Ternary relations: Basic concepts and results

Matiere: Ensembles et relations flous

Cours pour les étudiants de 1 iere Année Master AMD.

Enseignant: Prof. dr. Lemnaouar Zedam, Department of Mathematics, University of M'sila , Algeria

Semestre 2, 2019/2020

K ロ X 《 御 X 〈 君 X 〈 君 X 〉 君

Outline

- Introduction
- **•** Preliminaries
- The main results

제 ロン 제 御 지 제 결 지 (제 편) () 결 ……

 299

• References

Binary relations are among the oldest acquaintances of modern mathematics [Peirce(1880)]. Since their introduction, they

K ロ > K 何 > K 君 > K 君 > 「君」 の Q Q^

Binary relations are among the oldest acquaintances of modern mathematics [Peirce(1880)]. Since their introduction, they $x \leq x$

(reflexivity),

K ロ > K 何 > K 君 > K 君 > 「君」 の Q Q^

Binary relations are among the oldest acquaintances of modern mathematics [Peirce(1880)]. Since their introduction, they $x \lesssim x$

(reflexivity), if $x \leq y$ and $y \leq z$ then $x \leq z$ (transitivity).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

Binary relations are among the oldest acquaintances of modern mathematics [Peirce(1880)]. Since their introduction, they $x \leq x$

(reflexivity), if $x \leq y$ and $y \leq z$ then $x \leq z$ (transitivity).

A pre-order \leq is linear or complete if the additional property $x \leq y$ or $y \leq x$ (completeness) holds for all $x, y \in X$.

KORK EXTERNS OR A BY A GRA

Binary relations are among the oldest acquaintances of modern mathematics [Peirce(1880)]. Since their introduction, they $x \leq x$

(reflexivity), if $x \leq y$ and $y \leq z$ then $x \leq z$ (transitivity).

A pre-order \leq is linear or complete if the additional property $x \leq y$ or $y \leq x$ (completeness) holds for all $x, y \in X$.

A pre-order fulfilling completeness is called weak order.

KORK CORRESPONDENCE

In the crisp case, orders are obtained from pre-orders by means of factorization with respect to the symmetric Kernel.

イロン イ部ン イ君ン イ君ン 一君 PQQ

In the crisp case, orders are obtained from pre-orders by means of factorization with respect to the symmetric Kernel.

From this, we can view pre-orders as orders of equivalence classes.

 Ω

4 0 F

In the crisp case, orders are obtained from pre-orders by means of factorization with respect to the symmetric Kernel.

From this, we can view pre-orders as orders of equivalence classes.

Theorem (Theorem 1.1)

A binary relation \leq *on a non-empty domain X is a crisp pre-order if and only if there exists an ordered non-empty set* (Y, \preccurlyeq) *and a mapping* $f : X \to Y$ such that \leq can be represented in the *following way, for all* $x, y \in X$ *:* $x \leq y$ *if and only if f(x)* \preccurlyeq *f(y).*

モー イモト イモト イ野ト

In the crisp case, orders are obtained from pre-orders by means of factorization with respect to the symmetric Kernel.

From this, we can view pre-orders as orders of equivalence classes.

Theorem (Theorem 1.1)

A binary relation \leq *on a non-empty domain X is a crisp pre-order if and only if there exists an ordered non-empty set* (Y, \preccurlyeq) *and a mapping* $f : X \to Y$ such that \leq can be represented in the *following way, for all* $x, y \in X$ *:* $x \leq y$ *if and only if f(x)* \preccurlyeq *f(y).*

モー イモト イモト イ野ト

The non-empty domain *Y* define as the factor set *X*/[∼] and *f* as the projection $f(x) = \langle x \rangle_{\sim}$ in which \sim is the symmetric kernel of \lesssim .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

The non-empty domain *Y* define as the factor set *X*/[∼] and *f* as the projection $f(x) = \langle x \rangle_{\sim}$ in which \sim is the symmetric kernel of \lesssim .

The above theorem let us at least see easily that:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

The non-empty domain *Y* define as the factor set *X*/[∼] and *f* as the projection $f(x) = \langle x \rangle_{\sim}$ in which \sim is the symmetric kernel of \leq .

