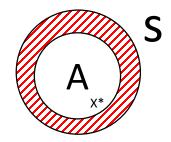
CHAPITRE I


RAPPELS

PLAN

- 1. Problème d'optimisation
- 2. Méthodes de résolution
- 3. Taxonomie des méthodes
- 4. Taxonomie des métaheuristiques
- 5. Méthodes hybrides

Problème d'Optimisation

$$PO = \begin{cases} Opt_{x \in S} f(x) \\ C(x), x \in S \end{cases}$$

C(x) sont satisfaites $\Rightarrow x$ est réalisable $\Rightarrow x \in A \subseteq S$;

Optimiser $f: S \to R \Rightarrow rechercher x^* dans A / x^* = ArgOpt f(x)$

continu

s /

 \triangle discret \rightarrow POC \rightarrow mais souvent S est fini et |S| est assez grand.

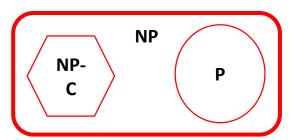
|S| dépend toujours de la taille n du $POC \rightarrow |S|$ = fonction croissante(n) $\approx O(2^n)$

Complexité

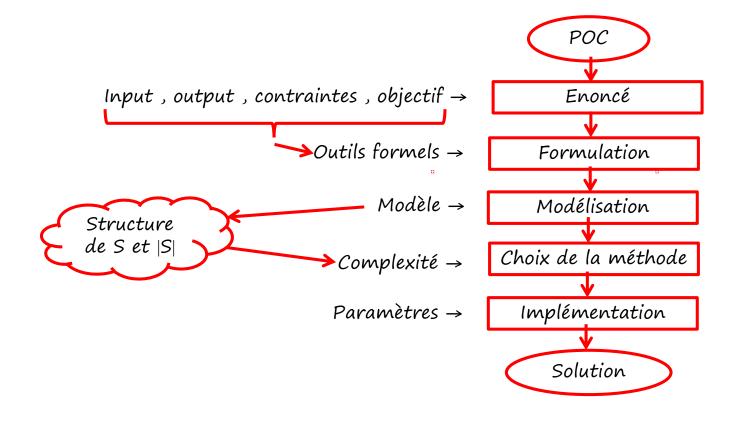
- Complexité du POC = complexité du "meilleur" algorithme le résolvant ;
- Exprime la difficulté du POC \rightarrow estimation formelle du temps CPU ;

4

Complexité


- Complexité du POC = complexité du "meilleur" algorithme le résolvant ;
- Exprime la difficulté du POC → estimation formelle du temps CPU ;
- On distingue:
- ✓ Polynomiale: $O(n^k) \rightarrow classe P$ (problèmes faciles) / Chemin eulerien,
- ✓ Exponentielle : $O(2^n)$, O(n!) , $O(k^n)$ → classe NP (problèmes difficiles) / PVC,...
- ✓ Classe représentative → NP-complets (problèmes NP-difficiles) SAT, ...

Complexité


- Complexité du POC = complexité du "meilleur" algorithme le résolvant ;
- Exprime la difficulté du POC → estimation formelle du temps CPU ;
- On distingue:
- ✓ Polynomiale : $O(n^k) \rightarrow classe P$ (problèmes faciles) / Chemin eulerien,
- ✓ Exponentielle : $O(2^n)$, O(n!) , $O(k^n)$ → classe NP (problèmes difficiles) / PVC,...
- ✓ Classe représentative → NP-complets (problèmes NP-difficiles) SAT, ...

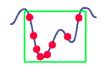
NP - Complétude

- Classification des problèmes ;
- La plupart des POCs sont NP-difficiles;
 - → nécessité des méthodes approchées.

