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Binary relations are among the oldest acquaintances of modern
mathematics [Peirce(1880)]. Since their introduction, they x . x

(reflexivity),
if x . y andy . z then x . z (transitivity).

A pre-order . is linear or complete if the additional property
x . y or y . x (completeness)
holds for all x , y ∈ X .

A pre-order fulfilling completeness is called weak order.
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factorization with respect to the symmetric Kernel.

From this, we can view pre-orders as orders of equivalence classes.

Theorem (Theorem 1.1)

A binary relation . on a non-empty domain X is a crisp pre-order
if and only if there exists an ordered non-empty set (Y ,4) and a
mapping f : X → Y such that . can be represented in the
following way, for all x , y ∈ X:
x . y if and only if f (x) 4 f (y).

Prof. L. Zedam Ternary relations: basic concepts and results 4 / 27



Introduction Preliminaries The main results References

Introduction

In the crisp case, orders are obtained from pre-orders by means of
factorization with respect to the symmetric Kernel.

From this, we can view pre-orders as orders of equivalence classes.

Theorem (Theorem 1.1)

A binary relation . on a non-empty domain X is a crisp pre-order
if and only if there exists an ordered non-empty set (Y ,4) and a
mapping f : X → Y such that . can be represented in the
following way, for all x , y ∈ X:
x . y if and only if f (x) 4 f (y).

Prof. L. Zedam Ternary relations: basic concepts and results 4 / 27



Introduction Preliminaries The main results References

Introduction

The non-empty domain Y define as the factor set X/∼ and f as the
projection f (x) = 〈x〉∼ in which ∼ is the symmetric kernel of ..

Prof. L. Zedam Ternary relations: basic concepts and results 5 / 27



Introduction Preliminaries The main results References

Introduction

The non-empty domain Y define as the factor set X/∼ and f as the
projection f (x) = 〈x〉∼ in which ∼ is the symmetric kernel of ..

The above theorem let us at least see easily that:

Prof. L. Zedam Ternary relations: basic concepts and results 5 / 27



Introduction Preliminaries The main results References

Introduction

The non-empty domain Y define as the factor set X/∼ and f as the
projection f (x) = 〈x〉∼ in which ∼ is the symmetric kernel of ..

The above theorem let us at least see easily that:

1 The binary relation . is a weak order ( i.e., Linear or complete
pre-order) if and only if the order relation 4 is linear.

Prof. L. Zedam Ternary relations: basic concepts and results 5 / 27



Introduction Preliminaries The main results References

Introduction

The non-empty domain Y define as the factor set X/∼ and f as the
projection f (x) = 〈x〉∼ in which ∼ is the symmetric kernel of ..

The above theorem let us at least see easily that:

1 The binary relation . is a weak order ( i.e., Linear or complete
pre-order) if and only if the order relation 4 is linear.

2 Analogously to the essential linearity axioms of orders (or
partial orders), any pre-order can be linearized (Szpilrajn
theorem for pre-orders): For any pre-order ., there exists a
weak order - which extends . in the sense that, for all
x , y ∈ X , x . y ⇒ x - y . Also, . is uniquely characterized
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The above theorem let us at least see easily that:

1 The binary relation . is a weak order ( i.e., Linear or complete
pre-order) if and only if the order relation 4 is linear.

2 Analogously to the essential linearity axioms of orders (or
partial orders), any pre-order can be linearized (Szpilrajn
theorem for pre-orders): For any pre-order ., there exists a
weak order - which extends . in the sense that, for all
x , y ∈ X , x . y ⇒ x - y . Also, . is uniquely characterized
as intersection of weak orders and there is one-to-one
correspondence between linearity and maximality of pre-orders.

3 Pre-orders are also the basis for representing orders and hence
other fundamental concepts in preference modeling theory.
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of Theorem 1.1 for some particular antisymmetry concepts . The

first concept is called T-antisymmetry or T-E-antisymmetry with E
is the crisp equality (i.e., for all x , y ∈ X : T (r(x , y), r(y , x)) = 0
whenever x 6= y), in this case T-preorder in which the
T-antisymmetry is fulfilled is called T-order.