The above theorem let us at least see easily that:

 \bullet The binary relation \leq is a weak order (i.e., Linear or complete pre-order) if and only if the order relation \preccurlyeq is linear.

 PQQ

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

The non-empty domain *Y* define as the factor set *X*/[∼] and *f* as the projection $f(x) = \langle x \rangle_{\sim}$ in which \sim is the symmetric kernel of \lesssim .

The above theorem let us at least see easily that:

- \bullet The binary relation \leq is a weak order (i.e., Linear or complete pre-order) if and only if the order relation \preccurlyeq is linear.
- ² Analogously to the essential linearity axioms of orders (or partial orders), any pre-order can be linearized (Szpilrajn theorem for pre-orders): For any pre-order \leq , there exists a weak order \preceq which extends \leq in the sense that, for all *x*, *y* ∈ *X* , *x* \leq *y* \Rightarrow *x* \preceq *y*. Also, \leq is uniquely characterized as intersection of weak orders and there is one-to-one correspondence between linearity and maximality of pre-orders.

KORK CORRESPONDENCE

The non-empty domain *Y* define as the factor set *X*/[∼] and *f* as the projection $f(x) = \langle x \rangle_{\sim}$ in which \sim is the symmetric kernel of \leq .

The above theorem let us at least see easily that:

- \bullet The binary relation \leq is a weak order (i.e., Linear or complete pre-order) if and only if the order relation \preccurlyeq is linear.
- ² Analogously to the essential linearity axioms of orders (or partial orders), any pre-order can be linearized (Szpilrajn theorem for pre-orders): For any pre-order \leq , there exists a weak order \preceq which extends \leq in the sense that, for all *x*, *y* ∈ *X* , *x* \leq *y* \Rightarrow *x* \preceq *y*. Also, \leq is uniquely characterized as intersection of weak orders and there is one-to-one correspondence between linearity and maximality of pre-orders.
- ³ Pre-orders are also the basis for representing orders and hence other fundamental concepts in preferen[ce](#page-14-0) [m](#page-16-0)[o](#page-10-0)[d](#page-11-0)[e](#page-15-0)[li](#page-16-0)[n](#page-1-0)[g](#page-2-0) [t](#page-21-0)[h](#page-22-0)[e](#page-1-0)[o](#page-2-0)[r](#page-21-0)[y.](#page-22-0)

 Ω

In this paper we are interesting to give a different fuzzy analogies of Theorem 1.1 for some particular antisymmetry concepts .

 Ω

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ X 경

In this paper we are interesting to give a different fuzzy analogies of Theorem 1.1 for some particular antisymmetry concepts . The

first concept is called T-antisymmetry or T-E-antisymmetry with E is the crisp equality (i.e., for all $x, y \in X$: $T(r(x, y), r(y, x)) = 0$ whenever $x \neq y$), in this case T-preorder in which the T-antisymmetry is fulfilled is called T-order.

In this paper we are interesting to give a different fuzzy analogies of Theorem 1.1 for some particular antisymmetry concepts . The

first concept is called T-antisymmetry or T-E-antisymmetry with E is the crisp equality (i.e., for all $x, y \in X$: $T(r(x, y), r(y, x)) = 0$ whenever $x \neq y$), in this case T-preorder in which the T-antisymmetry is fulfilled is called T-order.

The second concept of antisymmetry considered in this paper is for all $x, y \in X$: $r(x, y) = r(y, x) = 1$ implies $x = y$), in this case T-preorder in which the antisymmetry is fulfilled is called fuzzy order.

イロメ イ何メ イヨメ イヨメーヨ

In this paper we are interesting to give a different fuzzy analogies of Theorem 1.1 for some particular antisymmetry concepts . The

first concept is called T-antisymmetry or T-E-antisymmetry with E is the crisp equality (i.e., for all $x, y \in X$: $T(r(x, y), r(y, x)) = 0$ whenever $x \neq y$), in this case T-preorder in which the T-antisymmetry is fulfilled is called T-order.

The second concept of antisymmetry considered in this paper is for all $x, y \in X$: $r(x, y) = r(y, x) = 1$ implies $x = y$), in this case T-preorder in which the antisymmetry is fulfilled is called fuzzy order.

Note that these fuzzy analogies of Theorem 1.1 are given by an alternative construction of *Y* and *f* .

