Hide Help	Tool Help

Ok

2.6. Coefficient de type et étendue de l'érosion (ϕ)

Les valeurs du coefficient de type de l'érosion φ et leur développement varient en fonction de la taille des bassins hydrographiques.

Ce facteur précise et identifie les zones touchées par l'érosion dans le bassin versant, (les cours d'eau, les rivières, les ravins, les dépôts alluviaux ou tout le bassin versant). Cela nécessite un certain nombre de visites du bassin versant.

Cette valeur est provenue du travail de terrain par les observations sur le développement de l'érosion dans le bassin ainsi que des images satellitaires à haute résolution.

Pour landsat 08 le coefficient de type et étendue de l'érosion ϕ est déterminé par la formule suivante :

$$\varphi = \frac{(B6 + B4) - (B5 + B2)}{(B6 + B4) + (B5 + B2)} + 1$$

Où B6 est le canal spectral infrarouge à ondes courtes (SWIR 1), B4 est le canal spectral rouge, B5 est le canal spectral proche infrarouge (NIR) et B2 est le canal spectral bleu.

Correction sur les bandes B6, B5, B4 et B2 de la même manière de correction des bandes utilisées pour le NDVI.

ap Algebra expression			^	Output raster
LC08_Dec19_B5c LC08_Dec19_B4c LC08_Dec19_B6 LC08_Dec19_B2 TB11 RAD11 RAD11 Rad10 (((\C08_Dec19_B6" + \C08_De C08_Dec19_B6" + (\C08_De \C08_Dec19_B4c") + (\C08_De Utput raster	7 8 7 8 4 5 1 2 0 c19_B4c") - ("LC08_Dec19_B5 c19_B5c" + "LC08_Dec19_B2	$\begin{array}{c} \begin{array}{c} & \\ 9 \\ \\ 9 \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	anal – – – – – – – – – – – – – – – – – – –	The output raster resulting from the Map Algebra expression.
E:\Exemple MNT\BSI_1				
				1

2.7. Pentes de la zone d'étude (Ja) en (%)

Les pentes constituent un paramètre très important dans le modelé EPM. L'augmentation de la vitesse d'écoulement sous l'effet des pentes provoque fortement l'érosion.

Les pentes sont calculées à partir du fichier MNT.

Spatial analyst tools – surface –slope

Input: carte_altitude

Output: slope

Outup musearemnt : purcent

2.8. Coefficient d'érodibilité du sol (Y)

Le facteur d'érosion (Y) d'un sol exprime sa sensibilité à l'érosion hydrique et dépend de ses propriétés intrinsèques à savoir sa texture, sa structure et sa perméabilité. Il se détermine pour un sol donné par la relation de (WISHMEIER W.H. et SMITH D.D. 1978) :

$K = \frac{2.1 * M^{1.14} * 10^{-4} * (12 - a) + 3.25 * (b - 2) + 2.5(c - 3)}{100}$

Où M est calculé par la formule :

 $M = (\% \text{ limon}) \times (100 - \% \text{ argile}).$

- a : est le pourcentage de matière organique.
- b : est le code de la perméabilité.
- c : est le code de la structure.

Télécharger les paramètres de facteur K à partir de site suivant :

https://soilgrids.org/#!/?layer=ORCDRC M_sl2_250m&vector=1

vidéo d'utilisation de site : <u>https://www.youtube.com/watch?v=Qda8TObnQaA</u>

Pour les b et c utiliser :

- b : est le code de la structure.
- c : est le code de la perméabilité

Code Structure basée sur la texture

c : est le code de la structure.

