Chapitre

2

Ecoulement unidimensionnel adiabatique stationnaire d'un fluide compressible

2.1 Vitesse du son

Le son est produit par des variations faibles de la pression du milieu dans lequel il se propage. Ainsi, la vitesse du son correspond à la propagation de ces variations de pression. Imaginons un milieu fluide, un gaz par exemple, dans lequel on observe localement une différence de pression dP entre la partie droite 1 et la partie gauche 2 du milieu (figure 2-1) et admettons que la zone de variation soit plane et de dimension infinie. L'onde sonore, se déplace, par définition, à la vitesse du son V_s . Dans le mouvement relatif onde sonore-fluide, le fluide se déplace par rapport à l'onde à la même vitesse. La section Ω de part et d'autre de l'onde de pression étant la même, l'équation (1.3) chapitre 1 s'écrit :

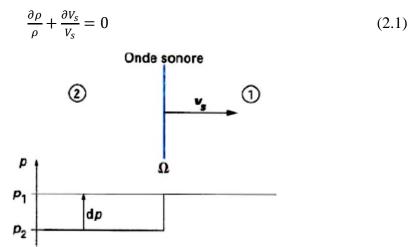


Fig. 2-1: Propagation d'une onde sonore.

En admettant que la traversée de l'onde de pression se fasse de manière réversible, donc sans frottement compte tenu notamment de la valeur infiniment petite de l'épaisseur du front d'onde, l'équation (1.6) chapitre 1 devient, en négligeant la pesanteur ou en supposant que l'onde se déplace horizontalement :

$$V_s dV_s + \frac{dP}{\rho} = 0 ag{2.2}$$

La combinaison de ces deux équations $[(1)V_s^2 - (2)]$ donne :

$$V_{s} = \sqrt{\frac{dP}{d\rho}} \tag{2.3}$$

Compte tenu que l'on a affaire à un phénomène local rapide, on peut admettre que ce phénomène est adiabatique. Avec l'hypothèse de réversibilité, il est donc isentropique. En admettant que le fluide considéré soit un gaz parfait idéal (*gaz parfait* pour lequel le coefficient $\gamma = \frac{C_p}{C_v}$, (rapport des capacités thermiques massiques a pression et a volume constants, est constant), l'équation de la transformation isentropique est :

$$\frac{P}{\rho^{\gamma}} = cst \tag{2.4}$$

Soit

$$\frac{dP}{d\rho} = \gamma \frac{P}{\rho}$$

Dans ce cas, la vitesse du son a pour expression :

$$V_{s} = \sqrt{\gamma \frac{P}{\rho}} \tag{2.5}$$

Ou, en tenant compte de l'équation d'état des gaz parfaits :

$$V_S = \sqrt{\gamma r T} \tag{2.6}$$

Si le fluide n'est pas un gaz parfait, en considérant toujours la transformation isentropique, on peut écrire, d'une manière générale :

$$V_s^2 = \left(\frac{\partial P}{\partial \rho}\right)_s$$

Or, en notant que le coefficient isentropique vaut, par définition :

$$k_{S} = -\frac{v}{P} \left(\frac{\partial P}{\partial v} \right)_{S} = \frac{\rho}{P} \left(\frac{\partial P}{\partial \rho} \right)_{S}$$

Où $v = \frac{1}{\rho}$ est le volume massique

On a
$$V_s^2 = k_s \frac{P}{\rho}$$
 (2.7)

La vitesse du son peut être reliée au coefficient de compressibilité isentropique K_s du fluide:

$$K_{S} = -\frac{1}{v} \left(\frac{\partial v}{\partial P} \right)_{S} = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P} \right)_{S} = \frac{1}{Pk_{S}}$$

$$V_{S}^{2} = \frac{1}{\rho K_{S}} = \frac{\overline{v}}{\overline{M}} \frac{1}{K_{S}}$$
(2.8)

Où \overline{v} et \overline{M} sont respectivement le volume molaire et la masse molaire du fluide.