イロメ イ押 トイヨ トイヨメート

These fuzzy analogies of Theorem 1.1 allow us to answer the question given in [4] Whether there is any standard choice *Y* , *E*, *R*, *f* into which we can embed all weak T-orders (Complete fuzzy pre-orders in general).

イ何 トラミン イミンド ヨー Ω

These fuzzy analogies of Theorem 1.1 allow us to answer the question given in [4] Whether there is any standard choice *Y* , *E*, *R*, *f* into which we can embed all weak T-orders (Complete fuzzy pre-orders in general).

Also, these results let us generalize easily to the fuzzy pre-orders the linearity axioms of T-E-orders given by Bodenhofer and Klawonn, Georgescu, Gottwald, Höhle and Blanchard and Zadeh.

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\}$

2. Preliminaries (Fuzzy sets)

In this section, we give some notations and definitions on which our work in this paper is based.

イロン イ部ン イ君ン イ君ン 一君 2990

2. Preliminaries (Fuzzy sets)

In this section, we give some notations and definitions on which our work in this paper is based.

Definition

Let *X* be a nonempty set. A fuzzy subset *A* of *X* is characterized by its membership function $A: X \rightarrow [0, 1]$ and $A(x)$ is interpreted as the degree of membership of the element *x* in the fuzzy subset *A* for each $x \in X$. The set of fuzzy sets on a domain X will be called fuzzy power set of X and denoted $F(X)$.

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \right\} = \left\{ \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \right\} \right\}$

Definition

A function $T : [0, 1] \times [0, 1] \longrightarrow [0, 1]$ is called a triangular norm (briefly, a *t*-norm) if the following conditions hold: (i) for every $\alpha, \beta \in [0, 1]$, we have $T(\alpha, \beta) = T(\beta, \alpha)$ (Commutativity) ; (ii) for every $\alpha, \beta, \gamma \in [0, 1]$ we have $T(\alpha, T(\beta, \gamma)) = T(T(\alpha, \beta), \gamma)$ (associativity); (iii) for every $\alpha, \beta, \gamma, \lambda \in [0,1]$ if $\alpha \leq \gamma$ and $\beta \leq \lambda$, then $T(\alpha, \beta) \leq T(\gamma, \lambda)$ (order-preserving in both variables); (iv) for every $\alpha \in [0,1], \ T(\alpha,1) = \alpha$, (neutral element).

 Ω

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶ X / 경

Definition

(1) A t-norm *T* is said to have zero divisors if and only if there exists a pair $(x, y) \in]0, 1[^2$ such that $T(x, y) = 0$ holds. (2) A t-norm T_1 is said to dominate another t-norm T_2 if and only if, for any quadruple $(x,y,u,v) \in [0,1]^4,$ the following holds: $T_1(T_2(x, y), T_2(u, v)) \geq T_2(T_1(x, u), T_1(y, v)).$

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \right\} = \left\{ \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \right\} \right\}$

Definition

(1) A t-norm *T* is said to have zero divisors if and only if there exists a pair $(x, y) \in]0, 1[^2$ such that $T(x, y) = 0$ holds. (2) A t-norm T_1 is said to dominate another t-norm T_2 if and only if, for any quadruple $(x,y,u,v) \in [0,1]^4,$ the following holds: $T_1(T_2(x, y), T_2(u, v)) > T_2(T_1(x, u), T_1(y, v)).$

We need the following Lemma in the proof of the main results.

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \right\} = \left\{ \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \right\} \right\}$

Definition

(1) A t-norm T is said to have zero divisors if and only if there exists a pair $(x, y) \in]0, 1[^2$ such that $T(x, y) = 0$ holds. (2) A t-norm T_1 is said to dominate another t-norm T_2 if and only if, for any quadruple $(x,y,u,v) \in [0,1]^4,$ the following holds: $T_1(T_2(x, y), T_2(u, v)) > T_2(T_1(x, u), T_1(y, v)).$

We need the following Lemma in the proof of the main results.

Lemma (De Baets and Mesiar [7])

Any t-norm T dominates itself.

イロメ イ押 トイヨ トイヨメート

Definition

A triangular conorm (t-conorm for short) is an associative, commutative, and order-preserving in both variables binary operation on the unit interval which has 0 as neutral element.

