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Preface

This course was given in the �rst semester of 2020-2021 at the university
of M�sila. The text is intended for the students of M2. The main theme of
this course is to give an introduction to the non linear summing operators
in the domain of "the non linear geomerty of Banach spaces". We treat and
study in chapter I, the Lipschitz functions between metric spaces and the
Lipschitz dual space of a metric space. This space is a conjugate Banach
space. We study the predual and their properties. Chapter two is devote
to the notion of Lipschitz p-summing functions introduced by Farmer and
Johnson. We end this by giving the non linear Grothendieck�s theorem. In
chapter three, We introduce and studied some other classes of summability
and their connections. I have tried to make this course fairly complete
and comprehensive. For this, I recommend essentially the excellent book of
Weaver and the papers of Farmer-Johnson and Godfroy-Kalton.



CHAPTER 1

The Space Lip0(X)

1. Lipschitz Functions

1.1. Metric Spaces. The notion of metric spaces was formalized by
Maurice Fréchet in his thesis "Doctorat d�Etat" in 1906 (see, "Sur quelques
points du calcul fonctionnel", Rendic. Circ. Mat. Palermo 22 (1906) 1�74)
and was among the �rst who used the word space. A good reference for this
is the book of weaver [Wea99].

Definition 1. Let X be a non empty set. We say that d is a distance
on X if d is an application from X2 into R+ such that for all x; y; z in X,
we have

(i) d(x; y) = 0() x = y (separation),
(ii) d(x; y) = d(y; x) (symmetry),
(iii) d(x; z) � d(x; y) + d(y; z) (triangular inequality).

The space X equipped with d is called metric space (X; d):

Definition 2. Let (X; d; e) be a pointed metric space, i.e., a metric
space (X; d) with a distinguished or neutral element e (a �xed point in X
which is taken to be the zero element if X is a normed space). We denote
byM0 the class of complete pointed metric spaces.

We now give some particular metric spaces

Definition 3. Let (X; d) be a metric space. One say that d
(1) is ultrametric if it satis�es for all (x; y; z) 2 X3

(1.1) d(x; y) � max(d(x; z);d(y; z))

We can see that any triangle in X is isosceles,
(2) satis�es the four point condition (4PC) or is additive or is 0-hyperbolic

if, for any (x; y; u; v) in X4 (not necessarily distinct) we have

(1.2) d (x; y) + d (u; v) � max fd (x; u) + d (y; v) ;d (x; v) + d (y; u)g ;

Note that if d satis�es the (4PC) then one of the sums must be less or equal
than the other which must be equal (argue by contradiction that one of the
sums is strictly larger than the other two),

(3) satis�es Reshetnyak�s inequality if, for any (x; y; u; v) in X we have
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2 1. THE SPACE Lip0(X)

(1.3) d2 (x; y) + d2 (u; v) � d2 (x; u) + d2 (y; v) + d2 (x; v) + d2 (y; u) :

The inequality (1.1) is called strong triangle inequality or ultrametric
inequality. Sometimes the ultrametric is also called a super-metric. We
observe that in the ultrametric space X all triangles are isosceles with the
two equal sides at least as long as the third side. To see this, consider
x; y; z 2 (X; d) with d(y; z) � d(x; z) and suppose

d(x; y) � max(d(x; z);d(y; z)):
Then d(x; z) = d(y; z) because otherwise

d(y; z) > d(x; z) =) d(y; z) > max(d(x; y); d(x; z)):

Remark 1. Let (X; d) be a metric space.
(1) If (X; d) is ultrametric then (Y;d�Y ) is ultrametric for any Y � X:
(2) If (X1;d1) ; :::; (Xn;dn) are ultrametric spaces then the cartesian

product X1 � :::�Xn is ultrametric with respect to

d ((x1; :::; xn) ; (y1; :::; yn)) = max (d1 (x1; y1) ; :::;dn (xn; yn)) :

(3) Isosceles triangles. If a triangle in (X; d) has sides (distances between
vertices) a � b � c; then b = c:

(4) Radius � diameter. For any ball its radius is greater or equal to its
diameter.

Proposition 1. Ultrametric =) (4PC) =) Reshetnyak�s inequality:

Proof. Second implication [AO10] . Suppose the elements x1; x2; x3; x4 of
a metric space (X; d) satisfy

d(x1; x2) + d(x3; x4) � maxfd(x1; x3) + d(x2; x4); d(x1; x4) + d(x2; x3)g;
and show that

d(x1; x2)
2 + d(x3; x4)

2 � d(x1; x3)2 + d(x2; x4)2 + d(x1; x4)2 + d(x2; x3)2:
By scaling and relabeling, we can assume that

d(x1; x2) + d(x3; x4) = 1 � d(x1; x3) + d(x2; x4):
Let a = d(x1; x2), b = d(x1; x3). Then

d(x3; x4) = 1� a; d(x2; x4) � 1� b:
And furthermore

d(x1; x4) � jd(x1; x3)� d(x3; x4)j = ja+ b� 1j;
and

d(x2; x3) � jd(x1; x2)� d(x1; x3)j = ja� bj:
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Thus, it su¢ ces to show that, for any a 2 [0; 1] and b > 0,

a2 + (1� a)2 � b2 + (1� b)2 + (a+ b� 1)2 + (a� b)2:
This inequality is easily veri�ed because it is equivalent to (2b� 1)2 � 0.
The reciprocal is false.
The 4PC is stronger than the triangle inequality (take u = v), but the
ultrametric is stronger than the 4PC [God07]. In fact we have, d (x; y) +
d (u; v) = d (x; u) + d (y; v) or d (x; v) + d (y; u) : Indeed, suppose that

d (x; y) + d (u; v) < max fd (x; u) + d (y; v) ; d (x; v) + d (y; u)g
and

d (x; u) + d (y; v) � d (x; v) + d (y; u) :
We have

d (x; u) + d (y; v) � max fd (x; y) + d (u; v) ; d (x; v) + d (u; y)g
and

d (x; y) + d (u; v) < d (x; u) + d (y; v)
� max fd (x; y) + d (u; v) ; d (x; v) + d (u; y)g
� d (x; y) + d (u; v)

This implies

d (x; y) + d (u; v) < d (x; y) + d (u; v)

or

d (x; v) + d (y; u) > d (x; y) + d (u; v)

and hence d (x; y) + d (u; v) = d (x; y) + d (u; v). �

1.2. Product of Metric Spaces. We interest toMo:

Definition 4. Let f(Xi; di; ei) ; i 2 Ig be a family of metric spaces in
Mo. We can de�ne by

�Y1
Xi; d; e

�
the set of elements x = (xi) such

that sup
i2I

dXi (xi; ei) <1, with the metric

d(x; y) = sup
i2I

di (xi; yi)

and the distinguished point e = (ei)i2I .

We have
�Y1

Xi; d; e
�
2Mo.

Example 1. The product
Y1

R is l1 (R).
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1.3. Lipschitz functions. The natural morphism between metric spaces
are Lipschitz functions like linear operators between Banach spaces. In
mathematical analysis, Lipschitz continuity, named after Rudolf Lipschitz,
is a strong form of uniform continuity for functions.

Definition 5. A map f : (X; dX) �! (Y;dY ) between two metric spaces
is called Lipschitz if there is a positive constant C such that

8x; y 2 X; dY (f(x); f(y)) � CdX(x; y):
If C = 1, the map is called nonexpansive (and contraction if C < 1).

For a Lipschitz map f , we de�ne its Lipschitz constant by

kfkLip = Lip (f) := sup
x 6=y

dY (f(x); f(y))

dX(x; y)
=

inf fC : C verifying the above inequalityg
Let (X; eX ;dX); (Y; eY ;dY ) be pointed metric spaces. We say a map

f : (X; eX ;dX) �! (Y; eY ;dY ) preserves distinguished point if f(eX) = eY :

Definition 6. Let (X; dX), (Y;dY ) be two metric spaces. A map f :
(X; dX) �! (Y;dY ) is called bi-Lipschitz or quasi-isometry, if f is bijective
(one-to-one = injective, and onto = surjective) and both f; f�1 are Lipschitz.

