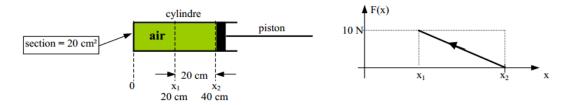
TD N°1: Notions de base de la thermodynamique

Exercice 1:

On fait subir à une masse de 10kg d'air, considéré comme un gaz parfait diatomique, une évolution au cours de laquelle elle reçoit 10kJ sous forme de chaleur et fournit 8kJ sous forme de travail. De plus, au cours de l'évolution, la vitesse du fluide passe de 5 m.s⁻¹ à 15 m.s⁻¹.

Calculer la variation d'énergie interne et la variation de température de l'air.

Exercice 2:


On comprime de l'air dans une chambre à air de vélo à l'aide d'une pompe. L'ensemble pompe + chambre à air est modélisé par l'ensemble cylindre + piston cidessous :

La force exercée par notre main sur le piston varie de la façon décrite ci-dessus en fonction de x. Quel est le travail développé par notre main lors d'un déplacement de x_1 à x_2 ?

Exercice 3:

On reprend le dispositif de l'exercice 2 précédent en changeant tout simplement l'origine des x :

La force exercée sur le piston varie de la façon décrite ci-dessus en fonction de x.

- 1. Donnez l'évolution de la pression P de l'air en fonction du déplacement x du piston.
- 2. Donnez l'évolution de la pression P de l'air en fonction du volume V d'air dans le cylindre.
- 3. Déduisez de la question précédente le travail reçu par l'air.

Exercice 4:

Un corps solide, de masse 5kg, en mouvement de translation, a sa vitesse qui passe de 9m.s⁻¹ à 1m.s⁻¹ et son altitude qui diminue de 2m. Sachant qu'il cède un travail de 50J au milieu extérieur, en raison des forces de frottement et que sa température reste constant ainsi que son volume, calculer en Joules puis en calories, la chaleur que ce corps fournit au milieu extérieur. On prend g= 10m.s⁻².

Exercice 5:

Un gaz parfait monoatomique est maintenu à une pression de 1,2 bar et à une température 300 K, dans une enceinte cylindrique de volume V_i = 1L, grâce à une masse M posée sur un piston de masse m_p = 1kg. Le piston est à une hauteur h_i = 50 cm. On enlève la masse M, ce qui permet au gaz de se détendre, de façon adiabatique, jusqu'à la pression finale d'équilibre P_f ; le volume est alors V_f . On désigne par P_o = 1bar la pression atmosphérique.

- 1. Calculer la valeur de la masse posée sur le piston et la pression finale P_f .
- 2. Effectuer le bilan énergétique de la transformation. Trouver les rapports V_f/V_i et T_f/T_i . Application numérique : on donne C_v = 3R/2 et on admet que l'équation d'état du gaz est celle d'un gaz parfait. Calculer le travail reçu par le gaz.

Exercice 6:

50 moles de gaz parfait contenus dans un cylindre horizontal, fermé par un piston mobile pouvant se déplacer sans frottement et de section (A = 0,2 m²). La pression P_0 et la température T_0 initiales du système sont respectivement de 10bar et de 293K. Ce système subit une détente qui l'amène dans un état final, en équilibre thermique et mécanique avec son environnement, où la pression P_1 est de 1 bar est la température T_1 de 293 K. On réalise cette détente de deux façons différentes.

- 1. Détente isotherme.
 - Déterminer le travail mécanique totale W_p échangé ainsi que le travail W_F échangé avec l'opérateur extérieur (force extérieure) au cours de la transformation.
 - Quelle est l'expression F(V) de la norme de la force appliquée par l'opérateur extérieur? Calculer sa valeur pour l'état initial et pour un volume V du système de 1 m³.
- 2. Détente isotempérature contre une pression extérieure au système uniquement due à l'environnement.
 - Quel travail mécanique total W_F le système échange-t-il dans ces conditions?

Exercice 7:

On effectue une compression (une transformation isochore suivi d'une tranformation isobare) qui amène du diazote N_2 (\approx air) de l'état 1 ($P_1=P_0\approx$ 1 bar, $V_1=3.V_0$) à l'état 2 ($P_2=3.P_0$, $V_2=V_0\approx$ 1 litre). Puis on force le gaz à revenir à son état initial grâce à une détente isochore puis isobare.

- 1. Quel est le travail échangé par le gaz avec l'extérieur?
- 2. Est-ce qu'un tel cycle nécessite l'apport d'un travail de l'extérieur pour pouvoir être exécuté?

Exercice 8:

Une mole de gaz parfait monoatomique, initialement à 300K (T_0) et 1bar (P_0), est amenée réversiblement à la pression de 1,2bar (P_1) et à la température de 305K (T_1) selon les deux chemins suivants :

- a. Transformation isobare suivie d'une transformation isochore;
- b. Transformation isochore suivie d'une transformation isobare.

Calculer, pour chaque chemin, les paramètres d'état de ce gaz au point intermédiaire, puis le travail total et la chaleur totale échangés par ce gaz avec l'extérieur.

Données : $C_v = (3/2)R$ et $C_p = (5/2)R$.