La vitesse du son est donc d'autant plus faible que la compressibilité du fluide est plus grande.

2.2 Condition de stagnation

Soit avec (2.7)

En supposant que le fluide compressible se décharge d'un réservoir de très grandes dimensions; les conditions dans cet état (générateur) seront appelées les conditions initiales, ce qui entraîne $V=V_0\approx 0$ (avec les indices 0 ou i marquant les propriétés au

réservoir), et si on considère un gaz parfait : $C_p = \frac{\partial h}{\partial T}\Big|_p$ et $C_p = cst$ On aura : $C_pT_i = C_pT_0 = C_pT + \frac{1}{2}V^2$ Sachant que : $\gamma = \frac{C_p}{C_v}$, $C_p - C_v = r \implies C_p = \frac{\gamma R}{\gamma - 1}$

Qui donne $\frac{\gamma}{\gamma-1} \frac{P_0}{\rho_0} = \frac{\gamma}{\gamma-1} \frac{P}{\rho} + \frac{1}{2} V^2$

Et puisque la vitesse du son pour un gaz parfait est donnée par :

$$a^2 = \gamma RT = \gamma \frac{P}{\rho}$$
, on obtient :

Fig. 2-2: Conditions initiales.

 $V_0 \approx 0$

$$\frac{a_0^2}{\gamma - 1} = \frac{a^2}{\gamma - 1} + \frac{1}{2}V^2 \tag{2.9}$$

Où a_0 et a dénotent respectivement les vitesses du son aux conditions initiales (au réservoir) et statique.

En introduisant le nombre de Mach comme paramètre $(M = \frac{V}{a})$, l'équation (2.9) peut être réécrite comme suit : $\frac{a_0^2}{a^2} = 1 + \frac{V-1}{2} M^2$

Et avec $a^2 = \gamma RT$ le rapport des températures totale et statique est :

$$\frac{T_0}{T} = 1 + \frac{\gamma - 1}{2} M^2$$

Où : T_0 : la température totale

T: la température statique.

M : le nombre de Mach.

Si l'écoulement est isentropique $\frac{P}{\rho^{\gamma}} = cst$, on peut écrire :

$$\left(\frac{P_0}{P}\right)^{\frac{\gamma-1}{\gamma}} = \left(\frac{\rho_0}{\rho}\right)^{\gamma-1} = 1 + \frac{\gamma-1}{2}M^2$$

Où P_0 et ρ_0 dénotent respectivement la pression et la densité isentropiques de stagnation.

Pour établir la relation entre les caractéristiques de deux points (1) et (2) d'un même écoulement :

- En (1)
$$\frac{T_0}{T_1} = 1 + \frac{\gamma - 1}{2} M_1^2$$

- En (2)
$$\frac{T_0}{T_2} = 1 + \frac{\gamma - 1}{2} M_2^2$$

Donc:
$$\frac{T_2}{T_1} = \frac{1 + \frac{\gamma - 1}{2} \cdot M_1^2}{1 + \frac{\gamma - 1}{2} \cdot M_2^2}$$

De la même façon on peut établir des relations entre les pressions et les masses volumiques.

Remarque:

Si M = 1 (V = a), l'état de l'écoulement est appelé état critique.

Il est déterminé en fonction de l'état générateur : $\frac{T_0}{T_c} = 1 + \frac{\gamma - 1}{2} = \frac{\gamma + 1}{2}$

2.3 Différentes formes de l'équation d'énergie

2.3.1 Mouvement permanant d'un fluide compressible non visqueux

2.3.1.1 Equation de l'écoulement d'un fluide compressible non visqueux

L'équation générale de l'écoulement d'un fluide non visqueux s'écrit pour une unité de masse :

$$\frac{\overrightarrow{\partial V}}{\partial t} + \frac{1}{2} \overrightarrow{\nabla} V^2 + \overrightarrow{V} \wedge \overrightarrow{V} \wedge \overrightarrow{V} = \overrightarrow{F} - \frac{1}{\rho} \overrightarrow{\nabla} P$$
 (2.10)