The second concept of antisymmetry considered in this paper is for
all x , y ∈ X : r(x , y) = r(y , x)) = 1 implies x = y), in this case
T-preorder in which the antisymmetry is fulfilled is called fuzzy
order.

Note that these fuzzy analogies of Theorem 1.1 are given by an
alternative construction of Y and f .
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These fuzzy analogies of Theorem 1.1 allow us to answer the
question given in [4] Whether there is any standard choice
Y ,E ,R , f into which we can embed all weak T-orders (Complete
fuzzy pre-orders in general).
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Introduction

These fuzzy analogies of Theorem 1.1 allow us to answer the
question given in [4] Whether there is any standard choice
Y ,E ,R , f into which we can embed all weak T-orders (Complete
fuzzy pre-orders in general).

Also, these results let us generalize easily to the fuzzy pre-orders
the linearity axioms of T-E-orders given by Bodenhofer and
Klawonn , Georgescu , Gottwald , Höhle and Blanchard and Zadeh.
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2. Preliminaries (Fuzzy sets)

In this section, we give some notations and definitions on which
our work in this paper is based.

Definition

Let X be a nonempty set. A fuzzy subset A of X is characterized
by its membership function A : X → [0, 1] and A(x) is interpreted
as the degree of membership of the element x in the fuzzy subset
A for each x ∈ X . The set of fuzzy sets on a domain X will be
called fuzzy power set of X and denoted F(X ).
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2. Preliminaries (t-norms and t-conorms)

Definition

A function T : [0, 1] × [0, 1] −→ [0, 1] is called a triangular norm
(briefly, a t-norm) if the following conditions hold:
(i) for every α, β ∈ [0, 1], we have T (α, β) = T (β, α)
(Commutativity) ;
(ii) for every α, β, γ ∈ [0, 1] we have
T (α,T (β, γ)) = T (T (α, β), γ) (associativity) ;
(iii) for every α, β, γ, λ ∈ [0, 1] if α ≤ γ and β ≤ λ, then
T (α, β) ≤ T (γ, λ) (order-preserving in both variables) ;
(iv) for every α ∈ [0, 1], T (α, 1) = α, (neutral element).
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Definition

(1) A t-norm T is said to have zero divisors if and only if there
exists a pair (x , y) ∈]0, 1[2 such that T (x , y) = 0 holds.
(2) A t-norm T1 is said to dominate another t-norm T2 if and only
if, for any quadruple (x , y , u, v) ∈ [0, 1]4, the following holds:
T1(T2(x , y),T2(u, v)) ≥ T2(T1(x , u),T1(y , v)).
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exists a pair (x , y) ∈]0, 1[2 such that T (x , y) = 0 holds.
(2) A t-norm T1 is said to dominate another t-norm T2 if and only
if, for any quadruple (x , y , u, v) ∈ [0, 1]4, the following holds:
T1(T2(x , y),T2(u, v)) ≥ T2(T1(x , u),T1(y , v)).

We need the following Lemma in the proof of the main results.

Lemma (De Baets and Mesiar [7])

Any t-norm T dominates itself.
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Definition

A triangular conorm (t-conorm for short) is an associative,
commutative, and order-preserving in both variables binary
operation on the unit interval which has 0 as neutral element.
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operation on the unit interval which has 0 as neutral element.

(i) for every α, β ∈ [0, 1], we have T (α, β) = αβ is a t-norm and
T (α, β) = α+ β is a t-conorm.

(ii) The Zadeh’s t-norm (resp., t-conorm) or the minimum (resp.,
the maximum): for every α, β ∈ [0, 1], we have
T (α, β) = min{α, β}, (resp., T (α, β) = max{α, β}).
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A triangular conorm (t-conorm for short) is an associative,
commutative, and order-preserving in both variables binary
operation on the unit interval which has 0 as neutral element.