In this case X and Y are called
(1)- Lipschitz isomorphic or Lipschitz homeomorphic (Nigel Kalton)
or
(2)- Quasi-isometric (Nik Weaver).

A bi-Lipschitz function f is an isometry if

8x; y 2 X; dY (f(x); f(y)) = dX(x; y):

In the theory of the nonlinear geometry of Banach spaces, the linear
isomorphisms are replaced by bi-Lipschitz maps, the isometric isomorphism
correspond exactly isometric.

Proposition 2. Let X;Y and Z be metric spaces and let f : (X; dX) �!
(Y;dY ), g : (Y;dY ) �! (Z;dZ) be Lipschitz maps. Then g � f : (X; dX) �!
(Z;dZ) is Lipschitz and Lip (g � f) � Lip (g) Lip (f).

Proof. For x; y in X, we have

dZ (g � f (x) ; g � f (y)) � Lip (g) dY (f (x) ; f (y))
� Lip (g) Lip (f) dX (x; y)

and this shows the proposition. �

Theorem 1. Let X0; Y0 be metric spaces and let X;Y be their com-
pletions. Let f0 : X0 �! Y0 be Lipschitz. Then f has a unique Lipschitz
extension f : X �! Y such that Lip (f) = Lip (f0) :
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Proof. Since Lipschitz functions are continuous and X0 is dense in X,
there is at most one Lipschitz extension. Consider x in X�X0 and put

f(x) = lim f0(xn)

where x is a Cauchy sequence in X0 such that xn �! x: We have Lip (f) =
Lip (f0). Indeed

dY (f(x); f(y)) = dY (lim f0(xn); lim f0(yn))
= limY d(f0(xn); f0(yn))
� limLip (f0) dX(xn; yn)
� Lip (f0) dX(x; y):

This implies that Lip (f) � Lip (f0) : For the converse, consider the following
diagram

X0
f0�! Y0

iX # & # iY
X

f�! Y

and we have in the �rst part

Lip (iY � f0) = sup
x 6=y

dY (iY � f0 (x) ; iY � f0 (y))
dX(x; y)

= sup
x 6=y

dY0 (f0 (x) ; f0 (y))

dX(x; y)

= Lip (f0)

and in the second part

Lip (iY � f0) = Lip (f � iX) � Lip (f) :
This implies that Lip (f0) � Lip (f) and this completes the proof. �

Proposition 3. Let (X; d) be metric space. For Lipschitz functions
f; g : (X; d) �! R and scalar a 2 R, the Lipschitz constant has the properties

(a) Lip (f + g) � Lip (f) + Lip (g)
(b) Lip (af) = jajLip (f)
(c) Lip (min (f; g) or max (f; g)) � max (Lip (f) ;Lip (g))

where min (f; g) (resp. max (f; g)) denotes the pointwise minimum (resp.
maximum) of the functions f and g.

Proof. (a) and (b) are obvious. For (c), let h = max (f; g) and �x x; y
in X. Let C = max (Lip (f) ;Lip (g)). Without loss of generality suppose
h(x) � h(y) and h(x) = f(x). Then

h(x)� h(y) � f(x)� f(y) � Cd (x; y) :



6 1. THE SPACE Lip0(X)

Taking the sup over x; y in X, we obtain Lip (g) � C. From the formula
min (f; g) = �max (�f;�g), we get the second inequality. �

Proposition 4. Let X;Y be metric spaces and let f and ffngn2N be
Lipschitz functions from X to Y . Suppose that fn �! f pointwise. Then

Lip (f) � sup
n
Lip (fn) :

Proof. Let x; y be in X. We have

dY (f (x) ; f (y)) = lim
n�!1

dY (fn (x) ; fn (y))

dY (f (x) ; f (y))

dX (x; y)
= lim

n�!1
dY (fn (x) ; fn (y))

dX (x; y)

sup
x 6=y

dY (f (x) ; f (y))

dX (x; y)
= sup

x6=y
lim

n�!1
dY (fn (x) ; fn (y))

dX (x; y)

� sup
x6=y

sup
n

dY (fn (x) ; fn (y))

dX (x; y)

by permitting the sup, we obtain the result. �

Corollary 1. If
X
n�0

fn converges pointwise then Lip

0@X
n�0

fn

1A �X
n�0

Lip (fn) :

Proof. Let gn =
nX
i=1

fi and f =
X
n�0

fn: then gn �! f pointwise and

Lip (gn) �
nX
i=1

Lip (fi). So By Proposition 4 we have

Lip (f) � supLip (gn)

�
1X
i=1

Lip (fi)

and this ends the proof. �
Proposition 5. Let X be a metric space and let f; g : X �! R be

Lipschitz maps. Then
(a) Lip (fg) � kfk1 Lip (g) + kgk1 Lip (f) ;

(b) Lip

�
1

f

�
� Lip (f)

�2
, if jf (x)j � � > 0 for all x 2 X:

If diam(X) < 1, then the product of any two scalar valued Lipschitz func-
tions is Lipschitz.

Proof. (a) For all x; y 2 X, we have

jfg (x)� fg (y)j � jf (x)j jg (x)� g (y)j+ jg (y)j jf (x)� f (y)j
� kfk1 Lip (g) + kgk1 Lip (f) :
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(b) For all x; y 2 X, we have���� 1

f (x)
� 1

f (y)

���� =
jf (x)� f (y)j
jf (x) f (y)j

� 1

�2
Lip (f) d(x; y):

Then Lip
�
1

f

�
� Lip (f)

�2
: �

Proposition 6. Let (X; dX) ; (Xi; di) (i 2 I) be metric spaces inM0.
For each i in I, let fi : X �! Xi be a Lipschitz map which preserves
distinguished point. Suppose that sup

i2I
Lip (fi) < 1. Then, the the product

map f : X �!
Y1

Xi satis�es Lip (f) := sup
i2I
Lip (fi) :

Proof. Let x be in X. We prove that (fi(x)) 2
Y1

Xi. We have

sup
i2I
dXi (fi(x); ei) = sup

i2I
dXi (fi(x); fi(e))

(d = sup
i2I
di) � sup

i2I
Lip (fi) d(x; e)

< 1:
For x; y in X. We have by de�nition

d (f(x); f(y))

d(x; y)
= sup

i2I

di (fi(x); fi(y))

d(x; y)

and hence

sup
x 6=y

d (f(x); f(y))

d(x; y)
= sup

x 6=y
sup
i2I

di (fi(x); fi(y))

d(x; y)

= sup
i2I
sup
x 6=y

di (fi(x); fi(y))

d(x; y)

= sup
i2I
Lip (fi)

This implies that Lip (f) := sup
i2I
Lip (fi); and we obtain the result. �

1.4. Extending Lipschitz maps. We give the nonlinear Hahn-Banach
theorem.

Theorem 2 (Nonlinear Hahn-Banach theorem, McShane-Whitney ex-
tension theorem). Let E be a subset of a metric space (X; d) and let f :
E �! l1 (I) be a Lipschitz function. Then f can be extended to a Lipschitz
function ef : X �! l1 (I) with the same Lipschitz constant (we say that
l1 (I) is 1-injective).