 \vec{F} : force volumique, \vec{V} : vitesse, $\vec{\nabla}T = \overrightarrow{grad}T$, $\vec{\nabla}\vec{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z} = div\vec{V}$,

$$\nabla \nabla T = \nabla^2 T = \Delta T \text{ (la placien)}$$

Si l'écoulement est permanant $\frac{\overrightarrow{\partial v}}{\partial t} = 0$ dans un fluide compressible, \overrightarrow{F} (force active) due en générale à la pesanteur est négligeable par rapport à la force de pression l'équation (2.10) devient :

$$\frac{1}{2}\vec{\nabla}V^2 + \vec{\nabla} \wedge \vec{V} \wedge \vec{V} = -\frac{1}{\rho}\vec{\nabla}\vec{p} \tag{2.11}$$

Multipliant scalairement par un déplacement $\overrightarrow{ds} = \overrightarrow{V}dt$ pris selon la trajectoire du fluide

$$\frac{1}{2} \vec{\nabla} V^2 . \overrightarrow{ds} + \overrightarrow{ds} . \vec{\nabla} \wedge \vec{V} \wedge \vec{V} + \frac{1}{\rho} \overrightarrow{ds} . \vec{\nabla} \vec{p} = \vec{0}$$

 $\overrightarrow{ds}. \overrightarrow{\nabla} \wedge \overrightarrow{V} \wedge \overrightarrow{V} = \overrightarrow{V} dt (\overrightarrow{\nabla} \wedge \overrightarrow{V} \wedge \overrightarrow{V}) = 0$ car le vecteur $\overrightarrow{\nabla} \wedge \overrightarrow{V} \wedge \overrightarrow{V} \perp \overrightarrow{V}. dt$

$$\Rightarrow \frac{1}{2}\vec{\nabla}V^2.\vec{ds} + \frac{1}{\rho}\vec{ds}.\vec{\nabla}\vec{p} = 0 \tag{2.12}$$

 $\Rightarrow \vec{V} \frac{1}{2} V^2 + \frac{1}{\rho} \overrightarrow{\nabla p} = 0$ on peut écrire cette équation sous la forme :

$$d\left(\frac{1}{2}V^2\right) + \frac{1}{\rho}dP = 0\tag{2.13}$$

$$\Rightarrow \int d\left(\frac{1}{2}V^2\right) + \int \frac{dP}{\rho} = cst \Rightarrow \frac{1}{2}V^2 + \int \frac{dP}{\rho} = cst \tag{I}$$

a) Interpretation énergtique

Intégrant (2.13) entre deux points 1 et 2 d'un fluide

$$\int_{V_1}^{V_2} d(\frac{1}{2}V^2) + \int_{P_1}^{P_2} \frac{dP}{\rho} = 0 \Longrightarrow \frac{V_2^2 - V_1^2}{2} + \int_{P_1}^{P_2} \frac{dP}{\rho} = 0$$

$$\rho = \frac{1}{v}$$
, $\int_{P_1}^{P_2} \frac{dP}{\rho} = w_T|_1^2$ travail de transvasement par kg de (1) à (2)

Donc l'équation exprime la conservation de l'énergie mécanique pour l'un de masse de fluide, la diminution de l'énergie cinétique entre deux points du même filet fluide $(\frac{V_2^2 - V_1^2}{2})$ est égale au travail de transvasement reçu par le fluide.

b) Cas d'un écoulement isentropique de gaz parfait

 $\frac{1}{2}V^2 + \int \frac{dP}{\rho} = cst$ Écoulement permanant compressible non visqueux.