(i) for every α, β ∈ [0, 1], we have T (α, β) = αβ is a t-norm and
T (α, β) = α+ β is a t-conorm.

(ii) The Zadeh’s t-norm (resp., t-conorm) or the minimum (resp.,
the maximum): for every α, β ∈ [0, 1], we have
T (α, β) = min{α, β}, (resp., T (α, β) = max{α, β}).

(iii) The Lukasiewicz t-norm (resp., t-conorm): for every
α, β ∈ [0, 1], we have

T (α, β) = max{α+ β − 1, 0}.
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2. Preliminaries (Fuzzy relations)

Given a nonempty set X , a binary fuzzy relation on X is a map
r : X ×X :−→ [0, 1]. For every x , y ∈ X , the value r(x , y) is called
the grade of membership of (x , y) in r and means how far x and y
are related under r . Let T be a t-norm, S be a t−conorm and let
r : X ×X :−→ [0, 1] be a fuzzy relation on X . We are interested in
the following properties:
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Given a nonempty set X , a binary fuzzy relation on X is a map
r : X ×X :−→ [0, 1]. For every x , y ∈ X , the value r(x , y) is called
the grade of membership of (x , y) in r and means how far x and y
are related under r . Let T be a t-norm, S be a t−conorm and let
r : X ×X :−→ [0, 1] be a fuzzy relation on X . We are interested in
the following properties:

Reflexivity: if r(x , x) = 1 for all x ∈ X ;

Symmetry: if r(x , y) = r(y , x) for all x , y ∈ X ;

T-transitivity: if T (r(x , y), r(y , z)) ≤ r(x , z) for all
x , y , z ∈ X ;

Antisymmetry: if r(x , y) = r(y , x)) = 1 ⇒ x = y for all
x , y ∈ X ;

T-antisymmetry: if T (r(x , y), r(y , x)) = 0 whenever x 6= y for
all x , y ∈ X ;

S−complete (or Completeness): if S(R(x , y);R(y , x)) = 1.
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2. Preliminaries (Fuzzy pre-orders and fuzzy orders)

Fuzzy relations that are reflexive and T-transitive are called fuzzy
preorders with respect to T , short T−pre-orders.

Prof. L. Zedam Ternary relations: basic concepts and results 13 / 27



Introduction Preliminaries The main results References

2. Preliminaries (Fuzzy pre-orders and fuzzy orders)

Fuzzy relations that are reflexive and T-transitive are called fuzzy
preorders with respect to T , short T−pre-orders.

Symmetric T−pre-orders are called fuzzy equivalence relations
with respect to T , short T−equivalences.

Prof. L. Zedam Ternary relations: basic concepts and results 13 / 27



Introduction Preliminaries The main results References

2. Preliminaries (Fuzzy pre-orders and fuzzy orders)

Fuzzy relations that are reflexive and T-transitive are called fuzzy
preorders with respect to T , short T−pre-orders.

Symmetric T−pre-orders are called fuzzy equivalence relations
with respect to T , short T−equivalences.

Antisymmetric T−pre-orders are called fuzzy orders with respect
to T , short fuzzy orders.

Prof. L. Zedam Ternary relations: basic concepts and results 13 / 27



Introduction Preliminaries The main results References

2. Preliminaries (Fuzzy pre-orders and fuzzy orders)

Fuzzy relations that are reflexive and T-transitive are called fuzzy
preorders with respect to T , short T−pre-orders.

Symmetric T−pre-orders are called fuzzy equivalence relations
with respect to T , short T−equivalences.

Antisymmetric T−pre-orders are called fuzzy orders with respect
to T , short fuzzy orders.

T-antisymmetric T−pre-orders are called fuzzy orders with respect
to T , short T-orders.

Prof. L. Zedam Ternary relations: basic concepts and results 13 / 27



Introduction Preliminaries The main results References
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Fuzzy relations that are reflexive and T-transitive are called fuzzy
preorders with respect to T , short T−pre-orders.