Proof. By considering each coordinate separately, it su¢ ces to prove
that for R instead of l1 (I). Fix z in X �E. We must �nd a value for ef(z)
such that for all x in E
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��� ef(z)� f(x)��� � Lip(f)d(x; z); 8x 2 E

or equivalently

f(y)� Lip(f)d(y; z) � ef(z) � f(x) + Lip(f)d(x; z); 8y 2 E

hence

sup
y2E

(f(y)� Lip(f)d(y; z)) � ef(z) � inf
x2E

(f(x) + Lip(f)d(x; z))

It is possible because for all x,y in E, we have

f(x)� f(y) � Lip(f)d(x; y) � Lip(f)(d(x; z) + d(y; z)):
De�ne the function ef : X �! R by the formula

ef(z) = inf
x2E

(f(x) + Lip(f)d(x; z)) ;

To see that this function satis�es the results, �x an arbitrary x0 2 E. Then,
for any x 2 E

f(x0)� f(x) � Lip(f)d(x0; x);
� Lip(f) (d(x0; z) + d(z; x)) :

This implies (that f(x) + Lip(f)d(x; z) is bounded below)

f(x0)� Lip(f)d(x0; z) � f(x) + Lip(f)d(x; z):
So ef(z) is well-de�ned. Also, if z 2 E, the above shows that ef(z) = f(z).
Finally (by de�nition of the inf), for z; y 2 X and � > 0, choose xz 2 E such
that

ef(z) � f(xz) + Lip(f)d(z; xz)� �
� ef(z) � �f(xz)� Lip(f)d(z; xz) + �

Then

ef(y)� ef(z) � f(xz) + Lip(f)d(y; xz)� f(xz)� Lip(f)d(z; xz) + �
� Lip(f)d(y; z) + �:

Thus, we see that ef is indeed Lip(f)-Lipschitz. �

Theorem 3 (Kuratowski-Fréchet). Every metric space (X; d) is iso-
metric to a subset of l1 (I) for some set I: If X is separable, then (X; d) is
isometric to a subset of l1 (N) :
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Proof. Let X be in M0. Consider x0 in X and de�ne

f : X �! l1 (X)

by

f(x)(y) = d(x; y)� d(y; x0)
f(x) = (d(x; y)� d(y; x0))y2X
kf(x)kl1(X) � d(x; x0):

We have

d(f (x1) ; f (x2)) = sup
y2X
jf (x1) (y)� f (x2) (y)j

= sup
y2X
jd(x1; y)� d(x2; y)j

� d(x1; x2):

In the other hand if we take y = x2, we have

d(f (x1) ; f (x2)) � d(x1; x2):
This implies that d(f (x1) ; f (x2)) = d(x1; x2) and hence f is an isometry.
By Frechet�s embedding, (X; d) is isometric to a subspace of l1 (N). Fix x0
in X

f : X �! l1 (N)
x 7�! (d(x; xn)� d(x0; xn))n2N

where (xn) is the subset dense in X. We have in the �rst part

kf (x1)� f (x2)kl1(N) = sup
n2N
jd(x1; xn)� d(x2; xn)j

� sup
n2N

d(x1; x2)

� d(x1; x2)

and in the second part

kf (x1)� f (x2)kl1(N) = sup
n2N
jd(x1; xn)� d(x2; xn)j

= sup
x2X
jd(x1; x)� d(x2; x)j

(we take x = x2) � d(x1; x2):

The theorem is proved. �

Linear Lipschitz
Banach space metric space
isometric isomorphism isometric
topological isomorphism bi-Lipschitz or quasi-isometric
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1.5. Retract spaces. The notion of Lipschitz retract in metric spaces
is like the linear projection in Banach spaces.

Definition 7. Let X be a metric space and let E be a subspace of X.
A Lipschitz map p : X �! E is called a Lipschitz retraction if p=E = Id.
In this case, we say that E is a Lipschitz retract of X. A metric space E is
called an absolute Lipschitz retract if it is a Lipschitz retract of every metric
space containing it.

Proposition 7. Let Y be a metric space. Then, the following properties
are equivalent.

(i) The space Y is an absolute retract space.
(ii) For every metric space X, for every subset E � X and for every

Lipschitz function f : E �! Y can be extended to a Lipschitz functionef : X �! Y:

X

i "
ef
&

E
f�! Y

(iii) For every metric space Z containing Y and for every metric space
F , then every Lipschitz function f : Y �! F can be extended to a Lipschitz
function ef : Z �! F:

Z

i "
ef
&

Y
f�! F

Proof. (iii) or (ii) =)(i) We take F = Y and f = idY or E = Y and
f = idY :

(i)=)(iii) ef = f � p is the extension by the following diagram

Z

i "
p

& & ef
Y

id�! Y
f�! F

(i)=)(ii) By the last exercise Y can be regarded as a subspace of
l1 (Y ). Hence there is a Lipschitz retraction p : l1 (Y ) �! Y . Let
k � f : E �! l1 (Y ) be a Lipschitz function. By Proposition 2, there is
a Lipschitz extension f 0 : X �! l1 (Y ). If we take ef = p � f 0, we prove this
implication

X

i "
f 0

&
p�f 0
&

E
f�! Y

k�! l1 (Y )
p�! Y
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and we end the proof of the proposition. �

2. Lipschitz Spaces

Definition 8. (a) Let (X; d) be a metric space. Then Lip (X) is the
space of all bounded scalar valued Lipschitz functions on X with the norm

kfkL = max fkfk1 ;Lip (f)g :
Let now (X; d; e) be a pointed metric space with a distinguished "base point"
e which is �xed in advance. We denote by Lip0(X) the space of all bounded
scalar valued Lipschitz mappings on X; vanishing at e with the norm

Lip (f) := sup
x 6=y

dY (f(x); f(y))

dX(x; y)
:

The spaces Lip (X) and Lip0(X;Y ) become Banach spaces. We put

X# = Lip0(X) = Lip0(X;R):
This Banach space of Lipschitz functions is called also Lipschitz dual. It
has been used by various mathematicians as a framework to extend results
from linear functional analysis to the nonlinear case. We denote by eX =�
(x; y) 2 X2 : x 6= y

	
:

Proposition 8. Let (X; e; d) be a pointed metric space. The space
(Lip0(X);Lip (:)) is a Banach space.

Proof. 1. One verify that Lip (:) is a norm on Lip0(X). Let f be in
Lip0(X), we have

Lip (f) = 0

() 8 (x; y) 2 eX; jf(x)� f(y)j
d(x; y)

= 0

() 8 (x; y) 2 X; f(x) = f(y):

This implies that f is constant, As f (e) = 0, thus f � 0:
Consider f; g in Lip0(X). We have

Lip (f + g)

= sup
x 6=y

jf(x) + g(x)� (f(y) + g(y))j
d(x; y)

� sup
x 6=y

jf(x)� f(y)j+ jg(x)� g(y)j
d(x; y)

� sup
x 6=y

jf(x)� f(y)j
d(x; y)

+ sup
x 6=y

jg(x)� g(y)j
d(x; y)

� Lip (f) + Lip (g) :

Let f be in Lip0(X)and � be in R. One have
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Lip (�f) = sup
x 6=y

j�f(x)� �f(y)j
d(x; y)

= sup
x 6=y

j�j jf(x)� f(y)j
d(x; y)

= �Lip (f) :

This means that (Lip0(X);Lip (:)) is a normed space.
We prove now that (Lip0(X);Lip (:)) is a Banach space.
We use this: normed vector space is complete if, and only if, every absolutely
convergent sequence (1) converges. Indeed, the forward direction of this is
easy. To prove the reverse direction, let (gn) be any Cauchy sequence; we
must show that it converges. Passing to a subsequence, we may assume that
gn+1�gn � 1

2�n for all n. Then de�ne f1 = g1 and, for n > 1, fn = gn�gn�1.
Evidently fn is absolutely convergent, and since its n-th partial sum is just
gn, the implication �absolutely convergent implies convergent�now entails
that (gn) converges.