Processus de résolution d'un POC

Résoudre le POC = explorer S (par construction ou transformation <u>itérativement</u>)

$$POC = \begin{cases} Opt_{\mathbf{x}} \in S^{f(x)} \\ C(x), x \in S \end{cases}$$

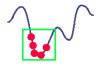

Exploration de S	Systématique (Intelligente)	Partielle (Astucieuse)
Méthode / solution	Exacte	Approchée
Caractéristique	Optimalité	Approximation
Preuve	Formelle	Empirique (ε -appro.)
Aspect	Déterministe	Stochastique (guidée)
Complexité	$O(2^n)$ (souvent)	$O(n^k)$
Handicap	Explosion combinatoire	Convergence précoce
Adaptée aux POC	de petites tailles	NP-difficiles de grandes tailles

II. ELEMENTS D'OC Récap. Taxonomie des méthodes de résolution Méthodes Méthodes de résolution hybrides Méthodes classiques

II. ELEMENTS D'OC Taxonomie des métaheuristiques Métaheuristiques À population de solutions À solution unique Algorithmes génétiques Recuit simulé Hill climbing Colonies d fourmis particulaires Recherche Essaims tabou

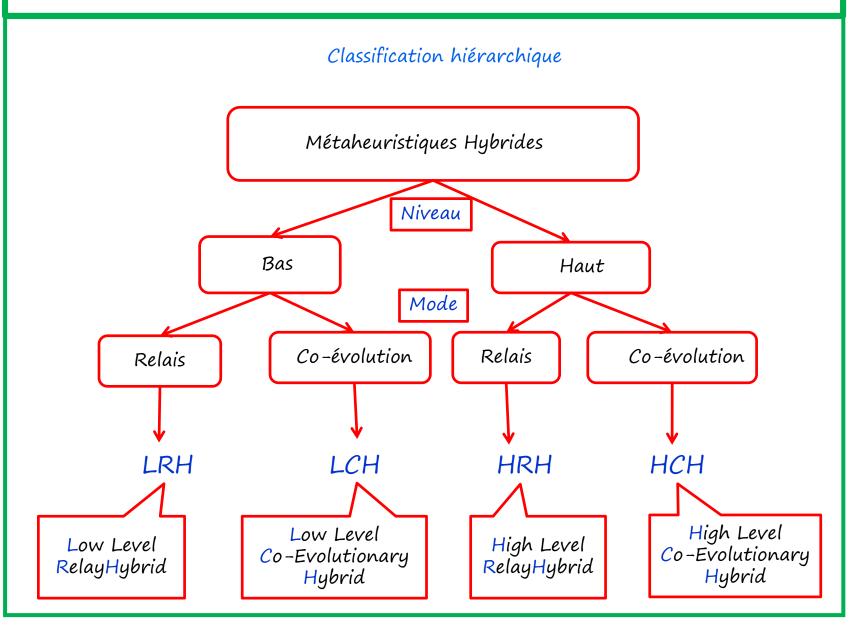
Métaheuristique / le plus gros à faire → Garantir l'approximation ?

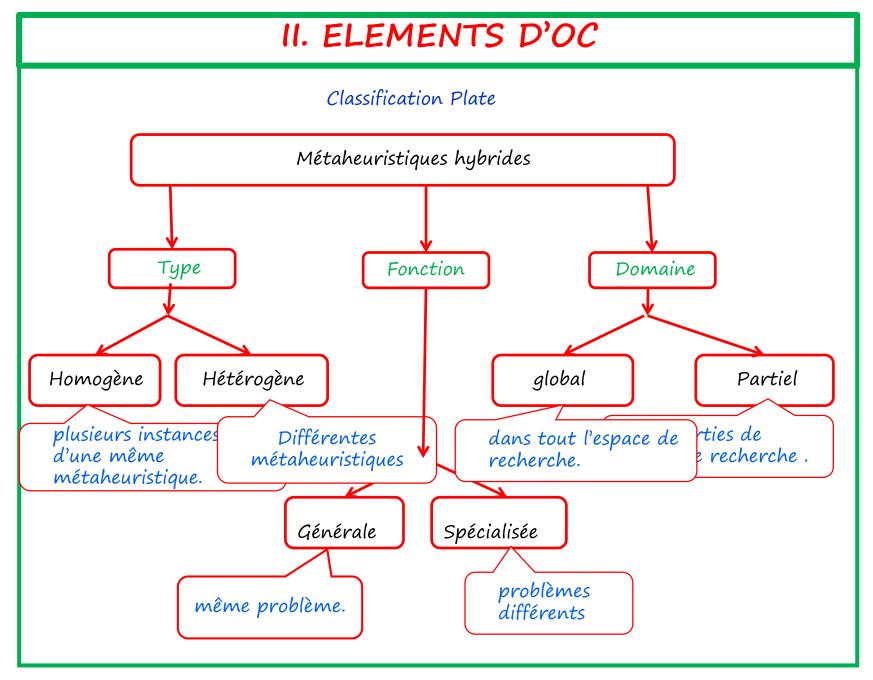
- ✓ Intensification → exploitation;
- ✓ Diversification → exploration;
- ✓ Apprentissage → mémoire ;

