Année Universitaire : 2022/2023

UNIVERSITE MOHAMED BOUDIAF DE M'SILA

FACULTE DE TECHNOLOGIE

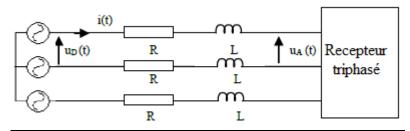
DEPARTEMENT DE GENIE ELECTRIQUE

Niveaux: 1 ère Année Master – Commande Electrique – Réseaux Electriques – Energies Renouvelables

Matière: Réseaux de Transport et Distribution de l'Energie Electrique

Série de TD 04

Exercice1: Chute de tension


Une ligne électrique triphasée moyenne tension alimente un récepteur triphasé équilibré, qui consomme une puissance active de **4,20 MW** et qui impose un facteur de puissance de **0,938**.

Chaque fil de ligne a pour résistance $R = 2,43 \Omega$ et pour inductance L = 11,2 mH.

La tension efficace entre phases à l'arrivée de la ligne est $U_A = 20,0$ KV.

La fréquence de la tension est 50 Hz.

- 1) Calculer la valeur de la tension efficace U_D au départ de la ligne.
- 2) Calculer la chute de tension ΔU due à la ligne.

Exercice N°2

Un générateur de 100 MVA, $X_S = 100\%$, de tension nominale 18kV est relié par un transformateur élévateur (18Kv/70Kv) de 50 MVA et de tension de court-circuit de 10 %, à une ligne triphasée 70 kV de 25 km (R = 0.2 Ω /km, $X = 0.4 \Omega$ /km, $Y = 3\mu$ S/km). Au bout de la ligne, une charge est branchée derrière un transformateur abaisseur (70Kv/16,5Kv) de 40 MVA, tension de court-circuit 15 %.

Nous avons relevé une tension de 15 kV aux bornes de la charge qui est inductive et soutire une puissance de 25 MVA avec un facteur de puissance de 0,8.

Travail demandé:

- 1- Tracer le schéma unifilaire correspondant à ce circuit.
- 2- Pour $S_B = 100$ MVA, choisissez les autres grandeurs de base et calculer le schéma en utilisant le système Per Unit (pu).
- 3- Que vaut (en grandeur réelle) la tension aux bornes du générateur ainsi que la f.e.m. interne ?
- 4- Sur un schéma résumé, reprendre les valeurs des puissances, active (P_i) et réactive (Q_i) chaque fois qu'ils peuvent être calculés.

Exercice N°3

Un alternateur triphasé à pôles lisses est connecté à un réseau électrique par l'intermédiaire d'un transformateur élévateur 24 KV / 400 KV et d'une ligne de transport 400 KV. Les caractéristiques des différents éléments sont portées sur le schéma uniffilaire suivant :

On suppose que l'alternateur fournit sa puissance active nominale, et qu'il est en 'butée de réactif', c'est-à-dire qu'il fonctionne à $\cos \varphi = 0.9$. Par ailleurs, la tension au nœud de connexion 3 est supposée rester constamment à la valeur nominale (400 KV entre phase)

- 1- Donner le schema monophasé étoile equivalent ramené au 400 Kv, avec les valeurs numériques correspondantes.
- 2- Quelle est la valeur de la tension aux bornes de l'alternateur?
- 3- Quel est le déphasage entre la tenstion aux bornes de l'alternateur (nœud 1) et la tension au nœud de connexion (nœud 3) ?
- 4- Combien vaut E, la f.e.m. interne de l'alternateur?

Quel est la valeur de l'angle interne de l'alternateur. ? Que peut-on dire à propos de la stabilité statique de l'alternateur ?