$$\frac{P}{\rho} = rT$$
, $\frac{P}{\rho^{\gamma}} = cst$, $P = A$. $\rho^{\gamma} \Longrightarrow dP = A\gamma \rho^{\gamma-1} d\rho$

$$\frac{1}{2}V^2 + \int \frac{A\gamma \rho^{\gamma - 1}d\rho}{\rho} = \frac{1}{2}V^2 + \int A\gamma \rho^{\gamma - 2}d\rho = cst$$

$$\Rightarrow \frac{1}{2}V^2 + A\frac{\gamma}{\gamma - 1}\rho^{\gamma - 1} = \frac{1}{2}V^2 + A\frac{\gamma}{\gamma - 1}\frac{\rho^{\gamma}}{\rho} = cst \Rightarrow$$

$$\frac{1}{2}V^2 + \frac{\gamma}{\gamma - 1}\frac{\rho}{\rho} = cst \qquad (II)$$

Dite relation de Barré de Saint-Venant ou (BSV) que l'on peut aussi mettre sous la forme :

$$\frac{1}{2}V^2 + \frac{\gamma}{\gamma - 1}rT = cst$$

Et comme $C_p = \frac{\gamma r}{\gamma - 1}$ chaleur massique spécifique à pression constante.

En intégrant entre deux points 1 et 2 d'un écoulement on peut mettre la relation sous la forme :

$$\frac{V_1^2 - V_2^2}{2} = \frac{\gamma}{\gamma - 1} \left(\frac{P_2}{\rho_2} - \frac{P_1}{\rho_1} \right) = C_p(T_2 - T_1) = \frac{\gamma}{\gamma - 1} \frac{P_1}{\rho_1} \left[\frac{P_2 \rho_1}{\rho_2 P_1} - 1 \right]
\frac{V_1^2 - V_2^2}{2} = \frac{\gamma}{\gamma - 1} \frac{P_1}{\rho_1} \left[\left(\frac{P_2}{P_1} \right)^{\frac{(\gamma - 1)}{\gamma}} - 1 \right] = \frac{\gamma}{\gamma - 1} \frac{P_1}{\rho_1} \left[\left(\frac{\rho_2}{\rho_1} \right)^{\gamma - 1} - 1 \right]$$
(III)

2.3.1.2 Equation générale d'écoulement adiabatique d'un fluide compressible visqueux

L'expression générale du premier principe de la thermodynamique appliqué à l'unité de masse d'un écoulement est :

$$(Q_e)_1^2 = H_2 - H_1 + W_{V_2} - W_{V_1} + W_{2_2} - W_{Z_1}$$

 Q_e : chaleur échange avec l'extérieur.

H: enthalpie du fluide

 W_V : Énergie cinétique du fluide

 W_z : Énergie potentielle du fluide due à la pesanteur (négligeable).

Pour un écoulement adiabatique $(Q_e = 0)$ cette équation devient :

$$H + \frac{V^2}{2} = cst$$

La somme $H + \frac{V^2}{2}$ est appelée énergie totale du fluide qui est constante dans un écoulement adiabatique. Elle pourra aussi s'appliquer à la vapeur d'eau ou à un fluide frigorigène.

a) Gaz parfait en écoulement adiabatique irréversible

Pour un gaz parfait $H = C_p T = \frac{\gamma}{\gamma - 1} rT$ l'équation de l'écoulement adiabatique s'écrit :

$$\frac{\gamma}{\gamma - 1} \frac{P}{\rho} + \frac{V^2}{2} = C^{st}$$
, $C_p T + \frac{V^2}{2} = C^{st}$

2.3.1.3 Equation générale pour l'écoulement non permanant d'un fluide compressible visqueux

L'équation vectorielle de l'écoulement est :

$$\frac{\overrightarrow{\partial V}}{\partial t} + \frac{1}{2} \overrightarrow{\nabla} V^2 + \overrightarrow{\nabla} \wedge \overrightarrow{V} \wedge \overrightarrow{V} = \overrightarrow{F} - \frac{1}{\rho} \overrightarrow{\nabla} P + \overrightarrow{f_{\eta}}$$
 (V)