Symmetric T−pre-orders are called fuzzy equivalence relations
with respect to T , short T−equivalences.

Antisymmetric T−pre-orders are called fuzzy orders with respect
to T , short fuzzy orders.

T-antisymmetric T−pre-orders are called fuzzy orders with respect
to T , short T-orders.

S− complete T−pre-orders are called complete fuzzy pre-orders
with respect to T and S , short complete T-pre-orders.
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2. Preliminaries (Examples of fuzzy pre-orders)

Given a T-equivalence E : X 2 → [0, 1], a binary fuzzy relation
r : X 2 → [0, 1] is called a fuzzy order with respect to T and E ,
short T − E−order, if it is T-preorder and additionally has the
following properties:
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Given a T-equivalence E : X 2 → [0, 1], a binary fuzzy relation
r : X 2 → [0, 1] is called a fuzzy order with respect to T and E ,
short T − E−order, if it is T-preorder and additionally has the
following properties:

E−reflexivity: E (x , y) ≤ r(x , y) for all x , y ∈ X .
T − E− antisymmetry: T (r(x , y), r(y , x)) ≤ E (x , y) for all
x , y ∈ X .

Next, we shall give some examples of T-preorders in R.

1. Let x , y ∈ R and λ > 0. Then, the fuzzy relation rλ defined for
all x , y ∈ R by:

rλ(x , y) =

{

1 , if x = y ;

min(1, |y−x |
λ ), if x 6= y

,

is a T-preorder on R.Prof. L. Zedam Ternary relations: basic concepts and results 14 / 27
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2. Preliminaries (Examples of fuzzy pre-orders)

2. Let X = R. Then, the fuzzy relation r defined for all x , y ∈ R

by:

r(x , y) =























1 , if x = y ;
0 , if x > y ;
1− x

y
, if 0 ≤ x < y ;

1− y
x
, if x < y ≤ 0;

1 , if x < 0 and y > 0;

,

is a T-preorder on R.
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2. Preliminaries (Preorders extensions)

Definition

Consider two T-preorders r1 and r2. We say that r1 extends r2 if
and only if, for all x , y ∈ X , r2(x , y) ≤ r1(x , y) holds. For brevity,
we denote this r2 ⊆ r1.
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and only if, for all x , y ∈ X , r2(x , y) ≤ r1(x , y) holds. For brevity,
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We call r1 a non-trivial extension of r2 if there exists at least one
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r2 ⊆ r1.

Prof. L. Zedam Ternary relations: basic concepts and results 16 / 27



Introduction Preliminaries The main results References

2. Preliminaries (Preorders extensions)

Definition

Consider two T-preorders r1 and r2. We say that r1 extends r2 if
and only if, for all x , y ∈ X , r2(x , y) ≤ r1(x , y) holds. For brevity,
we denote this r2 ⊆ r1.

We call r1 a non-trivial extension of r2 if there exists at least one
pair (x , y) ∈ X 2 for which r2(x , y) < r1(x , y) holds, for brevity
r2 ⊆ r1.

A T-preorder r is called maximal if and only if it does not have a
non-trivial extension, equivalently, ext(r) = r in which ext(r) is the
set of all extensions of r .
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3. The main results

Theorem (Theorem 3.1)

A binary fuzzy relation r : X 2 → [0, 1] is a T-preorder if and only if
there exist a non-empty domain Y ⊆ P(X ), a fuzzy order
(antisymmetric T−preorder) R : Y 2 → [0, 1], and a mapping
f : X → Y such that the following equality holds for all x , y ∈ X :

r(x , y) = R(f (x), f (y)).

Moreover, r is S−complete if and only if R is S−complete.
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3. The main results

Theorem (Theorem 3.2)

Assume that T has no zero divisors. Then A binary fuzzy relation
r : X 2 → [0, 1] is a T-preorder if and only if there exist a
non-empty domain Y ⊆ P(X ), a T-order (T-antisymmetric
T−preorder) R : Y 2 → [0, 1], and a mapping f : X → Y such that
the following equality holds for all x , y ∈ X :

r(x , y) = R(f (x), f (y)).