Let (fn) be a sequence in Lip0(X) such that
1X
n=1

Lip (fn) <1. For any x 2

X we have jfn(x)j � Lip (fn) d(x; e) < 1. Thus (fn) converges pointwise,

and the sum f is Lipschitz by Proposition 4. Letting gn =
nX
k=1

fk be the

n-th partial sum, we have

Lip (f � gn) = Lip
 1X
k=n+1

fk

!
�

1X
k=n+1

Lip (fk)! 0:

This shows that the series fn converges to f in Lip0(X). By the above, we
conclude that Lip0(X) is complete.
Let (fn)n2N a Cauchy sequence in Lip0(X). We have

8� > 0 9n0 2 N : 8m;n � n0; Lip (fm � fn) � �

Lip (fm � fn) = sup
x6=y

j(fm (x)� fm (y))� (fn (x)� fn (y))j
d(x; y)

� �:

So, for every x 2 X (fm (x)�(fn (x)) is a Cauchy in R and hence converges.
Let f(x) be its limit. We have

a) f(0) = lim
n�!1

fn (0) = 0:

b) Let x; y be in X. We have

1A sequence (fn) in a normed vector space is said to converge absolutely if
X

kfnk
converges.
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jf (x)� f (y)j = lim
n�!1

jfn (x)� fn (y)j
� lim

n�!1
Lip (fn) d(x; y)

� Kd(x; y)

where K = Lip (fn). Indeed, by

jLip (fn)� Lip (fm)j � Lip (fn � fm) � �:
Hence (Lip (fn))n2N is a Cauchy sequence in R and thus converges to K. So
f 2 Lip0(X):

c) (fn) converges to f .
Consider n � n0. We have Lip (fn � f) = lim

m�!1
Lip (fn � fm) � � and

hence (fn)n2N converges to f . �
Example 2. Let X be a set. We denote by

l1 (X) =

�
f : X �! K such that sup

x2X
jf(x)j <1

�
:

Let X be a pointed metric space of �nite diameter, i.e., sup
x;y2X

d(x; y) <1.

Show that Lip0(X) � l1 (X).

We have Lip (f) := sup
x 6=y

jf(x)� f(y)j
d(x; y)

. This implies that by taking y = 0,

jf(x)j � Lip (f) d(x; 0). Consequently, f 2 l1 (X).

Remark 2. Let X be a pointed metric space.
(1) Lip (:) is only a seminorm, not a norm on Lip (X) :
(2) Consider the set of all real-valued Lipschitz functions modulo the set

of constant functions. Lip (:) descends to a norm on this quotient space and
it is not hard to see that the result is isometrically isomorphic to Lip0 (X)
(regardless of the choice of base point). With this procedure there is no good
way to de�ne products or a partial order on the quotient.

(3) The space Lip0 (X) does not depend on the choice of base point. If
e1 and e2 are two di¤erent distinguished elements, then the linear map

' : Lip0 (X; e1) �! Lip0 (X; e2)
f 7�! f � f (e2)

is a surjective isometry.

3. The predual of Lip0(X)

It was shown by Arens and Eells [AE56] (see also [Wea99]) that Lip0(X)
is even a dual Banach space (but not re�exive if X is in�nite and does not
have constant functions in general), i.e., there exists a Banach space Z such
that Lip0(X) is isometrically isomorphic to Z . This canonical space is
known as the Arens-Eells space by Weaver and the Lipschitz-free space on
X in [GK03]. It well be noted by F (X; dX).
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3.1. Construction of this space. We show that the unit ball BX# is
compact.
Product Topology
Let (Xi; Ti)i2I be a net of topological spaces. We note by

X =
Y
i2I

Xi:

The product topology of X noted T is the least �ne topology making
projections continuous

pi : X �! Xi
(xi)i2I 7�! xi

The least �ne, i.e., having the fewest openings. The elementary openings
of the product topology are of the form\

j2J
p�1j Uj J (�nite) � I.

Remark 3. Let (Y;S) be a topological space.
(1) The projection pi is an open application.
(2) An application f : (Y;S) �! (X; T ) is continuous if, and only if,

pi � f is continuous for every i in I.

3.1.1. Tyckonov�s theorem. The celebrate theorem in the product topol-
ogy is the theorem of Tychonov(¤).

Theorem 4 (Tychonov). A product space product X =
Y
i2I

Xi is compact

if, and only if, Xi is compact for all i in I. In other words, the topological
product of any family of compact spaces is a compact space.

Pointwise convergence is the same as convergence in the product topol-
ogy on the space Y X , where X is the domain and Y is the codomain. If the
codomain Y is compact, then, by Tychonov�s theorem, the space Y X is also
compact.

Let (X; d; e) be a pointed metric space. The topology Tp of pointwise
convergence is the topology induced by the product RX and determinates
by the condition

fi
Tp�! f () 8x 2 X; fi (x) �! f (x)

for any net (fi)i2I in RX and f 2 RX .
Let now giving the analog of the Aloaglu (1940 for every Banach spaces)-

Banach (1932 for separable Banach spaces) theorem for the unit ball BX#

of Lip0(X):
3.1.2. Compactness of BX# is compact. We study the compacteness of

the unit ball of X#.

Proposition 9. The unit bull BX# is compact for the topology Tp.
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Proof. Observe that BX# is closed in RX with respect the topology
Tp. Indeed, consider a net (fi)i2I in RX such that

fi
Tp�! f:

For x; y in X , the inequality

jfi (x)� fi (y)j � d(x; y)
implies that

jf(x)� f(y)j � d(x; y)
and consequently f 2 BX# . Let now f 2 B. We have

jf(x)j � d(x; e);8x 2 X:

This shows that

f 2
Y
x2X

[0; d(x; e)]

and this implies

BX# �
Y
x2X

[0; d(x; e)]:

The space
Y
x2X

[0; d(x; e)] is compact by Tychonov�s theorem and BX# is

closed so it is compact (closed of compact is compact). �

3.1.3. Conjugate space. Let E be a Banach space. We say that E is a
conjugate space if there exists a Banach space B such that B� is isometrically
isomorphic to E (i.e., B� � E). We now give a simple su¢ cient condition
to generate that space B exists.

Let us recall that a family of seminorms on a linear space generates a
locally convex topology in the following sense.

Theorem 5. Let fpi : i 2 Ig be a family of seminorms on the linear
space E . Let U be the class of all �nite intersections of sets of the form

fx 2 E : pj(x) < rjg
where j 2 J (�nite) � I; rj > 0. Then U is a local base for a topology

J that makes E a locally convex topological vector space. This topology is
the weakest making all the pi continuous, and for a net fx�g � E, x� ! x
in J if, and only if, pi(x� � x)! 0 for each i 2 I.

Theorem 6 (Dixmier-Ng theorem). Let E be a Banach space. Suppose
that there is a ( Hausdor¤ ) locally convex topology � on E such that BE is
�-compact. Then E is a conjugate space.
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Proof. Let B =
n
� 2 E0 : �jBE is �-continuous

o
(E0= algebraic conju-

gate space of E). Then B is a closed linear subspace of E� and is therefore
a Banach space; (to see that B � E� observe that for any � 2 B the image
�(BE) is compact and hence bounded set of scalar; that is, k�k is �nite and
so � 2 E�. Also B is closed in E�; because convergence in E� entails uniform
convergence on BE . We now bring in the (canonical embedding ) operator
JE;B : E �! B� de�ned by

h�; JE;B (x)i = � (x) :

This operator assigns to each x 2 X the functional "evaluation at x" in B�,
we clearly have kJE;B (x)k � 1. The proof will be completed by showing
that JE;B (x) is an isomorphic isometry between E and B�. We do this by
showing that JE;B(x) is injective and that it maps BE onto BB� . The �rst
assertion follows because B is total. Indeed B contains the dual space E;
which certainly separates the points of E. The second assertion follows from
the fact (evident by de�nition of B ) that JE;B is continuous from the �-
topology on E into the weak*-topology on B�: This means in particular that
JE;B (BE) is weak*-compact in B�. But, by theGoldstine-Weston density
lemma, this image is also weak*-dense in BB� . �

Remark 4. Any weak�-closed linear subspace F of a conjugate space
E� is itself a conjugate space. This follows from the observation that BF is
compact in the (relative) weak�-topology.

