

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'enseignement supérieur et de la recherche scientifique Université de Mohamed Boudiaf de M'sila (UMB) Faculté de Technologie Département de Génie Mécanique



# Analyse par éléments Finis

**TP** N° **03** : Application sur le Facteur de Concentration de Contraintes

Niveau: Master 1, Construction Mécanique/ Fabrication Mécanique.

Dr. A, ZERROUKI

2019/2020

# Application 2: Facteur de concentration des contraintes

On considère une plaque rectangulaire mince contenant un trou de rayon R=0.03m. Les conditions du chargement et le comportement du matériau sont identiques à ceux considères dans le premier exemple. La plaque est supposée maillée par des éléments à 8 nœuds sous les conditions de contraintes planes.

- Utiliser le code de calcul Ansys pour exposer la distribution nodale des contraintes suivant la direction verticale.
- Calculer le facteur de concentration des contraintes K<sub>t</sub>.
  - Etapes de simulations :
  - ✓ Preferences > Structural > OK

## 1-Choix de l'élément :

✓ Preprocessor > Element type > Add-Edit-Delete > Add > Solid > 8 node 183 > OK..... > Close

## 2-Propriétés du matériau :

- Preprocessor > Material Prop > Material Models > Structural > Linear Elastic Isotrop > EX=2e5 (en Mpa), PRXY=0.3
  - Fermer la fenêtre (ou bien : Material > Exit)

## 3-Géométrie :

✓ Preprocessor > Modeling > Create > Areas > Rectangle > By dimensions
 (dimensions en mm)> Entrer: X1, X2 : 0 200

Y1, Y2 : 0 ---- 400> OK

| CTNG] Create Rectangle by Dimensions |             |          |  |
|--------------------------------------|-------------|----------|--|
| K2 X-coordinates                     | 0 200       | <u> </u> |  |
| Y2 Y-coordinates                     | 0 400       |          |  |
| С Аррју                              | Cancel Help | ]        |  |

✓ Preprocessor > Modeling > Create > Areas > Circle > Solid Circle (dimensions en mm) > OK





Preprocessor > Modeling > Operate > Booleans > Overlap > Areas (Cliquer sur le rectangle et le cercle) > OK

| Overlap Areas           |          |   |
|-------------------------|----------|---|
| ( Pick                  | C Unpick |   |
| Single                  | С Вож    |   |
| C Polygon<br>C Loop     | C Circle |   |
| Count =                 | 2        |   |
| Maximum =               | 2        |   |
| Minimum =               | 2        |   |
| Area No. =              | 4        |   |
| © List of<br>C Min, Max | Items    |   |
|                         |          |   |
| OK                      | Apply    |   |
| Reset                   | Cancel   | X |
|                         |          |   |

✓ Preprocessor > Modeling > Delete > Areas and Below (Cliquer sur le circle) > OK



- ✓ **PlotConts > Numbering >** Sélectionner "LINE line Numbers" > OK
- ✓ Plot > Lines

#### 4-Maillage:

- ✓ Preprocessor > Meshing > Size Contls > ManualSize > Lines > Picked Lines > (Cliquer sur les deux lignes horizontales) > OK > (entrer : 25 pour dans la fenêtre NDIV : No of element divisions) > OK
- Preprocessor > Meshing > Size Contls> ManualSize> Lines > Picked Lines > (Cliquer sur les deux lignes verticals) > OK> (entrer : 50 pour dans la fenêtre NDIV : No of element divisions) > OK
- Preprocessor > Meshing > Size Contls > ManualSize > Lines > Picked Lines > (Cliquer sur les 04 arcs du cercle) > OK > (entrer : 10 pour dans la fenêtre NDIV : No of element divisions) > OK
- ✓ Preprocessor > Mesh > Areas > Free > Cliquer sur la surface > OK

|   | Mesh Areas                                                                                  | 1 |                                      |  |
|---|---------------------------------------------------------------------------------------------|---|--------------------------------------|--|
|   | @ Pick C Unpick                                                                             |   |                                      |  |
|   | © Single C Box<br>C Polygon C Circle                                                        |   |                                      |  |
| ⇔ | Court = 0<br>Maximum = 1<br>Minimum = 1<br>Area No. =<br>Ø List of Items<br>C Min, Max. Inc | ⇔ |                                      |  |
|   | OK Apply<br>Reset Cancel                                                                    |   |                                      |  |
|   | Pick All Help                                                                               | 1 | ++ <b>*;</b> + ( + ) ( + ) ( + ( + ) |  |