Reclassify la carte sand % selon le pourcentage (<20,4) (<

Reclassify la carte clay%

Composite de deux cartes

Composite Bands	
Input Rasters	Output Raster
Clay_dasse Sand_dass	The name, location and format for the raster dataset you are creating. Make sure that it can support the necessary bit- depth.
Output Bactor	When storing the raster dataset in a file format, you need to specify the file extension:
D:\Erosion EPM 2020\Erosion EPM.gdb\compo_struc_c	.bil—Esri BIL .bip—Esri BIP .bmp—BMP .bsq—Esri BSQ .dat—ENVI DAT
OK Cancel Environments << Hide Help	Tool Help

Ok

Raster to polygon

Raster to Polygon		
Input raster	_	Output polygon
compo_struc_c	3	features
Field (optional)		
Value	-	The output feature class
Output polygon features		that will contain the
D:\Erosion EPM 2020\Erosion EPM.gdb\structur_polyg	3	converted polygons.
	Ŧ	
OK Cancel Environments << Hide H	lelp	Tool Help

Ok

Dissolve		
Input Features structur_polyg Output Feature Class	^	Dissolve_Field(s) (optional)
C: Users \az\Documents \ArcGIS \Default.gdb \structur_polyg_Dissolve	E .	to aggregate features. The Add Field button, which is used only in ModelBuilder, allows you to add expected fields so you can complete the dialog box and continue to build your model.
OK Cancel Environments << Hide Help		Tool Help

Polygon to raster

Selve to Raster			
Input Features		*	Output Raster
struct_dissolve		- 🖻	Dataset
Value field			
gridcode		-	The output raster dataset
Output Raster Dataset		_	to be created.
D:\Erosion EPM 2020\Erosion EPM.gdb\struct_C		6	When not saving to a
Cell assignment type (optional)			geodatabase, specify .tif
CELL_CENTER		•	for a TIFF file format, .img
Priority field (optional)			for an ERDAS IMAGINE
NONE		-	file format, or no extension
Cellsize (optional)			format
170		6	ionnac.
		_	
		Ŧ	-
	OK Cancel Environments	<< Hide Help	Tool Help

b : est le code de la perméabilité.

Code de perméabilité

Reclassify -sund %

Argile (Clay) en %

Clay classes

5	Reclassify		
	Input raster CLAY%.tif	Â	Output raster
	Reclass field		The output reclassified raster.
	Old values New values 20 - 26 3 26 - 40 4 40 - 43 5 NoData NoData Add Entry Delete Entries Load Save Reverse New Values Precision	Ш	The output will always be of integer type.
	Output raster D:\Erosion EPM.2020\Erosion EPM.adb\Clay_calss_per	-	+
	OK Cancel Environments << Hide Help		Tool Help

Ok

Composite des deux cartes

, Composite Bands	
Input Rasters	Output Raster
Clay_calss_per Clay_calss_per Sand_class	The name, location and format for the raster dataset you are creating. Make sure that it can support the necessary bit- depth. When storing the raster dataset in a file format, you need to specify the file extension:
Output Raster D: Erosion EPM 2020/Erosion EPM off/hoermeabil composite	- bil Eari Dil
	.bip—Esri BiL .bip—Esri BIP .bmp—BMP .bsq—Esri BSQ .dat—ENVI DAT
OK Cancel Environments	Tool Help

Ok

Raster to polygon

Raster to Polygon		
Input raster	*	Output polygon
permeabi_composite 🔹	2	features
ield (optional)		
Value	-	The output feature class
Dutput polygon features		that will contain the
D:\Erosion EPM 2020\Erosion EPM.gdb\permeabilit_code	1	converted polygons.
	-	
OK Cancel Environments	de Help	Tool Help

Ok

Polygon to raster

Matière organique %

Sable (Sand) en %

Limon (Silt) en %

lap Algebra expression					^	Map Algebra expression
 W_EPM CLAY%.tif Density.tif ORCM%.tif SAND%.tif SILTE%.tif Reclass Red1W 	7	8 9 / 5 6 * 2 3 -	== != & > >= < <= ^	Conditional — Con Pick SetNull Math — Abs Exp	- -	The Map Algebra expression you want to run. The expression is composed by specifying the inputs, values,
"SILTE%.tif" * (100 - "CLAY%.t	if)			Euo 10		operators, and tools to use. You can type in the expression directly or use the buttons and controls to help you create it.
D: \Erosion EPM 2020 \Erosion EF	M.gdb\M_%				*	 The Layers and variables list identifies the