We now give an example.

Example 3. Consider the space Lip(X; d;R) of bounded Lipschitz func-
tions de�ned on the metric space (X; d) and normed by k:kL = max fk:k1 ;Lip (:)g.
Let � be the topology of pointwise convergence on X, which we denote by
� (Lip (X; d;R); X). Then BX is certainly a � (Lip (X; d;R); X)-closed sub-
set of X. We have

BLip (X;d;R) � [�1; 1]X :
Since [�1; 1] is compact by Tychonov�s theorem we have [�1; 1]X . Conse-
quently, BLip (X;d;R) is � (Lip (X; d;R); X)-compact and so X is a conjugate
space.

3.1.4. Lip0(X) is a dual space. We have seen that the unit ball BX#

is Tp-compact and according to "Dixmier-Ng theorem" Lip0(X) is a dual
space, for every X 2M0.

Theorem 7. The space Lip0(X) is a dual space, for every X 2M0.

Proof. By Dixmier-Ng�s theorem, it su¢ ces to prove that Tp is Haus-
dor¤ locally convex.

(1) The topology Tp is locally convex.
(2) The topology Tp is separating.
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(1) De�ne

px(f) = jf(x)j; x 2 E and f 2 BX#

and put P = fpxgx2E . By the precedent theorem, the topology de�ned
by P is locally convex and it is exactly the topology of pointwise convergence
Tp:

(2) The topology Tp is a Hausdor¤ topology if, and only if, the family
fpxgx2E is separating, i.e., given f 6= 0, there exists x 2 E such that px(f) 6=
0. This is the case and this ends the proof. �

Remark 5. On bounded sets the weak*-topology agrees with the topology
of pointwise convergence.

3.2. Arens Eells space. Let (X; e;d) be pointed a metric space. A
molecule on X is a real valued function m on X with �nite support (i.e.,
the set where m has non-zero values) and satis�esX

x2supp(m)
m (x) = 0.

Denote byM(X) the real linear space of molecules on X. We can write

m =
X

x2supp(m)
m (x)1fxg

=
nX
i=1

m (xi)1fxig:

where supp(m) = fx1; :::; xng and 1fxg denotes the characteristic function of
the set fxg: For x; y 2 X we de�ne the basic molecule mx1x2 = 1fx1g�1fx2g
(with x1; x2 2 X are called atoms). It is easy to to see that every moleculem
can be written as a (non unique) �nite linear combination of basic molecule

(the condition
nX
i=1

m (xi) = 0 insures that such representations of m exist

m = �1mx1;x2 +(�1+�2)mx2;x3 + � � �+(�1+ � � �+�n�1)mxn�1;xn ). We have

m =

lX
j=1

aj

�
1fxjg � 1fyjg

�
=

lX
j=1

ajmxj ;yj :

Example 4. Consider m : R �! R such that8>><>>:
m (0) = �4;
m (1) = 1;
m (2) = 3;
0 otherwise.
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m = �4:1f0g + 1:1f1g + 3:1f2g;
= �3:1f0g � 1:1f0g + 1:1f1g + 3:1f2g;
= 1:

�
1f1g � 1f0g

�
+ 3

�
1f2g � 1f0g

�
:

Put now

kmkM(X) = inf

8<:
lX

j=1

jaj jdX (xj ; yj)

9=; ;

over all representation of m =
lX

j=1

�j

�
1fxjg � 1fx0jg

�
:

It follows that k:kM(X) is a norm on the vector space M(X). Denote by
Æ(X; dX) the completion of the normed space (M(X); k:kM(X)). This space
was �rst introduced by Arens and Eells [AE56].in 1956. Originally, the basic
idea goes back to Kantorovich [Kan42]. The terminology Arens-Eells space
Æ(X; d) is due to Weaver [Wea99]. A di¤erent notation and appellation
was used in [GK03] by Godefroy and Kalton. It is the Lipschitz-free space
denoted by F (X; d) which we will introduce in the sequel.

Remark 6. Every molecule m is uniquely expressible in the form

m =

lX
j=1

aj

�
1fxjg � 1feg

�
where the points xj are all distinct and none equals to e.

We now prove that (Æ (X))�
isometrically
� Lip0(X):

Theorem 8. (Æ (X))� is isometrically isomorphic to Lip0(X):

Proof. De�ne

S : Æ� (X; d) �! Lip0(X)

by

(S')(x) = '
��
1fxg � 1feg

��
:

Since


1fxg � 1fx0g

Æ(X;d) = d(x; x0) for all x; x0 2 X (2), we have

j(S')(x)� (S')(x0)j =
��' ��1fxg � 1feg��� ' ��1fx0g � 1feg����

=
��' ��1fxg � 1fx0g����

� k'kd(x; x0):
Also (S')(e) = ' (0), so indeed S' 2 Lip0(X). It follows that S is a
nonexpansive linear mapping from Æ� (X; d) to Lip0(X) i.e., Lip(S') �
k'kÆ� .

2Voir Proposition 10 below
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De�ne now R : Lip0(X) �!Æ� (X; d) by

(Rf)(m) =
X
x

m (x) f(x)

for f 2 Lip0(X) and m a molecule. If m =
lX

j=1

�j

�
1fxjg � 1fx0jg

�
, we have

j(Rf)(m)j =

�����
 X

x

m (x) f(x)

!�����
�

������
lX

j=1

�jf (xj)� f
�
x0j

�������
�

lX
j=1

j�j j
���f (xj)� f �x0j����

� Lip(f)
lX

j=1

j�j jd
�
(xj ; x

0
j

�
:

Hence j(Rf)(m)j � Lip(f) kmkM(X), which uniquely extends to a continuous
linear functional on the completion Æ(X; d) ofM(X), denoted by the same
symbol Rf . Thus Rf 2 Æ� (X; d) and kRfk � Lip(f). Straightforward
calculations show that R and S are inverses. Indeed, for all x 2 X

(S �R) (f) (x) = S (R (f)) (x)
= R (f)

�
1fxg � 1feg

�
= f(x)

and for all m 2M (X)

(R � S) (') (m) = R (S (')) (m)

=
X
x

m (x)S (') (x)

=
lX

j=1

�j

�
S (') (xj)� S (')

�
x0j

��
=

lX
j=1

�j'

 
1fxjg � 1

�
x0
j

�
!

= ' (m) :

The operators R;S are nonexpansive and R � S = S � R = Id , so S is
isometric (kxk = k(R � S) (x)k � kRk kS (x)k � kS (x)k) and hence Lip0(X)
is isometrically isomorphic to Æ� (X; dX). �

Proposition 10. Let (X; e;d) be a pointed metric space.
(1) For any molecule m we have
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kmkÆ(X;dX) = sup
(
jhm; fij =

�����X
x2X

m (x) f (x)

����� : f 2 BX#

)
and there exists f 2 BX# such that hm; fi = kmkÆ(X;dX) :

(2) k:kÆ(X;dX) is a norm onM(X) and


1fxg � 1fyg

Æ = d(x; y) for all

x; y in X.
(3) k:kÆ(X;dX) is the largest seminorm on M(X) which satis�es for all

x; y in X,


1fxg � 1fyg

Æ = d(x; y).