# **5-Conditions aux limites**

- Preprocessor > loads > Define Load > Apply > Structural > Displacement > On Lines > (Cliquer sur la ligne horizontale N° 1) > OK > ALL DOF =0 > OK
- Preprocessor > Loads > Define Load > Apply > Structural > Pressure > On Lines > (Cliquer sur la ligne horizontale N° 3) > (Entrer : -100 dans la fenêtre : VALUE)
- Enregistrer le model :

| SAVE_DB | RESUM_DB | QUIT | POWRGRPH |  |
|---------|----------|------|----------|--|
| 仑       |          |      |          |  |

## 6-Résolution

- ✓ Solution > Solve > Current LS > OK
   ✓ Fermer le message: Solution is done
- Note
  Solution is done!
  Close

7-Post-processing : Analyse et visualisation des résultats

- ✓ General-Postproc > Plot Results > Deformed Shape > Def + undeformed> OK
- General-Postproc > Plot Results > Contour Plot > Nodal Solu> Nodal Solution> DOF Solution> Y-Component of displacement> OK
- ✓ General-Postproc > Plot Results > Contour Plot > Nodal Solu > Nodal Solution > Stress> Y-Component of stress> OK
- ✓ General-Postproc > List Results > Nodal Solution > Nodal Solution > Stress > Y-Component of stress > OK
- ✓ General-Postproc > Query Results > Subgrid Solu > Stress > Y-direction S<sub>Y</sub> > OK (Cliquer sur la surface pour obtenir les valeurs des contraintes S<sub>Y</sub> sur les nœuds, suivant la direction verticale)



Figure : Contour des contraintes  $\sigma_y$ 

• Calcul le facteur de concentration de contraintes K<sub>t</sub>:

K<sub>t</sub>= Contrainte maximale/ Contrainte appliquée =337/100 =3.37

# Programmation par langage APDL

/PREP7 ET,1,PLANE183 !\* KEYOPT,1,1,0 KEYOPT,1,3,0 KEYOPT,1,6,0 MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2e5 MPDATA, PRXY, 1,, 0.3 RECTNG,0,200,0,400, CYL4,100,200,30 FLST,2,2,5,ORDE,2 FITEM,2,1 FITEM,2,-2 AOVLAP, P51X ADELE, 2, , ,1 FLST,5,2,4,ORDE,2 FITEM,5,1 FITEM,5,3 CM,\_Y,LINE LSEL, , , , ,P51X CM,\_Y1,LINE CMSEL,,\_Y !\* LESIZE,\_Y1, , ,25, , , , ,1 |\* FLST,5,2,4,ORDE,2 FITEM,5,2 FITEM,5,4 CM,\_Y,LINE LSEL, , , , , P51X CM, Y1,LINE CMSEL,,\_Y !\* LESIZE,\_Y1, , ,50, , , , ,1 !\* FLST,5,4,4,ORDE,2 FITEM,5,5 FITEM,5,-8 CM,\_Y,LINE LSEL, , , , ,P51X CM,\_Y1,LINE CMSEL,,\_Y !\* LESIZE,\_Y1, , ,10, , , , ,1 !\* MSHKEY,0 CM,\_Y,AREA ASEL, , , , 3 CM,\_Y1,AREA CHKMSH,'AREA' CMSEL,S,\_Y !\* AMESH,\_Y1 !\* CMDELE,\_Y CMDELE,\_Y1 CMDELE,\_Y2

!\* FLST,2,1,4,ORDE,1 FITEM,2,1 DL,P51X, ,ALL,0 FLST,2,1,4,ORDE,1 FITEM,2,3 SFL,P51X,PRES,-100, FINISH /SOL SOLVE