FD 4 3 4 3 4 5 6 7

 Ω

Definition

A triangular conorm (t-conorm for short) is an associative, commutative, and order-preserving in both variables binary operation on the unit interval which has 0 as neutral element.

(i) for every $\alpha, \beta \in [0,1]$, we have $T(\alpha, \beta) = \alpha \beta$ is a t-norm and $T(\alpha, \beta) = \alpha + \beta$ is a t-conorm.

 $\left\{ \left. \left. \left. \left. \left(\left. \theta \right) \right| \right. \right. \right. \left. \left. \left. \theta \right| \right. \right. \right. \left. \left. \left. \theta \right| \right. \right. \right\}$, $\left\{ \left. \left. \theta \right| \right. \right. \right\}$, $\left\{ \left. \left. \theta \right| \right. \right. \right\}$

Definition

A triangular conorm (t-conorm for short) is an associative, commutative, and order-preserving in both variables binary operation on the unit interval which has 0 as neutral element.

(i) for every $\alpha, \beta \in [0,1]$, we have $T(\alpha, \beta) = \alpha \beta$ is a t-norm and $T(\alpha, \beta) = \alpha + \beta$ is a t-conorm.

(ii) The Zadeh's t-norm (resp., t-conorm) or the minimum (resp., the maximum): for every $\alpha, \beta \in [0,1]$, we have $T(\alpha, \beta) = \min{\{\alpha, \beta\}}, \text{ (resp., } T(\alpha, \beta) = \max{\{\alpha, \beta\}}).$

 \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA} \rightarrow

 QQ

Definition

A triangular conorm (t-conorm for short) is an associative, commutative, and order-preserving in both variables binary operation on the unit interval which has 0 as neutral element.

(i) for every $\alpha, \beta \in [0,1]$, we have $T(\alpha, \beta) = \alpha \beta$ is a t-norm and $T(\alpha, \beta) = \alpha + \beta$ is a t-conorm.

(ii) The Zadeh's t-norm (resp., t-conorm) or the minimum (resp., the maximum): for every $\alpha, \beta \in [0,1]$, we have $T(\alpha, \beta) = \min{\alpha, \beta}$, (resp., $T(\alpha, \beta) = \max{\alpha, \beta}$).

(iii) The Lukasiewicz t-norm (resp., t-conorm): for every $\alpha, \beta \in [0,1]$, we have

$$
\mathcal{T}(\alpha,\beta)=\max\{\alpha+\beta-1,0\}.
$$

 QQ

2. Preliminaries (Fuzzy relations)

Given a nonempty set *X*, a binary fuzzy relation on *X* is a map *r* : *X* × *X* ∶→ [0, 1]. For every *x*, *y* ∈ *X*, the value *r*(*x*, *y*) is called the grade of membership of (x, y) in *r* and means how far x and y are related under *r*. Let *T* be a t-norm, *S* be a *t*−conorm and let $r : X \times X : \longrightarrow [0,1]$ be a fuzzy relation on X. We are interested in the following properties:

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \right\} = \left\{ \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \right\} \right\}$

2. Preliminaries (Fuzzy relations)

Given a nonempty set *X*, a binary fuzzy relation on *X* is a map *r* : *X* × *X* ∶→ [0, 1]. For every *x*, *y* ∈ *X*, the value *r*(*x*, *y*) is called the grade of membership of (x, y) in *r* and means how far x and y are related under *r*. Let *T* be a t-norm, *S* be a *t*−conorm and let $r : X \times X : \longrightarrow [0,1]$ be a fuzzy relation on X. We are interested in the following properties:

- Reflexivity: if $r(x, x) = 1$ for all $x \in X$;
- Symmetry: if $r(x, y) = r(y, x)$ for all $x, y \in X$;
- **•** T-transitivity: if $T(r(x, y), r(y, z)) \le r(x, z)$ for all $x, y, z \in X$;
- Antisymmetry: if $r(x, y) = r(y, x) = 1 \Rightarrow x = y$ for all $x, y \in X$;
- T-antisymmetry: if $T(r(x, y), r(y, x)) = 0$ whenever $x \neq y$ for all $x, y \in X$;
- *S*−complete (or Completeness): if *S*(*R*(*[x](#page-32-0)*, *[y](#page-34-0)*[\);](#page-31-0) *[R](#page-33-0)*[\(](#page-34-0)*[y](#page-21-0)*, *[x](#page-46-0)*[\)\)](#page-47-0) [=](#page-22-0) [1](#page-47-0)[.](#page-0-0)

Fuzzy relations that are reflexive and T-transitive are called fuzzy preorders with respect to *T*, short *T*−pre-orders.