Proof. (1) This follows from the identi�cation of Lip0 (X; d) with Æ(X; d)
�

and the Hahn-Banach theorem.
(2) The inequality



1fxg � 1fyg

Æ � d(x; y) follows from the de�nition.
Conversely, �x x in X and de�ne

fx (y) = d(x; y)� d(x; e):
We have fx 2 BLip0(X;d) because fx (e) = 0 and Lip (fx) = 1. Indeed,

Lip (fx) = sup
y1 6=y2

jfx (y1)� fx (y2)j
d(y1; y2)

� sup
x 6=y

jfx (y)� fx (x)j
d(x; y)

� d(x; y)

d(x; y)
= 1:

and

Lip (fx) = sup
y1 6=y2

jfx (y1)� fx (y2)j
d(y1; y2)

� sup
y1 6=y2

jd(x; y1)� d(x; y2)j
d(y1; y2)

� d(y1; y2)

d(y1; y2)
= 1:

By part (1), we have



1fxg � 1fyg

Æ � jhmxy; fxij
� jmxy(x)fx (x) +mxy(y)fx (y)j
� j�mxy(x)d(x; e) +mxy(y)d(x; y) +mxy(y)d(x; e)j
� jmxy(y)d(x; y)j
� d(x; y):

(3) Let k:k0 be any semi norm such that

1fxg � 1fyg

0 � d(x; y)
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for all x; y 2 X: Let m =

nX
i=1

aimxiyi be a molecule. We have

kmk0 =







nX
i=1

aimxiyi







0

�
nX
i=1

jaij kmxiyik0

�
nX
i=1

jaij d (xi; yi)

Taking the in�mum of all such representation ofm yields kmk0 � kmkÆ : �
Corollary 2. The application iX : X �! Æ (X; d) de�ned by

iX(x) = 1fxg � 1feg = mxe

is an isometric embedding of X into Æ(X; dX).

Proof. We have by Proposition 10

kiX(x)� iX(y)kÆ =


1fxg � 1fyg

Æ = d(x; y)

for all x; y 2 X. So iX is an isometry. �
The following theorem is known as the linearization of Lipschitz opera-

tors.

Theorem 9 ([Wea99, Theorem 2.2.4]). Let (X; d; e) be a pointed metric
space. Let E be a Banach space and let T : X �! E be a Lipschitz map
which preserves base point (i.e., T (e) = 0). Then there is a unique bounded
linear operator u : Æ (X) �! E such that T = u � i and kuk = Lip(T )
(i : X �! Æ (X)):

Æ (X)
i # & u

X
T�! E

Proof. Every molecule m is uniquely expressible in the form (3)

m =

lX
j=1

�j

�
1fxjg � 1feg

�
where the points xj are all distinct and none equals to e. We then de�ne u
by

u(m) =

lX
j=1

�jT (xj)

3Voir Remark 6
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Since u is essentially an extension of T that is T = u�i and we automatically
have kuk � Lip(T ). For the rest it will su¢ ce to show that kuk � Lip(T )
(in particular, this implies that u is bounded and hence it extends to all
Æ(X; dX)). De�ne a semi norm k:k0 on the space of molecules by setting

kmk0 =
ku(m)k
Lip(T )

:

Then 

1fxg � 1fyg

0 = (Lip(T ))�1 kT (x)� T (y)k
(mxy = mxe �mye) � d(x; y)

for all x; y 2 X. This implies that k:k0 � k:kÆ by Proposition 10. Thus
ku(m)k � Lip(T ): kmkÆ , which shows that kuk � Lip(T ) as desired. The
uniquess is simple. �

The operator u is denoted by TL:

Proposition 11. The weak*-topology �(Lip0(X);Æ (X)) topology agrees
with the topology of pointwise convergence on bounded subset of Lip0(X).

Proof. Let Ti; T be in Lip0(X) such that

Ti �! T; � (Lip0(X);Æ (X; dX)) :

Then, for all x in X we have

Ti (x) = (Ti)L
�
1fxg � 1feg

�
�! TL

�
1fxg � 1feg

�
= T (x):

Æ (X)
iX # & TL

X
T�! E

For the converse, it is a classical result. �

Let T 2 Lip0(X;Y ) and let iX , iY be the isometric embedding of X, Y
into Lip0(X), Lip0(Y ), respectively ). Let 	(T ) :Æ(X; dX) �! Y be the
bounded linear operator attached to T and let � = iY �	: Let S;R be the
linear isometrics between the spaces Lip0(X) and Æ(X; dX), and Lip0(Y )
and Æ(Y; dY ) :

Theorem 10 ( [Cob03]). We have T# = S1 ��(T )� �R2 or equivalently
�(T )� = R1 � T# � S2; i.e., the following diagrams are commutative

Æ (Y; dY )
� �(T )��! Æ (X; dX)

�

R2 (= R) " S1
�
= S�1

�
#

Lip0(Y )
T#�! Lip0(X)
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or equivalently

Æ (Y; dY )
� �(T )��! Æ (X; dX)

�

S2
�
= R�1

�
# R1 (= S) "

Lip0(Y )
T#�! Lip0(X)

Proof. We have

(3.1) �(mx;0) = iY (	 (T )) (mx;0) = iY (T (x)) = mT (x);0:

Put
F = S1 � �(T )� �R2:

Therefore

(S1')(x) = ' (Mx;0) ; x 2 X;' 2 Æ (X)�
�(T )� ( ) =  � �(T );  2 Æ (Y )�

(R2g) (m) =
X
y2Y

m (y) g (y) ; g 2 Lip0(Y );m 2M (Y ) :

Taking into account these formulas, the de�nitions of the operators R and
S, and Formula 3.1, we obtain successively:

(Fg)(x) = (S1 � �(T )� �R2) (g)(x) = S1 (�(T )
� (R2(g))) (x)

�(T )� ( ) = S1 (R2(g) � �(T )) (x) =
(R2g) (m) = S1 (R2(g) � �(T )) (mx;0) =

= R2(g)(mx;0) = g � T (x) = T# (g) (x) :

This proved the theorem. �

3.3. Banach free space. The following theorem was independently
proved by Flood in [Flo75] and Pestov in [Pes86].

Theorem 11. Let (X; d; e) be a pointed metric space. then there exists a
unique, up to an isometric isomorphism, Banach space B (X) over the �eld
F and an isometric embedding iX : X �! B (X) such that

1. The linear span of iX (X) is dense in B (X) :
2. Every map T in Lip0 (X;E) can be extended to a continuous linear

operator TL : B (X) �! E such that kTLk = Lip (T ) for any arbitrary
normed space.

3.4. Lipschitz free space. J.-A. Johnson in [Joh70], proved without
any reference to molecules that the closed linear subspace of

�
X#

��
spanned

by the evaluation functions �x : X# �! K, given by

�x (f) = f (x) ; x 2 X
is a predual of X# (we note that any weak*-closed linear subspace B of
a conjugate space E� is itself a conjugate space. This follows from the
observation that BB is compact in the (relative) weak*-topology). This
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space was called Lipschitz-free space and denoted F (X) by Godefroy and
Kalton in [GK03].

Definition 9. The Lipschitz free space on X is

F (X; dX) = span f�x; x 2 Xg;
Lip0(X)

�
:

We say that 
 2 F (X; dX) is �nitely supported if


 2 span f�x; x 2 Xg :
Then, the support of such a 
 (denoted supp
) is the smallest subset F of
X which contains e and such that 
 2 span f�x; x 2 Fg :

Remark 7. By applying the bipolar theorem, we give a precise descrip-

tion of BF(X)by means of the Lipschitz evaluation functional �(x;y) =
�x � �y
d(x; y)

de�ned on X#, where (x; y) runs through eX = f(x; y) 2 X2 : x 6= yg:
(1) The closed unit ball of F(X) is the closed, convex, balanced hull of

the set f�(x;y) : (x; y) 2 eXg in (X#)�.
(2) The space F(X) is the closed linear hull of the set f�x : x 2 Xg in

(X#)�.
(3) From (1), we deduce that F(X) is the closed linear hull in (X#)� of

the set f�(x;y) : (x; y) 2 eXg.Then (2) follows since the linear hulls of this set
and the set f�x : x 2 Xg coincide. Notice that �x = �x � �0 = d(x; 0)�(x;0)
(x 2 X;x 6= 0).