En multipliant scalairement par un élément de trajectoire $\overrightarrow{ds} = \overrightarrow{V} dt$, on obtient, en négligeant \overrightarrow{F} (due à la pesanteur):

$$\vec{V} \cdot dt \cdot \frac{\overrightarrow{\partial V}}{\partial t} + \frac{1}{2} \overrightarrow{ds} \cdot \vec{\nabla} V^2 = -\frac{1}{\rho} \overrightarrow{ds} \cdot \vec{\nabla} P + \overrightarrow{ds} \cdot \overrightarrow{f_{\eta}}$$

Le premier terme \vec{V} . dt. $\frac{\partial \vec{V}}{\partial t} = \frac{\partial}{\partial t} \left(\frac{V^2}{2} \right) dt$ représente la variation d'énergie cinétique pendant le temps dt.

Le premier membre de l'équation de l'énergie devient donc :

$$\frac{\partial}{\partial t} \left(\frac{V^2}{2} \right) dt + \overrightarrow{ds} \cdot \overrightarrow{\nabla} \left(\frac{V^2}{2} \right) = d(\frac{V^2}{2})$$
 (a)

C'est-à-dire $d(\frac{V^2}{2})$, différentielle totale de l'énergie cinétique par unité de masse.

- Nous poserons \overrightarrow{ds} . $\overrightarrow{f_{\eta}}=dW_f=-dQ_f$ (b) :représente le travail des forces de viscosité dans le déplacement ds toujours négatif. L'énergie correspondante apparait sous forme d'une quantité de chaleur dQ_f .
- Pour le travail des forces de pression $-\frac{1}{\rho} \overrightarrow{ds} \cdot \overrightarrow{\nabla} P$, partant de $dP = \frac{\partial P}{\partial t} dt + \overrightarrow{ds} \cdot \overrightarrow{\nabla} P \Longrightarrow -\frac{1}{\rho} \overrightarrow{ds} \cdot \overrightarrow{\nabla} P = \frac{1}{\rho} \frac{\partial P}{\partial t} dt \frac{dP}{\rho}$

Compte tenu de l'expression différentielle de l'enthalpie

$$dH = TdS + v dP = TdS + \frac{dP}{\rho}$$

On obtient ensuite : $-\frac{1}{\rho} \overrightarrow{ds} \cdot \overrightarrow{\nabla} P = \frac{1}{\rho} \frac{\partial P}{\partial t} dt + T dS - dH$ (c)

En remplaçant (a), (b) et (c) dans (V) on obtient :

$$d\left(\frac{V^2}{2}\right) = \frac{1}{\rho} \frac{\partial P}{\partial t} dt + TdS - dH - dQ_f$$

Mais d'après la définition de l'entropie $dS = \frac{dQ_c + dQ_f}{T}$

$$dQ_c = TdS - dQ_f$$

On obtient donc finalement:

$$-\frac{1}{\rho}\frac{\partial P}{\partial t}dt + d\left(H + \frac{V^2}{2}\right) = dQ_c \tag{VII}$$

On vérifier immédiatement que pour un écoulement permanant $(\frac{\partial P}{\partial t} = 0)$ et adiabatique $(dQ_c = 0)$ on retrouve l'équation $H + \frac{V^2}{2} = C^{st}$

2.4 Ecoulement stationnaire isentropique à travers une conduite à section variable

L'écoulement est approximativement unidimensionnel (figure 2-3) avec $V \approx V(x)$, ce qui simplifie la théorie.

Pour l'écoulement unidimensionnel stationnaire, l'équation de continuité informe que le débit massique soit constant : $\dot{m} = \rho VA = C^{st}$

En différentiant logarithmiquement, on obtient :

$$\frac{\partial \rho}{\rho} + \frac{\partial V}{V} + \frac{\partial A}{A} = 0 \tag{2.14}$$

L'équation d'Euler décrivant le mouvement stationnaire le long d'une ligne de courant est :

$$\frac{1}{\rho} \frac{dP}{d\ell} + \frac{d}{d\ell} \left(\frac{1}{2} V^2 \right) = 0$$
 où : ℓ est l'abscisse curviligne.