 Ω

Fuzzy relations that are reflexive and T-transitive are called fuzzy preorders with respect to *T*, short *T*−pre-orders.

Symmetric *T*−pre-orders are called fuzzy equivalence relations with respect to *T*, short *T*−equivalences.

FD 4 3 4 3 4 5 6 7

Fuzzy relations that are reflexive and T-transitive are called fuzzy preorders with respect to *T*, short *T*−pre-orders.

Symmetric *T*−pre-orders are called fuzzy equivalence relations with respect to *T*, short *T*−equivalences.

Antisymmetric *T*−pre-orders are called fuzzy orders with respect to *T*, short fuzzy orders.

モー イモト イモト イ野ト

Fuzzy relations that are reflexive and T-transitive are called fuzzy preorders with respect to *T*, short *T*−pre-orders.

Symmetric *T*−pre-orders are called fuzzy equivalence relations with respect to *T*, short *T*−equivalences.

Antisymmetric *T*−pre-orders are called fuzzy orders with respect to *T*, short fuzzy orders.

T-antisymmetric *T*−pre-orders are called fuzzy orders with respect to *T*, short T-orders.

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\} \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

Fuzzy relations that are reflexive and T-transitive are called fuzzy preorders with respect to *T*, short *T*−pre-orders.

Symmetric *T*−pre-orders are called fuzzy equivalence relations with respect to *T*, short *T*−equivalences.

Antisymmetric *T*−pre-orders are called fuzzy orders with respect to *T*, short fuzzy orders.

T-antisymmetric *T*−pre-orders are called fuzzy orders with respect to *T*, short T-orders.

S− complete *T*−pre-orders are called complete fuzzy pre-orders with respect to *T* and *S*, short complete T-pre-orders.

 QQ

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\} \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

Given a T-equivalence $E:X^2\to[0,1]$, a binary fuzzy relation $r: X^2 \rightarrow [0,1]$ is called a fuzzy order with respect to $\mathcal T$ and $E,$ short $T - E$ – order, if it is T-preorder and additionally has the following properties:

Given a T-equivalence $E:X^2\to[0,1]$, a binary fuzzy relation $r: X^2 \rightarrow [0,1]$ is called a fuzzy order with respect to $\mathcal T$ and $E,$ short $T - E$ – order, if it is T-preorder and additionally has the following properties:

- *E*−reflexivity: *E*(*x*, *y*) ≤ *r*(*x*, *y*) for all *x*, *y* ∈ *X*.
- *T* − *E*− antisymmetry: $T(r(x, y), r(y, x)) \le E(x, y)$ for all $x, y \in X$.

KED KAP KED KED E MAA

Given a T-equivalence $E:X^2\to[0,1]$, a binary fuzzy relation $r: X^2 \rightarrow [0,1]$ is called a fuzzy order with respect to $\mathcal T$ and $E,$ short $T - E$ – order, if it is T-preorder and additionally has the following properties:

- *E*−reflexivity: *E*(*x*, *y*) ≤ *r*(*x*, *y*) for all *x*, *y* ∈ *X*.
- *T* − *E*− antisymmetry: $T(r(x, y), r(y, x)) \le E(x, y)$ for all $x, y \in X$.

Next, we shall give some examples of T -preorders in \mathbb{R} .

KORK CORRESPONDENCE

Given a T-equivalence $E:X^2\to[0,1]$, a binary fuzzy relation $r: X^2 \rightarrow [0,1]$ is called a fuzzy order with respect to $\mathcal T$ and $E,$ short $T - E$ – order, if it is T-preorder and additionally has the following properties:

E−reflexivity: *E*(*x*, *y*) ≤ *r*(*x*, *y*) for all *x*, *y* ∈ *X*. \bullet *T* − *E*− antisymmetry: *T*(*r*(*x*, *y*), *r*(*y*, *x*)) ≤ *E*(*x*, *y*) for all $x, y \in X$.