Proposition 12. For any metric space X, F (X; d)�
isometrically
� Lip0(X).

Proof. We de�ne a linear surjective isometry J on Lip0(X) with values
in F (X; d)� by J(f)(�x) = f(x) and we extend by continuity to F (X; d).

Consider f in Lip0(X) andm in span f�x; x 2 Xg such thatm =

nX
i=1

ai�xi .

J(f)(m) =

nX
i=1

aif (xi) : We show that J is a surjective isometry.

a) Consider f in Lip0(X) and m in F (X; d) : We have

jJ(f)(m)j =
���hf;mi(Lip0(X);F(X))���

=
���hf;mi(Lip0(X);Lip0(X)�)���

� Lip (f) kmkF(X)
and we obtain kJ(f)k � Lip (f) :

b) Let (x; y) be in eX and put m =
�x � �y
d (x; y)

: We have kmkF(X;) = 1

because � is an isometry see Proposition 13 below and
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kJ(f)kF(X;d)� � jJ(f) (m)j

�
����f (x)� f (y)d (x; y)

����
(we take the sup) � Lip (f) :

c) Consider ' 2 F (X; d)�. Then ' is determinate by �x for every x in
X. We put for every x in X, f (x) = ' (�x) and we prove that f is Lipschitz
and J(f) = ':

(i) We show that f 2 Lip0(X).
- f (0) = ' (�0) = ' (0) = 0:
- Let x; y be in X

:

jf (x)� f (y)j = j' (�x)� ' (�y)j
= jh'; �x � �yij
� k'kF(X;d)� k�x � �yk(Lip0(X))�
� k'kF(X;d)� d (x; y) :

(ii) Letm =

nX
i=1

ai�xi be in span f�x : x 2 Xg. Then, ' (m) =
nX
i=1

aif (xi) =

J(f)(m): �

Proposition 13. De�ne

� : X �!
�
X#

��
x 7�! �x

The application � is an isometry, i.e., for every x1; x2 in X, one have
k�x1 � �x2k = d (x1; x2) (this implies that k�xk = d (x; 0)):

Proof. For x1; x2 2 X, we have in the �rst part

k�x1 � �x2k = sup
Lip(f)=1

j�x1 (f)� �x2 (f)j

= sup
Lip(f)=1

jf (x1)� f (x2)j

� d (x1; x2) :

In the second part, for a �xed x0 2 X; let g 2 BX# de�ned by

g (x) = d (x; x1)� d (x0; x2) :
We have

k�x1 � �x2k � g (x1)� g (x2)
� d (x1; x2)

and this ends the proof. �
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Remark 8. The subset � (X) is linearly independent in
�
X#

��
see ([Mic64].

Indeed, let x1; :::; xn; xn+1 be distinct elements of X, then �xn+1 cannot be a
linear combination of �x1 ; :::; �xn. So, if g (x) = d (x; fx1; :::; xng) for x 2 X,
then g 2 X# and

�xi (g) = g (xi) for 1 � i � n
�xn+1 (g) = g (xn+1) :

This implies that �xn+1 cannot be a linear combination of �x1 ; :::; �xn and
consequently � (X) is linearly independent in

�
X#

��
:

The Banach space F (X) has some remarkable properties, from which
we mention the following universal property; called "universal linearization
property".

Theorem 12 ([GK03]). Let (X; d; e) be a pointed metric space and let
E be a Banach space. Let T : X �! E be a Lipschitz map such that
T (e) = 0. Then, there is a unique linear map u (noted TL) : F (X) �! E
with kTLk = Lip(T ) and such that the following diagram commutes

X
T�! E

# �X TL %
F (X)

Moreover, the linear isometry ' : Lip0(X;E) �! B(F (X) ; E) such that
' (T ) = TL is onto.

Proof. Extend linearly T from X onto spanf�x : x 2 Xg and denote
this extension by u. We only need to check that kuk = Lip(T ). Pick
some a 2 span f�x : x 2 Xg. Then ku (a)k = f(u (a)) for some f 2 BX� .
However, f �T then belongs to Lip0(X) and Lip(f �T ) � Lip(T ). It follows
that ku (a)k � kukLip(T ) which proves the claim. Then we can extend u
to F (X), the closure of spanf�x : x 2 Xg :
Let us �x a Lipschitz map T 2 Lip0(X;E). Let u be the linear map de�ned

on spanf�x : x 2Mg by u(
nX
i=1

ai�xi) =

nX
i=1

aiT (xi) 2 E. We have
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u(
nX
i=1

ai�xi)







E

=







nX
i=1

aiT (xi)







E

= sup

�����
*

nX
i=1

aiT (xi) ; e
�

+����� ; e� 2 BE�

= sup

�����
nX
i=1

ai hT (xi) ; e�i
����� ; e� 2 BE�

� sup

�����
nX
i=1

aif (xi) ; e� 2 BE�

����� ; f 2 Lip(T )BX#

� Lip(T )







nX
i=1

ai�xi)







F(X)

:

Thus kuk � Lip(T ). Now we want to prove the reverse inequality. Fix
� > 0 and consider x 6= y such that kT (x)� T (y)k � (Lip(T ) � �)d(x; y).

We now de�ne mxy :=
(�x � �y)
d(x; y)

. Clearly kmxyk = 1 and kT (mxy)k =

kT (x)� T (y)k
d(x; y)

� Lip(T ) � �. We conclude that kuk � Lip(T ). To �nish,

we extend u to F (X) and we denote TL this unique continuous extension
which has the same norm. It remains to show that the linear isometry
' : Lip0(X;E) �! B(F (X) ; E) is onto. Consider u 2 B(F (X) ; E). Then,
de�ne T on X by T (x) = u�x for every x 2 X. The map T is clearly
Lipschitz and satis�es ' (T ) = u. �

Using this universal property of F (X)), it is immediate to see that
F (X)� � Lip0(X). Indeed, it is enough to consider X = R in the universal
property mentioned above. Moreover, the weak* topology coincides with
the topology of pointwise convergence on bounded sets of Lip0(X). We also
deduce the following variation of the universal property.

Remark 9. By Theorem 11, the predual of X# provided by the Dixmier-
Ng theorem coincides with the Lipschitz-free space of X, i.e., F (X; d) is
isometrically isomorphic to Æ(X; d).

Corollary 3. Let (X1;d1) ; (X2;d2) be two pointed metric spaces. Let
T : X1 �! X2 be a Lipschitz map such that T (0) = 0. Then, there is
a unique map bT : F (X1) �! F (X2) such that bT�X1 = �X2T , i. e., the
following diagram commutes.

X1
T�! X2

# �X1 # �X2
F (X1;d1)

bT�! F (X2;d2)

and



bT


 = Lip(T ):
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Remark 10. If X0 is a subspace of a metric space X, then F (X0)
is linearly isometric to a subspace of F (X). Indeed, denote Id : X0 �!
X the identity map. Then the application bId given by Corollary 3 is the
desired isometry. In order to prove this last claim, one uses "nonlinear Hahn
Banach theorem" Furthermore, we also have the following.

Remark 11. Let X be a metric space and let bX be its completion. Then,

the spaces F (X) and F
� bX� are linearly isometric. Indeed, the operator
T : Lip0( bX) �! Lip0(X)

f 7�! f�X
is a onto linear isometry which is weak*-to-weak* continuous.

Corollary 4. Let (X1;d1) ; (X2;d2) be two pointed metric spaces. If X1
Lipschitz embeds into X2, then F (X1;d1) linearly embeds into F (X2;d2).
Moreover, if X1 is Lipschitz equivalent to X2, then F (X1;d1) is linearly
isomorphic to F (X2;d2).