Ou bien:
$$\frac{dP}{\rho} + VdV = 0 \tag{2.15}$$

La vitesse du son est $a^2 = \frac{dP}{d\rho}$ d'où $dP = a^2 d\rho$

En éliminant dP dans l'équation (2.15), on obtient : $\frac{a^2d\rho}{\rho} + VdV = 0 \Longrightarrow \frac{d\rho}{\rho} = -\frac{VdV}{a^2}$

Puisque $M^2 = \frac{V^2}{a^2}$

$$\frac{d\rho}{\rho} = -M^2 \frac{dV}{V} \tag{2.16}$$

Si on substitue $\frac{d\rho}{\rho}$ dans l'équation (2.14), on aura :

$$\frac{\partial V}{V} = \frac{1}{(M^2 - 1)} \frac{\partial A}{A} \tag{2.17}$$

Qui est la première équation de la théorie d'Hugoniot donnant la relation entre le changement de la section d'une canalisation et la vitesse de l'écoulement compressible.

Aussi on a d'après l'équation (2.15) :

$$\frac{\partial V}{V} = -\frac{1}{M^2 a^2} \frac{\partial \rho}{\rho}$$

et puisque $a^2 = \frac{\gamma P}{\rho}$

$$\frac{\partial V}{V} = -\frac{1}{\gamma M^2} \frac{\partial P}{P} \tag{2.18}$$

Qui représente la deuxième équation d'Hugoniot.

L'inspection de ces deux équations (2.18) et (2.17) nous révélera un aspect fascinant de l'écoulement compressible : les variations des propriétés ont des sens opposés pour lesécoulements subsonique et supersonique à cause du terme M^2-1 . Il y'a quatre combinaisons du changement de section et du nombre de Mach.

- 1. Si M = 1; écoulement sonique, puisque une accélération infinie est physiquement impossible (équation 2. 17), donc dA = 0, qui signifie mathématiquement une section minimale (col) ou maximale (figure 2-3), mais ce dernier cas (maximum) n'a pas de sens physique. Par conséquent, si l'écoulement est sonique, il aura lieu dans la section minimale de la canalisation (appelée le col).
- 2. Si M < I; écoulement subsonique, quand la section A augmente la vitesse V diminue et vice-versa.
- 3. Si M > 1; écoulement supersonique, toute augmentation de la section A implique une augmentation de la vitesse V et vice-versa.

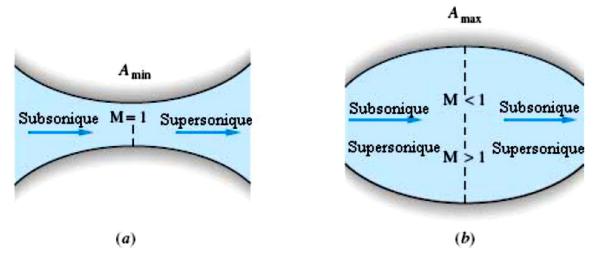


Fig. 2-3 : Ecoulement compressible dans une canalisation de section variable : (a) l'écoulement accélère graduellement de l'état subsonique au supersonique; (b) l'écoulement dans cette configuration n'est plus sonique de point de vue physique.

4. Ainsi d'après l'équation (2.18), toute variation de la vitesse *V* entraîne une variation de la pression *P* dans le sens inverse. La table suivante récapitule les quatre cas déjà cités

	Ecoulement			
Propriétés	Subso	onique → → ~	Supers	onique
Section	-	+	-	+
Vitesse / nombre de Mach	+	-	-	+
Densité / pression / température	-	+	+	-

2.4.1 Débit massique d'une canalisation de section variable

Le point essentiel dans l'étude des écoulements compressibles dans les canalisations avec changement de section, est la détermination du débit massique \dot{m} en fonction des autres propriétés de l'écoulement, on a l'équation : $\dot{m} = \rho V A$ Substituons V par son expression d'après l'équation de Saint-Venant :

$$\dot{m} = \rho A \sqrt{\frac{2\gamma}{\gamma - 1} \frac{P_0}{\rho_0} \left[1 - \left(\frac{P}{P_0}\right)^{\frac{\gamma - 1}{\gamma}} \right]}$$