Next, we shall give some examples of T -preorders in \mathbb{R} .

1. Let $x, y \in \mathbb{R}$ and $\lambda > 0$. Then, the fuzzy relation r_{λ} defined for all $x, y \in \mathbb{R}$ by:

$$
r_{\lambda}(x,y) = \left\{ \begin{array}{ccc} 1, & \text{if } x = y; \\ & \min(1, \frac{|y-x|}{\lambda}), & \text{if } x \neq y \end{array} \right. ,
$$

2. Let $X = \mathbb{R}$. Then, the fuzzy relation *r* defined for all $x, y \in \mathbb{R}$ by:

$$
r(x,y) = \begin{cases} 1, & \text{if } x = y; \\ 0, & \text{if } x > y; \\ 1 - \frac{x}{y}, & \text{if } 0 \le x < y; \\ 1 - \frac{y}{x}, & \text{if } x < y \le 0; \\ 1, & \text{if } x < 0 \text{ and } y > 0; \end{cases}
$$

is a T-preorder on \mathbb{R} .

K ロ > K 何 > K 君 > K 君 > 「君」 の Q Q^

[Introduction](#page-2-0) **[Preliminaries](#page-22-0)** Preliminaries [The main results](#page-47-0) [References](#page-61-0)

2. Preliminaries (Preorders extensions)

Definition

Consider two T-preorders r_1 and r_2 . We say that r_1 extends r_2 if and only if, for all $x, y \in X$, $r_2(x, y) \le r_1(x, y)$ holds. For brevity, we denote this $r_2 \subset r_1$.

∢ 何 ゝ ∢ ヨ ゝ ∢ ヨ ゝ 。

[Introduction](#page-2-0) **[Preliminaries](#page-22-0)** Preliminaries [The main results](#page-47-0) [References](#page-61-0)

2. Preliminaries (Preorders extensions)

Definition

Consider two T-preorders r_1 and r_2 . We say that r_1 extends r_2 if and only if, for all $x, y \in X$, $r_2(x, y) \le r_1(x, y)$ holds. For brevity, we denote this $r_2 \subset r_1$.

We call r_1 a non-trivial extension of r_2 if there exists at least one pair $(x,y) \in X^2$ for which $r_2(x,y) < r_1(x,y)$ holds, for brevity $r_2 \subseteq r_1$.

[Introduction](#page-2-0) **[Preliminaries](#page-22-0)** Preliminaries [The main results](#page-47-0) [References](#page-61-0)

2. Preliminaries (Preorders extensions)

Definition

Consider two T-preorders r_1 and r_2 . We say that r_1 extends r_2 if and only if, for all $x, y \in X$, $r_2(x, y) \le r_1(x, y)$ holds. For brevity, we denote this $r_2 \subset r_1$.

We call r_1 a non-trivial extension of r_2 if there exists at least one pair $(x,y) \in X^2$ for which $r_2(x,y) < r_1(x,y)$ holds, for brevity $r_2 \subseteq r_1$.

A T-preorder *r* is called maximal if and only if it does not have a non-trivial extension, equivalently, $ext(r) = r$ in which $ext(r)$ is the set of all extensions of *r*.

イロメ イ何メ イヨメ イヨメーヨ

Theorem (Theorem 3.1)

A binary fuzzy relation r : $X^2 \rightarrow [0,1]$ *is a T-preorder if and only if there exist a non-empty domain* $Y \subseteq \mathcal{P}(X)$, a fuzzy order *(antisymmetric T*−*preorder) R* : *Y* ² → [0, 1]*, and a mapping* $f: X \to Y$ such that the following equality holds for all $x, y \in X$:

$$
r(x, y) = R(f(x), f(y)).
$$

Moreover, r is S−*complete if and only if R is S*−*complete.*

モー イモト イモト イ野ト

Theorem (Theorem 3.2)

Assume that T has no zero divisors. Then A binary fuzzy relation $r: X^2 \to [0,1]$ *is a T-preorder if and only if there exist a non-empty domain Y* ⊆ P(*X*)*, a T-order (T-antisymmetric T*−*preorder) R* : *Y* ² → [0, 1]*, and a mapping f* : *X* → *Y such that the following equality holds for all* $x, y \in X$:

$$
r(x,y)=R(f(x),f(y)).
$$

Moreover, r is S−*complete if and only if R is S*−*complete.*

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\} \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

The above Theorem 3.1 and Theorem 3.2 can be viewed as a fuzzy generalization of Theorem 1.1 in which the choice of the non-empty domain *Y* was a subset of $\mathcal{P}(X)$ the power set of X.

