
TP1

Zoulikha BAKOUR

Table des matières

I - Manipulation N° I : Titrage pH-métrique	3
1. Les titrages pH-métriques	3
2. Notion de pH	3
3. Neutralisation	3
4. Titrages pH-métrique d'un acide fort (HCI) par une base forte (NaOH)	4
4.1. But	4
4.2. Mode Opératoire	4
4.3 Exploitation des résultats	5

Manipulation N° I: Titrage pH-métrique

Les titrages pH-métriques	3
Notion de pH	3
Neutralisation	3
Titrages pH-métrique d'un acide fort (HCI) par une base forte (NaOH)	4

Un dosage acido-basique peut-être suivi par :

- Colorimétrie : on utilise un indicateur coloré.
- pH-métrie : on suit l'évolution du pH au cours de la réaction.

1. Les titrages pH-métriques

Ce type de titrage est réalisable uniquement pour des réactions acidobasique et en utilisant un pH-mètre. En représentant graphiquement l'évolution du pH de la solution (acide) avec le volume ajouté de la base, on obtient une bonne caractérisation des propriétés acides/basiques de la solution. On peut ainsi en tirer graphiquement le point d'équivalence : point du graphe où il y a autant de protons pouvant être cédées par l'acide que de protons pouvant être captés par la base, pour déterminer la concentration de la solution inconnue (acide).

2. Notion de pH

L'échelle de pH (potentiel en hydrogène) donne une mesure de l'acidité en mesurant la concentration en ions hydronium (H3O+ ou H+) d'une solution aqueuse :

$$pH = -log_{10}[H_3O^+]$$

Le pH de l'eau pure : l'eau pure à un pH égal à 7. En effet, l'eau pure est une solution neutre :

$$[H_3O^+] = [OH^-] = 10^{-7} \text{ mol/L à 25 °C}, pH = -log_{10}[H_3O^+] = +7.$$

3. Neutralisation

Une neutralisation est le titrage d'un acide avec une base. Les deux solutions possèdent des ions H+ et OH- qui réagissent ensemble en formant l'eau, une solution *neutre*.

La réaction générale d'une neutralisation est :

$$OH^{T} + H_3O^{+} \rightleftharpoons 2H_2O$$

Soit la neutralisation de l'acide chlorhydrique (HCl) et l'hydroxyde de sodium (NaOH).

L'équation de neutralisation est :

$$HCI_{(aq)} + NaOH_{(aq)} \rightleftarrows 2H_2O_{(liq)} + NaCI$$

La neutralisation est complète lorsque les ions H^+ de l'acide HCl réagissent avec les ions OH- de la base NaOH, le pH obtenu est égal à 7, la concentration en ions $[H_3O^+] = [OH^-] = 10^{-7}$.

4. Titrages pH-métrique d'un acide fort (HCI) par une base forte (NaOH)

4.1. But

Le but de cette manipulation est.

- déterminer la concentration de l'acide chlorhydrique (HCI) par titrage pH-métrique.
- Tracer la courbe de titrage (pH en fonction du volume de NaOH ajouté)
- déterminer graphiquement le point d'équivalence.

4.2. Mode Opératoire

- Mettre la solution de NaOH (0,1 mol/L) dans la burette à l'aide d'un entonnoir,
- Placer dans un erlenmeyer 20 mL de la solution de l'acide chlorhydrique (HCI, C_A= ?) et 20 mL
 d'eau distillée pour que la sonde du pH-mètre trempe convenablement dans la solution
- Placer la sonde du pH-mètre dans la solution titrée et placer le bêcher sur un agitateur magnétique.
- Mesurer les pH successifs du milieu réactionnel : pour V_B= 0 mL puis pour chaque ajout d'un millimètre de NaOH. Arrêter l'ajout de la soude lorsque le point correspond au saut de pH se situer au centre du tableau.
- Noter les valeurs de pH en fonction de V_B dans le tableau ci-dessous :

V _B (ml)	0	2	4	6	8	10	12	14	16	17	17.5	18	18	5	19	19.5	20	21	22	
22pH																				

4.3. Exploitation des résultats

- 1. Pour quoi ajout-t-ont de l'eau distillée ?
- 2. Que faut-il faire avec le pH-mètre avant de commencer les mesures ?
- 3. Compléter le tableau :

Période de titrage	$V_B^{\ \ }V_E$	$V_B = V_E$	$V_B^{>}V_E$
substances			
рН			

- 4. Tracer la courbe pH = f(VB) et en déduire les caractéristiques de l'équivalence (pH, V_{BE})
- 5. En déduire la concentration $\boldsymbol{C}_{\boldsymbol{A}}$ en acide chlorhydrique de la solution.
- 6. Déterminer le pH de la solution après l'équivalence.