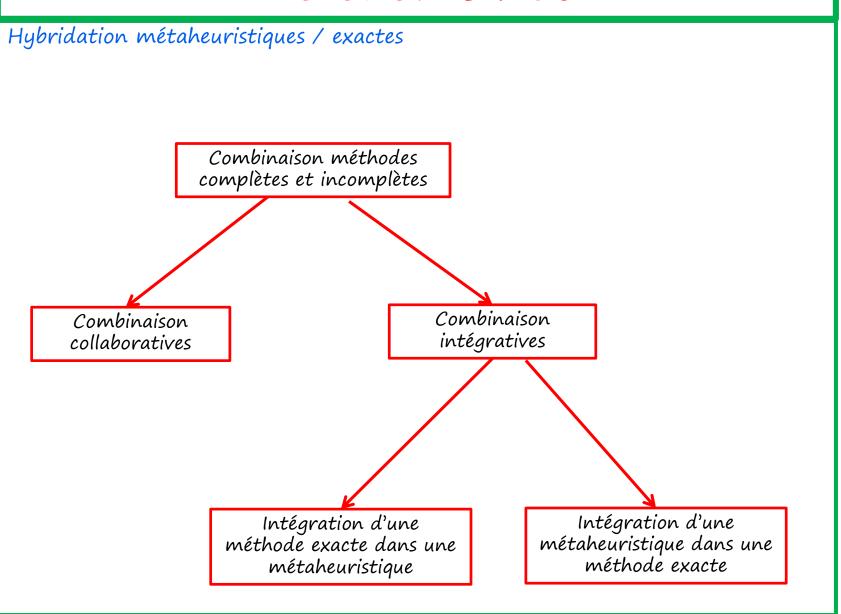


Diversification

Apprentissage


Intensification





Ingrédients d'une bonne méthode \rightarrow un compromis entre ces approches

```
    Méthodes hybrides
    Hybrider = Faire coopérer les méthodes "classiques";
    Principe → Tirer profit de leurs forces et atténuer leurs lacunes;
    Comment → classification (hiérarchique, plate);
    Objectif → plus de performance;
    Handicap → au détriment du temps de calcul (malgré que ça reste dans le polynomial).
```


Chronologie:

```
✓ Fin des années 1940 : concurrence vers l'exact ;
    Simplexe, G. Dantzig (1947); PD, R. Bellman (1956).
✓ Début des années 1980 : avènement des métaheuristiques ;
   RT, Glover (1989); AG, J. Holland (1975). D.E. Goldberg en 1989.
  PSO, Russel Eberhart (1995); RT, Glover (1986), ....
✓ Années 1990 : l'ère de l'hybridation et méthodes émergentes;
   Martin et Otto, descente dans le RS (1990);
   Stûtzle et Hoos, RL dans les CF, (2000);
   Talbi, RT dans un AG (1998).
```