KID KAR KERKER E KARA

The above Theorem 3.1 and Theorem 3.2 can be viewed as a fuzzy generalization of Theorem 1.1 in which the choice of the non-empty domain Y was a subset of $\mathcal{P}(X)$ the power set of X.

The following Theorem 3.3 (resp. Theorem 3.4) is the same as Theorem 3.1 (resp. Theorem 3.2) but the non-empty domain *Y* has been chosen as a non-empty family of fuzzy sets $Y \subseteq \mathcal{F}(X)$ the fuzzy power set of *X*.

イロメ イ何メ イヨメ イヨメーヨ

Theorem (Theorem 3.3)

A binary fuzzy relation r : $X^2 \rightarrow [0,1]$ *is a T-preorder if and only if there exist a non-empty domain* $Y \subseteq \mathcal{F}(X)$, a fuzzy order *(Antisymmetric T*−*preorder) R* : *Y* ² → [0, 1]*, and a mapping* $f: X \to Y$ such that the following equality holds for all $x, y \in X$:

$$
r(x, y) = R(f(x), f(y)).
$$

Moreover, r is S−*complete if and only if R is S*−*complete.*

∢ 何 → イヨ → イヨ → ニヨ

Theorem (Theorem 3.4)

Assume that T has no zero divisors. Then A binary fuzzy relation $r: X^2 \to [0,1]$ *is a T-preorder if and only if there exist a non-empty domain Y* ⊆ F(*X*)*, a T-order (T-antisymmetric T*−*preorder) R* : *Y* ² → [0, 1]*, and a mapping f* : *X* → *Y such that the following equality holds for all* $x, y \in X$:

$$
r(x,y)=R(f(x),f(y)).
$$

Moreover, r is S−*complete if and only if R is S*−*complete.*

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \left\langle \mathbf{q} \right\rangle \right\} \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\}$

These fuzzy analogies of Theorem 1.1 allow us to answer the question given in [4]

K ロ > K 個 > K ミ > K ミ > ニ ミ → の Q Q →

These fuzzy analogies of Theorem 1.1 allow us to answer the question given in [4]

Whether there is any standard choice *Y* , *E*, *R*, *f* into which we can embed all weak T-orders (Complete fuzzy pre-orders in general).

 Ω

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\}$

These fuzzy analogies of Theorem 1.1 allow us to answer the question given in [4]

Whether there is any standard choice *Y* , *E*, *R*, *f* into which we can embed all weak T-orders (Complete fuzzy pre-orders in general).

Corollary (Theorem 3.1, Bodenhofer et al. ref.4)

A binary fuzzy relation r : $X^2 \rightarrow [0,1]$ *is a complete T-preorder if and only if there exist a non-empty domain Y , a complete fuzzy order (or complete T-order)* $R: Y^2 \rightarrow [0,1]$, and a mapping $f: X \to Y$ such that the following equality holds for all $x, y \in X$:

 $r(x, y) = R(f(x), f(y)).$

目

 QQ

 $\langle \overline{m} \rangle$ \rightarrow \pm \rightarrow \pm \pm \rightarrow

Corollary (Theorem 4.1, Bodenhofer et al. ref.4)

Consider a binary fuzzy relation $r : X^2 \to [0,1]$ *. Then the following two statements are equivalent: (i) r is a weak T-order. (ii) There exists a non-empty family of fuzzy sets* $S \subset \mathcal{F}(X)$ *that are linearly ordered with respect to the inclusion relation* ⊆ *and a mapping* $\varphi: X \to S$ such that the following representation holds for all $x, y \in X$: $r(x, y) = \text{INCL}_\tau(\varphi(x), \varphi(y))$.