Moreover, r is S−complete if and only if R is S−complete.
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3. The main results

The above Theorem 3.1 and Theorem 3.2 can be viewed as a fuzzy
generalization of Theorem 1.1 in which the choice of the
non-empty domain Y was a subset of P(X ) the power set of X .
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3. The main results

The above Theorem 3.1 and Theorem 3.2 can be viewed as a fuzzy
generalization of Theorem 1.1 in which the choice of the
non-empty domain Y was a subset of P(X ) the power set of X .

The following Theorem 3.3 (resp. Theorem 3.4) is the same as
Theorem 3.1 (resp. Theorem 3.2) but the non-empty domain Y
has been chosen as a non-empty family of fuzzy sets Y ⊆ F(X )
the fuzzy power set of X .
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3. The main results

Theorem (Theorem 3.3)

A binary fuzzy relation r : X 2 → [0, 1] is a T-preorder if and only if
there exist a non-empty domain Y ⊆ F(X ), a fuzzy order
(Antisymmetric T−preorder) R : Y 2 → [0, 1], and a mapping
f : X → Y such that the following equality holds for all x , y ∈ X :

r(x , y) = R(f (x), f (y)).

Moreover, r is S−complete if and only if R is S−complete.
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Theorem (Theorem 3.4)

Assume that T has no zero divisors. Then A binary fuzzy relation
r : X 2 → [0, 1] is a T-preorder if and only if there exist a
non-empty domain Y ⊆ F(X ), a T-order (T-antisymmetric
T−preorder) R : Y 2 → [0, 1], and a mapping f : X → Y such that
the following equality holds for all x , y ∈ X :

r(x , y) = R(f (x), f (y)).

Moreover, r is S−complete if and only if R is S−complete.
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3. The main results

These fuzzy analogies of Theorem 1.1 allow us to answer the
question given in [4]

Whether there is any standard choice Y ,E ,R , f into which we can
embed all weak T-orders (Complete fuzzy pre-orders in general).

Corollary (Theorem 3.1, Bodenhofer et al. ref.4)

A binary fuzzy relation r : X 2 → [0, 1] is a complete T-preorder if
and only if there exist a non-empty domain Y , a complete fuzzy
order (or complete T-order) R : Y 2 → [0, 1], and a mapping
f : X → Y such that the following equality holds for all x , y ∈ X :

r(x , y) = R(f (x), f (y)).
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Corollary (Theorem 4.1, Bodenhofer et al. ref.4)

Consider a binary fuzzy relation r : X 2 → [0, 1]. Then the following
two statements are equivalent: (i) r is a weak T-order. (ii) There
exists a non-empty family of fuzzy sets S ⊆ F(X ) that are linearly
ordered with respect to the inclusion relation ⊆ and a mapping
ϕ : X → S such that the following representation holds for all
x , y ∈ X : r(x , y) = INCLT (ϕ(x), ϕ(y)).
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3. The main results

Also, these results let us generalize easily to the fuzzy pre-orders
the linearity axioms of T-E-orders given by Bodenhofer and
Klawonn , Georgescu, Gottwald , Höhle and Blanchard and Zadeh.
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3. The main results

Also, these results let us generalize easily to the fuzzy pre-orders
the linearity axioms of T-E-orders given by Bodenhofer and
Klawonn , Georgescu, Gottwald , Höhle and Blanchard and Zadeh.

Theorem (Theorem 3.5)

There is one-to-one correspondence between completeness and
maximality of T-preorders.

Theorem (Theorem 3.6, Szpilrajn Theorem for T-preorders)

Any T-preorder has a S− complete extension.

Theorem (Theorem 3.7)

Let r be a T-preorder. Then r is uniquely characterized as
intersection of Complete preorders.
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