I. INTRODUCTORY CONCEPTS

floating-point arithmetic

Every number is represented using a (fixed, finite) number of binary digits, usually called bits. A typical implementation would represent the number in the **form**

$$x = \sigma \times f \times \beta^{t-p}$$

 σ is the sign of the number (±1), denoted by a single bit;

f is the mantissa or fraction

 β is the base of the internal number system, usually binary (β = 2) or hexadecimal (β = 16), **t** is the (shifted) exponent, i.e., the value that is actually stored;

p is the shift required to recover the actual exponent.

32 bits = **24** bits for the fraction, **7** bits for the exponent, and a **1** bit for the sign.

 $-63 \le t - p \le 64$ The fraction is also limited $0 \le f \le \sum_{k=1}^{24} 2^{-k} = 1 - 2^{-24}.$

Exercise : Express x=0.1, y=0.0039 in 32 floating-point arithmetic with binary base and calculate z=x+y

Theorem 1.1 (Taylor's Theorem with Remainder) Let f(x) have n+1 continuous derivatives on [a, b] for some $n \ge 0$, and let $x, x_0 \in [a, b]$. Then,

$$f(x) = p_n(x) + R_n(x)$$

for

$$p_n(x) = \sum_{k=0}^n \frac{(x-x_0)^k}{k!} f^{(k)}(x_0), \qquad (1.1)$$

and

$$R_n(x) = \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt.$$
 (1.2)

Moreover, there exists a point ξ_x between x and x_0 such that

$$R_n(x) = \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi_x).$$
(1.3)

Theorem 1.2 (Mean Value Theorem) Let f be a given function, continuous on [a, b] and differentiable on (a, b). Then there exists a point $\xi \in [a, b]$ such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$
(1.4)

Theorem 1.3 (Intermediate Value Theorem) Let $f \in C([a, b])$ be given, and assume that W is a value between f(a) and f(b), that is, either $f(a) \leq W \leq f(b)$, or $f(b) \leq W \leq f(a)$. Then there exists a point $c \in [a, b]$ such that f(c) = W.

Theorem 1.4 (Extreme Value Theorem) Let $f \in C([a, b])$ be given; then there exists a point $m \in [a, b]$ such that $f(m) \leq f(x)$ for all $x \in [a, b]$, and a point $M \in [a, b]$ such that $f(M) \geq f(x)$ for all $x \in [a, b]$. Moreover, f achieves its maximum and minimum values on [a, b] either at the endpoints a or b, or at a critical point.

Theorem 1.5 (Integral Mean Value Theorem) Let f and g both be in C([a,b]), and assume further that g does not change sign on [a,b]. Then there exists a point $\xi \in [a,b]$ such that

$$\int_{a}^{b} g(t)f(t)dt = f(\xi) \int_{a}^{b} g(t)dt.$$
 (1.5)

Theorem 1.6 (Discrete Average Value Theorem) Let $f \in C([a, b])$ and consider the sum

$$S = \sum_{k=1}^{n} a_k f(x_k),$$

where each point $x_k \in [a, b]$, and the coefficients satisfy

$$a_k \ge 0, \qquad \sum_{k=1}^n a_k = 1.$$

Then there exists a point $\eta \in [a, b]$ such that $f(\eta) = S$, i.e.,

$$f(\eta) = \sum_{k=1}^n a_k f(x_k).$$

Computer language : Fortran