Ok

1ap Algebra expression			ŕ	Output raster
M code_permeab_b cepermeabi_composite Clay_calss_per struct_C compo_struc_c Clay_classe (11 * Power("M1*, 1.14) * 0.00 0.01 What is a ster	7 8 4 5 1 2 0 01 * (12 - "ORCM%.tif") + 3.25	9 / == != & Exp2 Float 1nt 1nt 1nt 10g10 10g2 Mod Power 5 * ("struct_C" - 2) + 2.5 * ("code_perme	► ====================================	The output raster resulting from the Map Algebra expression.
D:\Erosion EPM 2020\Erosion EF	M.gdb\Erodibilite_K			
			-	

2.9. Coefficient d'érosion Z

Le coefficient d'érosion (Z) indique la probabilité d'érosion dans le bassin versant dont la valeur de (Z) définit la classe d'érosion selon le tableau de Gavrilovic.

$$Z = X_a * Y * \left(\varphi + \sqrt{J_a}\right)$$

Xa : Coefficient de protection du sol du bassin versant, se rapportant à la protection des sols par la couverture végétale, des influences des phénomènes atmosphériques des forces érosives liées aux conditions naturelles.

Y : Coefficient d'érodibilité du sol, indique la sensibilité des sols à l'érosion dépend de la géologie du bassin versant

 φ : Coefficient de type et d'étendue de l'érosion équivalant numérique des processus visibles et nettement prononcés dans le bassin versant

Ja : Pente moyenne de la zone d'étude en (%)

Map Algebra expression				Output raster
<pre>LC08_Dec19_D10 LC08_Dec19_B11 Y K_formule_2 H Ja Con_flow500 con_flow500 con_flow500 Com_flow500 Com_flow50 Com_flow50 Com_flow50 Com_flow50 Com_flow500 Com</pre>	7 8 9 / == 4 5 6 * > 1 2 3 - * 0 . + (Image: second	• •	The output raster resulti from the Map Algebra expression.
E:\Exemple MNT\Z			2	

2.10. Volume annuel moyen des sédiments érodés (W)

Après l'élaboration de toutes les cartes représentantes les différents facteurs du modèle EPM nous obtenons la carte de volume annuel moyen (W).

lap Algebra expression					<u> </u>	Output raster
SILTE 70:01 Reclass_Red1W Reclass_W1 W Zmod Z Xa BSI LCOP_Decto_P3c "Fact_T" * "H" * 3.14 * SquareRef	() () () () () () () () () () () () () (7 8 9 4 5 6 1 2 3 0 .	/ == != & * >>= - < <= ^ + () ~	Mod Power RoundDown RoundUp Square SquareRoot Trigonometric	•	The output raster resultin from the Map Algebra expression.
Dutput raster E: \Exemple MNT\W						

Ok

W en (m³/km²/an)

W en ($T/km^2/an$) = W en ($m^3/km^2/an$)* masse volumique (T/m^3)

Carte masse volumique en t/m3 du bassin versant télécharger à partir de site : Soilsgrid.org

🔨 Raster Calculator		
Map Algebra expression Reclass_Red1W Reclass_W1 Reclass_W1 W Zmod Z Z BSI I 2 3 - < <= ^	*	Output raster The output raster resulting from the Map Algebra expression.
OK Cancel Environments << Hide Help		Tool Help

Ok

Pour déterminer l'érosion moyenne sur l'ensemble du bassin versant :

Spatial analyst tools – reclassify Input : W-EPM Output : reclass_W

Keclassify			23
W_EPIM Reclass field Value Reclassification Old values New values 4.481263 - 500 1 500 - 1500 2 1500 - 3000 3 3000 - 4500 4 4500 - 7277.923552 5 NoData NoData Load Save Reverse New Value Output raster D:\Erosion EPM.gdb\Reclass_W_EPM Change missing values to NoData (optional) Change missing values to NoData	Classify Unique Add Entry Delete Entries S Precision	Reclass field Field denoting the values that will be reclassified.	*
	OK Cancel Environments << Hide Help	lp Tool Help	