イロメ イ何メ イヨメ イヨメーヨ

Also, these results let us generalize easily to the fuzzy pre-orders the linearity axioms of T-E-orders given by Bodenhofer and Klawonn, Georgescu, Gottwald, Höhle and Blanchard and Zadeh.

 Ω

イロン イ何ン イヨン イヨン・ヨー

Also, these results let us generalize easily to the fuzzy pre-orders the linearity axioms of T-E-orders given by Bodenhofer and Klawonn, Georgescu, Gottwald, Höhle and Blanchard and Zadeh.

Theorem (Theorem 3.5)

There is one-to-one correspondence between completeness and maximality of T-preorders.

モー イモト イモト イ野ト

Also, these results let us generalize easily to the fuzzy pre-orders the linearity axioms of T-E-orders given by Bodenhofer and Klawonn, Georgescu, Gottwald, Höhle and Blanchard and Zadeh.

Theorem (Theorem 3.5)

There is one-to-one correspondence between completeness and maximality of T-preorders.

Theorem (Theorem 3.6, Szpilrajn Theorem for T-preorders)

Any T-preorder has a S− *complete extension.*

 $\left\{ \left\vert \left\langle \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\} \right\} = \left\{ \left\langle \left\langle \mathbf{q} \right\rangle \right\vert \right\} \right\}$

Also, these results let us generalize easily to the fuzzy pre-orders the linearity axioms of T-E-orders given by Bodenhofer and Klawonn, Georgescu, Gottwald, Höhle and Blanchard and Zadeh.

Theorem (Theorem 3.5)

There is one-to-one correspondence between completeness and maximality of T-preorders.

Theorem (Theorem 3.6, Szpilrajn Theorem for T-preorders)

Any T-preorder has a S− *complete extension.*

Theorem (Theorem 3.7)

Let r be a T-preorder. Then r is uniquely characterized as intersection of Complete preorders.

െ പ

4. References

[1] Peirce, C.S. 1880. "On the algebra of logic." *American Journal of Mathematics* 3: 15–58.

[1Pis] R. Bělohlavek, Concept lattices and order in fuzzy logic, Ann.Pure Appl.Logic 128(2004) 277–298.

[2] U. Bodenhofer, Representations and constructions of similarity-based fuzzy orderings, Fuzzy Sets and Systems 137 (2003) 113–136.

[3] U. Bodenhofer, F. Klawonn, A formal study of linearity axioms for fuzzy orderings, Fuzzy Sets and Systems 145(2004) 323–354. [4] U. Bodenhofer, B. De Baets, F. Janos, A compendium of fuzzy weak orders: Representations and constructions, Fuzzy Sets and Systems 158(2007) 811-829.

[5] B. Bouchon-Meunier, *La logique floue et ses applications*, Addison-Wesley, Paris, 1995.

 Ω

イロメ イ何メ イヨメ イヨメーヨ

4. References

[6] C. Coppola, G. Gerla, T. Pacelli, Convergence and fixed points by fuzzy orders, Fuzzy Sets and Systems 159(2008) 1178-1190. [7] B. De Baets, R. Mesiar, *T*-partions, Fuzzy Sets and Systems 97(1998) 211-223.

[8] S. Diaz, B. De Baets, S. Montes, On the compositional characterization of complete fuzzy pre-orders, Fuzzy Sets and Systems 159(2008) 2221-2239.

[9] D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980.

[10] I. Georgescu, Fuzzy Szpilrajn Theorem through Indicators, Int. J. of Computers, Communications and Control III(4)(2008), 336-342.

 Ω

イロメ イ何メ イヨメ イヨメーヨ

4. References

[11] S. Gottwald, Fuzzy Sets and Fuzzy Logic, Vieweg, Braunschweig, 1993. [12] U. Höhle, N. Blanchard, Partial ordering in L-underdeterminate sets, Inform. Sci. 35 (1985) 133–144. [13] B. Schroder, Ordered sets, Birkhauser Boston; First edition, December 6, 2002. [14] J. Szpilrajn , Sur I'extension de I'ordre partiel, Fund. Math. 16(1930), 386–389. [15] L.A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences 3(1971), 177–200.

 Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \Rightarrow \mathcal{B} \rightarrow \mathcal{A} \Rightarrow \mathcal{B} \rightarrow \mathcal{B} \Rightarrow$