Et puisque l'écoulement est isentropique : $\frac{P_0}{\rho_0^{\gamma}} = \frac{P}{\rho^{\gamma}} = c^{st} \Longrightarrow \rho = \rho_0 \left(\frac{P}{P_0}\right)^{\frac{1}{\gamma}}$

D'où:
$$\dot{m} = \rho_0 A \left(\frac{P}{P_0}\right)^{\frac{1}{\gamma}} \sqrt{\frac{2\gamma}{\gamma - 1}} \frac{P_0}{\rho_0} \left[1 - \left(\frac{P}{P_0}\right)^{\frac{\gamma - 1}{\gamma}}\right]$$

$$\Rightarrow \dot{m} = \rho_0 A \sqrt{\frac{2\gamma}{\gamma - 1}} \frac{P_0}{\rho_0} \left(\frac{P}{P_0}\right)^{\frac{1}{\gamma}} \sqrt{1 - \left(\frac{P}{P_0}\right)^{\frac{\gamma - 1}{\gamma}}}$$

$$\Rightarrow \dot{m} = \rho_0 A \sqrt{\frac{2\gamma}{\gamma - 1}} \frac{P_0}{\rho_0} \left(\frac{P}{P_0}\right)^{\frac{1}{\gamma}} \sqrt{1 - \left(\frac{P}{P_0}\right)^{\frac{\gamma - 1}{\gamma}}}$$

$$(2.19)$$

Avec:
$$V_{max} = V_l = \sqrt{\frac{2\gamma}{\gamma - 1}} \frac{P_0}{\rho_0}$$

Et:
$$\psi = \left(\frac{P}{P_0}\right)^{\frac{1}{\gamma}} \sqrt{1 - \left(\frac{P}{P_0}\right)^{\frac{\gamma-1}{\gamma}}}$$

Pesons
$$\frac{P}{P_0} = x$$
 donc : $\frac{d\psi}{dx} = 0 \implies x = \frac{P}{P_0} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}}$

 $\Rightarrow \dot{m} = \rho_0 A V_{max} \psi$

Quand $\frac{P}{P_0}$ a la valeur $\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}$, la fonction ψ est maximum, puisque $\psi = \psi(\frac{P}{P_0})$ s'annule si P = 0 et $P = P_0$ (figure 2-4).

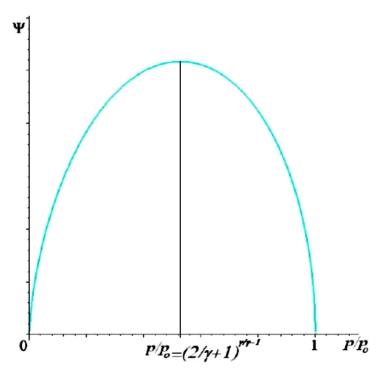


Fig.2-4: Tracé de la fonction

La pression correspondante est appelée pression critique et s'écrit $\frac{P^*}{P_0} = \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}$

Elle s'obtiendra au col d'après la théorie d'Hugoniot, et le débit massique maximal sera :

$$\begin{split} m\dot{}_{max} &= \rho_0 \, A \, V_{max} \left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma-1}} \, \sqrt{1-\frac{2}{\gamma+1}} \\ \Rightarrow \dot{m} &= \rho_0 \, A \, \left(\frac{2}{\gamma+1}\right)^{\frac{1}{\gamma-1}} \, \sqrt{\frac{\gamma-1}{\gamma+1}} \end{split} \tag{2.20a}$$

Aussi au col on a : $a^* = V^*$ où $V^* = a^* = a_0 \sqrt{\frac{2}{\gamma+1}}$

Et le débit massique critique sera: $m_{max} = \rho^* A^* V^*$

$$\Rightarrow m'_{max} = A^* \rho_0 a_0 \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}$$
 (2.20b)