Spatial analyst tools – zonal – zonal sat as table

Zonal Statistics as Table	
Input raster or feature zone data reclass_W Zone field Value Input value raster W_EPM U E Output table D:\Erosion EPM.gdb\table-sta-WEPM I lgnore NoData in calculations (optional) Statistics type (optional) ALL V	Output table Output table that will contain the summary of the values in each zone. The format of the table is determined by the output location and path. By default, the output will be a geodatabase table. If the path is not in a geodatabase, the format is determined by the extension. If the extension is .dbf, it will be in dBASE format. If no extension is specified, the output will be an INFO table.
OK Cancel Environments << Hide Help	Tool Help

bl	le												
	- 뢉 - 딬	N 🕅	⊕î ×										
t	EPM												
Г	OBJECTID *	Value	COUNT	AREA	MIN	M	AX F	RANGE	MEAN	STD	SI	JM	
	1	1	3946	6 0.038244	11.417	127 499.9	65589 48	38.548462	323.979748	119.10809	2 127842	24.085239	
	2	2	11366	6 0.110156	500.008	412 1499.7	63207 99	9.754794	960.759251	281.85202	1 1091998	89.642686	
	3	3	6230	0.06038	1500.041	042 2999.6	24752 14	99.58371	2038.075402	387.24728	1 1269720	09.757408	
	4	4	709	0.006871	4.481	263 4496.0	28616 449	01.547354	3440.631967	390.42999	2 243940	08.064907	
Г	5	5	68	3 0.000659	4519.252	292 7277.9	23552 27	758.67126	5105.464074	606.87279	1 34717	71.557035	
							I	I					
	OBJECTIO)* Volu		COUNT		Naihi	MAY	PANGE	MEAN	STD	SLIMA		
	OBJECTIE)* Value	≥ C	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM	12 20020148	
	OBJECTIE)* Value	≥ C 1	COUNT 3946	AREA 0.038244	MIN 11.417127	MAX 499.965589	RANGE 488.548462	MEAN 323.979748 960 750251	STD 119.108092	SUM 1278424.09	12.39028148	
	OBJECTIE)* Value 1 2	e C 1 2	COUNT 3946 11366 6320	AREA 0.038244 0.110156	MIN 11.417127 500.008412	MAX 499.965589 1499.76321	RANGE 488.548462 999.754794	MEAN 323.979748 960.759251 2028.0354	STD 119.108092 281.852021 297.247781	SUM 1278424.09 10919989.6	12.39028148 105.8333961	
	OBJECTIE	0* Value 1 2 3	2 C 1 2 3	COUNT 3946 11366 6230 709	AREA 0.038244 0.110156 0.06038 0.006931	MIN 11.417127 500.008412 1500.04104	MAX 499.965589 1499.76321 2999.62475	RANGE 488.548462 999.754794 1499.58371	MEAN 323.979748 960.759251 2038.0754	STD 119.108092 281.852021 387.247281	SUM 1278424.09 10919989.6 12697209.8 2439409.05	12.39028148 105.8333961 123.0589928 22.6405235	
	OBJECTIE	0 * Value 1 2 3 4	e C 1 2 3 4 5	COUNT 3946 11366 6230 709 68	AREA 0.038244 0.110156 0.06038 0.006871 0.000659	MIN 11.417127 500.008412 1500.04104 4.481263 4519.25229	MAX 499.965589 1499.76321 2999.62475 4496.02862 7277 92355	RANGE 488.548462 999.754794 1499.58371 4491.54735 2758.67126	MEAN 323.979748 960.759251 2038.0754 3440.63197 5105.46407	STD 119.108092 281.852021 387.247281 390.429992 506 872791	SUM 1278424.09 10919989.6 12697209.8 2439408.06 342171 557	12.39028148 105.8333961 123.0589928 23.64058225 3.36450825	EPM mo
	OBJECTIE	0* Value 1 2 3 4 5	e C 1 2 3 4 5	COUNT 3946 11366 6230 709 68	AREA 0.038244 0.110156 0.06038 0.006871 0.000659 0.21631	MIN 11.417127 500.008412 1500.04104 4.481263 4519.25229	MAX 499.965589 1499.76321 2999.62475 4496.02862 7277.92355	RANGE 488.548462 999.754794 1499.58371 4491.54735 2758.67126	MEAN 323.979748 960.759251 2038.0754 3440.63197 5105.46407	STD 119.108092 281.852021 387.247281 390.429992 606.872791	SUM 1278424.09 10919989.6 12697209.8 2439408.06 347171.557	12.39028148 105.8333961 123.0589928 23.64058225 3.364500825 3.364500825	EPM moy

