Master 1 : Physique appliquée

Méthodes d'élaboration des matériaux

Série 3: Electrodéposition

Exercice 1 : La constante de Faraday

Un dépôt électrolytique de Cu sur une surface carrée de cuivre de 16 cm² a été réalisé. L'expérience a été faite en mode potentiostatique, donc un multimètre en mode ampèremètre a été connecté au montage afin de voir l'évolution du courant.

L'alimentation a été réglée à un potentiel de +5.0 V. Le courant (I) en fonction du temps (t) est relevé à chaque 5 minutes pendant 1 heure. La cathode de cuivre a été pesé au début et à la fin de l'expérience. Les résultats obtenus figurent dans le tableau 1et 2.

Tableau 1		
t (s)	I (A)	Q (C)
0	0.30	
300	0.33	94.5
600	0.39	108.0
900	0.42	121.5
1200	0.44	129.0
1500	0.47	136.5
1800	0.5	145.5
2100	0.53	154.5
2400	0.59	168.0
2700	0.64	184.5
3000	0.68	198.0
3300	0.71	208.5
3600	0.75	219.0

Tableau 2	
masse initiale	masse finale
(g)	(g)
28.35	28.99

Calculer la constante de faraday selon la relation suivante :

$$F = \frac{QM_{Cu}}{2m_{Cu}}$$

Exercice 2

Un dépôt électrolytique de Ni sur une surface carrée de cuivre de 16 cm² a donné les résultats figurant dans le tableau 3. Si le courant appliqué est 0.5 A et le temps d'électrolyse est 20 min ; calculer :

- La masse du Ni déposée
- La masse du Ni théorique
- Le rendement R (%)
- Estimer l'épaisseur de la couche déposée.

Tableau 3

Expérience	Masse initiale (g)	Masse finale (g)
pH= 5	12.79	12.90

Masse volumique : $\rho(Ni) = 8.9 \text{ g/cm}^3$

Masse Molaire: M (Ni) = 58.7 g/mol

Constante de Faraday F= 96500 C/mol