Cette expression donne le débit massique maximum au col de la tuyère, où règne les conditions critiques. Pour $\gamma = 1.4$ on a : $\Rightarrow m_{max} = 0.685 A^* \rho_0 a_0$

2.5 Tuyère convergente-divergente

Une tuyère convergente-divergente (aussi appelée tuyère de Laval) est représentée dans la figure (2.5a). Si la pression en aval P_b est suffisamment faible, il existera un

écoulement supersonique dans la portion divergente de la tuyère aussi qu'une variété de conditions de choc pourra exister.

- ❖ Pour les cas A et B (figure 2-5b), la pression P_b n'est pas suffisamment faible pour induire un écoulement sonique au col, et l'écoulement est subsonique à travers l'ensemble de la tuyère (convergente-divergente). La distribution de pression est calculée d'après les relations isentropiques déjà établies. La pression de sortie est $P_e = P_b$ et le jet est subsonique.
- Pour le cas C, le rapport des sections $\frac{A_e}{A_{col}}$ est exactement égal à $\frac{A_e}{A^*}$ pour un ombre de Mach subsonique à la sortie. Le col devient sonique, et le débit massique atteint son maximum (figure 2-5c). l'écoulement dans le reste de la tuyère est subsonique, le jet inclus et $P_e = P_b$.

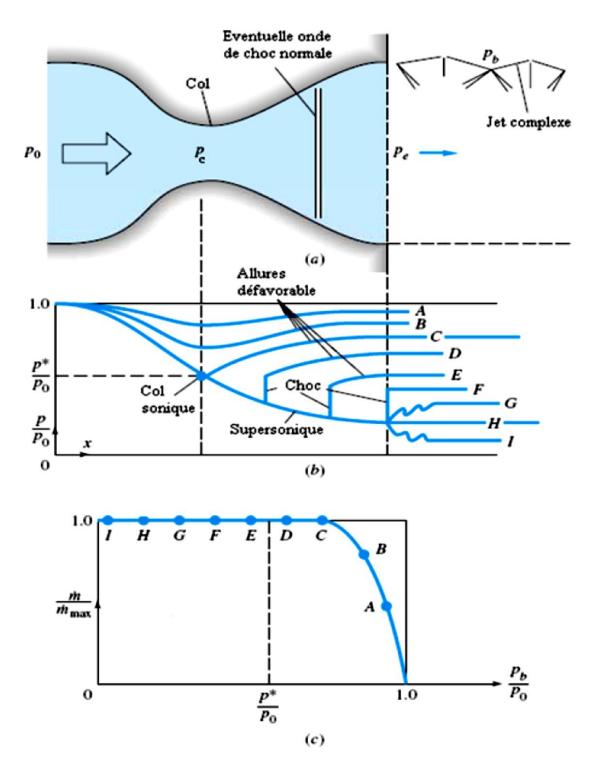


Fig. 2-5 : Tuyère convergente-divergente : (a) Géométrie de la tuyère et configurations possibles; (b) distribution des pressions causée par divers pressions aval P_b ; (c) débit massique.

- Supposons dans ce cas que P_b se trouve entre les cas C et H, qui est impossible d'après les relations de l'écoulement isentropique. Alors, les pressions P_b des cas D à F ont lieu (figure 2-5b). le col reste suffoqué à la valeur sonique. Le débit massique garde sa valeur maximale (figure 2-5c). A la pression en aval du cas F l'onde de choc normale apparaîtra à la sortie de la tuyère. Dans le cas G, l'écoulement présentera des séries complexes d'ondes de choc obliques jusqu'il atteint la pression P_b .
- \clubsuit Finalement dans le cas I, P_b est inférieure à celle du cas H, mais la tuyère est suffoquée et ne répond plus. L'écoulement à la sortie s'étend en de complexes séries d'ondes supersoniques.