EPM moy = $1240.29 \text{ T/km}^2/\text{an}$

Conclusion

L'intégration des cartes thématiques des différents facteurs de l'Equation universelle de pertes en sol révisée RUSLE et le modèle Erosion Potentiel Méthode EPM dans le système d'information géographique (GIS) avec leurs bases de données, a permis d'une manière rapide et efficace d'éclaircir la complexité et l'interdépendance des facteurs dans l'analyse des risques d'érosion.

Enfin nous espérons que ce manuel répond dans une large mesure aux attentes des lecteurs et qu'il sera d'une grande utilité pour une familiarisation rapide avec cet outil pour le suivi et la compréhension de phénomène d'érosion.

Références bibliographiques

Arnoldus, H.M.J,1977. Methodology used to determine the maximum potential average soil loss due to sheet and rill erosion in Morocco. Report of an FAO/UNEP Expert Consultation on Assessing soil degradation, Rome, 18-20 January 1977, *FAO Soils Bulletin* 34 (1977) 39-48.

Baali. S,2018. Estimation de l'érosion dans le bassin versant d'oued l'abiod par le modèle de gavrilovic "érosion potentiel method -EPM". Mémoire de master en hydraulique, université de Msila. 2018

Gitas, I.Z., K., Douros, C., Minakou, G.N., Silleos, et C.G., Karydas, 2009. Multitemporal soil erosion risk assessment in n. Chalkidiki using a modified usle raster model.*EARSeL eProceedings 8, 1/2009.* pp 40-53.

Kalman, R., 1967. Le facteur climatique de l'érosion dans le bassin du Sebou. Rapport du Ministère de l'Agriculture, Maroc, 40 p.

Rango, A. et Arnoldus H.M.J. 1987. Aménagement des bassins versants. *Cahiers techniques de la FAO*.

Renard, K.G., G.R., Foster, G.A., Weesies and J.,P., Porter, 1991. RUSLE, Revised Universal Soil Loss Equation. *Journal of Soil and Water Conservation*, *41*, *1: 30-33*.

Roose E. et Sarrailh J.-M., 1990 - ⁵rodibilité de quelques sols tropicaux. Vingt années de mesure en parcelles d'érosion sous pluies naturelles. *Cahiers ORSTOM, série Pédologie*, Paris, vol. XXV, n° 1 2, p. 7-30.

Shin, G. J, 1999. The analysis of soil erosion analysis in watershed using GIS", Ph.D. Dissertation, Department of Civil Engineering, Gang-won National University.

U.H.A.S.L.S, 2016. Unité Hydrographique Aquin Saint Louis de Sud, rapport de l'étude sur l'érosion des sols MUSLE

http://haitienvironnement.org/yahoo_site_admin/assets/docs/Erosion.145104054.pdf

Consulté le 21/08/2016

White, W.R., 1986. Problèmes d'érosion, transport solide et sédimentation dans les bassins versants, *Projet 5.3 du programme hydrologique international*, 155 pages.

Wischmeier, 1978. Predicting rainfall erosion losses, aguide to conservation planning. Agricultur Hand- Book. N°537.USA.

Wischmeier, W.H., Smith D.D, 1978. Predicting Rainfall Erosion losses, Agriculture Handbook no. 57, US Department of Agriculture. Washington DC. USA. 58p,.

Landsat 7 Science Data Users Handbook. National Aeronautics and Space Administration

Site internet:

https://eos.com/landsat-8/

https://soilgrids.org/#!/?layer=ORCDRC_M_sl2_250m&vector=1

https://earthexplorer.usgs.gov/