Proof. Let T : X1 �! X2 be a Lipschitz embedding map. Then, T
is bi-bijective from X1 into T (X2). We then consider the bounded linear
operators bT : F (X1) �! F (T (X2)) and dT�1 : F (T (X2)) �! F (X1)
given by Corollary . It is easy to see that bT �dT�1 = IdF(T (X2)) and dT�1 �bT = IdF(X1) so that bT is a linear isomorphism from F (X1) to F (T (X2)).
Since F (T (X2)) is isometric to a subspace of F (X2) we get that F (X1)
is isomorphic to a subspace of F (X2). The second part of the corollary is
clear. �

Example 5. 1. We have F (R) � L1(R):
Indeed, de�ne

T : Lip0(R) �! L1(R)
f 7�! f 0

T is a surjective linear isometry. This implies that (F (R))� �
�
L1(R)

��
:

Theorem (Rademacher 1919-Lebesgue 1900) Let X be a Banach
space of �nite dimension and f : X �! R be a Lipschitz function. Then f
is a. e. di¤erential. Moreover

Example 6.

f(x)� f(0) =
Z x

0
f 0(t)dt:

Lebesgue for f : R �! R monotone and Rademacher for dim (X) <
+1: In in�nite dimensional spaces there is no Lebesgue measure. If we
want to extend Rademacher�s theorem to in�nite dimensional case, we have
to extend the notion of a. e. to such spaces. This problem had been
resolved independently by Christensen, Mankiewicz, Aronszajn and Phelps
by introducing and used di¤erent notions of almost everywhere.
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We have

jf(x)� f(y)j =

����Z x

y
f 0(t)dt

����
�

Z x

y
jf 0(t)j dt

� sup
t2R
jf 0(t)j jx� yj

This implies that
jf(x)� f(y)j
jx� yj � kf 0k1 for all (x; y) 2 eR and hence

Lip0(f) � kf 0k1 :

In the other hand, we have the inequality jf 0(x)j � sup
(x;y)2eR

����f(x)� f(y)x� y

����
and hence kf 0k1 � Lip(f):Thus kf 0k1 = Lip(f) and consequently T is an
isometry.:
The operator T is surjective. Indeed, Let g be in L1(R). We let f(x) =Z x

0
g(t)dt; which is lipschitzian because

jf(x)� f(y)j =

����Z x

y
g(t)dt

����
�

Z x

y
jg(t)j dt

� sup
t2[x;y]

jg(t)j jx� yj

� kgk1 jx� yj
and this implies that Lip(f) � kgk1. Consequently, T is a surjective linear
isometry.
We prove that the operator

Example 7.
S : F (R) �! L1(R)

�x 7�! 1[0;x]

extends to an isometry from F(R) onto L1(R). The operator S veri�es
S� = T�1: Indeed, S� : L1(R) �! Lip0(R) is de�ned by

hS� (f) ; �xi = hf; S (�x)i
=



f;1[0;x]

�
=

Z x

0
f(t)dt

= T�1 (f) (x) :

Let S : X �! Y be an operator between Banach spaces such that S� is a
surjective linear isometry, then S is a surjective isometry. Indeed, we have
hS(x); y�i = hx; S� (y�)i and thus
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kS(x)k = sup
ky�k
jhx; S� (y�)ij

� sup
ky�k
kxk kS� (y�)k

� sup
ky�k
kxk ky�k

� kxk :
In the other part, on have

Example 8.���DS� (S�)�1 (x�) ; xE��� = jhx�; xij

=
���D(S�)�1 (x�) ; S (x)E���

� kx�k kS (x)k

and this gives kxk � kS (x)k :
The surjectivity. Let (x; y) be in R (x � y) and consider g 2 L1 (R). We
have

Example 9.

hS (�y � �x) ; gi =

Z
R
g (t)

�
1[0;y] � 1[0;x]

�
(t) dt

=

Z y

0
g (t) dt�

Z x

0
g (t) dt

=

Z y

x
g (t) dt

=

Z
R
g (t)1[x;y] (t) dt

=


1[x;y]; g

�
:

Then S (span f�x : x 2 Xg) is dense in L1 (R) by Remark 7. This implies
that S is a surjective isometry

2. Let X = N. The linear operator

T : F (N) �! l1(R)

�n 7�!
nX
i=1

ei

is an onto isometry.
3. Let X = [0; 1]. The linear operator

S : F ([0; 1]) �! L1([0; 1])
�x 7�! 1[0;x]

is an onto isometry.

Example 10. The space Lip0[0; 1] of Lipschitz functions on [0; 1] vanish-
ing at 0 with the Lipschitz norm is isometrically isomorphic to the Banach
space L1[0; 1]. The isomorphism is given by the correspondence
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S : L1[0; 1] �! Lip0[0; 1]

f 7�! T (f) =

Z x

0
f(t)dt:

The inverse mapping T�1 : Lip0[0; 1] ! L1[0; 1] is given by T�1(g) = g0,
a.e..

Remark 12 (Godfroy ). We can see F (X; dX) as the completion of the
set of all measures � of �nite support under the norm

k�k = sup
�Z

fd� : Lip (f) � 1
�
:

The following theorems are due to Lindenstrauss [Lin64] when X is a
Banach.

Theorem 13 (Lindenstrauss, weak form). If X is a Banach space then
there is a norm one projection p from Lip0 (X) onto its subspace X

�.

Proposition 14. If X0 is a subset of a metric space X containing the
base point, then Æ(X0) can be identi�ed naturally and isometrically as a
linear subspace of Æ(X) :

Proof. Consequence of Hahn-Banach Theorem. �
3.5. Adjoint of Lipschitz operators. The aim of this subsection is

to show that the Lipschitz adjoint of a Lipschitz mapping T , de�ned by
I. Sawashima, in [Saw75, Saw75], corresponds in a canonical way to the
adjoint of a linear operator TL associated to T .

Definition 10. Consider X;Y in M0 and let T : X �! Y be a
Lipschitz map which preserves base point. We de�ne T# : Lip0 (Y ) �!
Lip0 (X) by

T# (g) (x) = (g � T ) (x) = g (T (x)) :

The de�nition make sense by the property of composition maps.

Proposition 15. Consider X;Y in M0 and let T : X �! Y be a
Lipschitz map which preserves base point. Then T# is a bounded linear map
and



T#

 = Lip (T ) = 

T# jY �

 (if Y is a Banach space):

Proof. We have

Lip
�
T# (g)

�
= Lip (g � T ) � Lip (g) Lip (T )

so


T#

 � Lip (T ). For the converse inequality, �x p; q 2 Y . Let g0 =

dY (:; q)� dY (eY ; q), then Lip (g0) = 1. Indeed,

jg0 (x)� g0 (y)j = jdY (x; q)� dY (y; q)j
� dX (x; y) :
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this implies that Lip (g0) � 1. We have also

Lip (g0) �
jg0 (p)� g0 (q)j

dY (p; q)

� dY (p; q)

dY (p; q)
� 1:

And hence 

T#

 � Lip
�
T# (g)

�
�

��T# (g) (x)� T# (g) (y)��
dX (x; y)

� jgT (x)� gT (y)j
dX (x; y)

� jgT (x)� gT (y)j
dY (T (x) ; T (y))

dY (T (x) ; T (y))

dX (x; y)
:

Taking the supremum over x and y, we �nd


T#

 � kTk : �

If Y = E is a Banach space, we shall show that T# corresponds in a canonical
way to the usual adjoint of the linear operator attached to T by Theorem 9
of linearization, i.e., T# jY �= (TL)�.

Lip0(E)
T#�! Lip0(X)

p # T �L %
E�

E�
Id�! Lip0(E) �! Lip0(X)
(TL)

�

& # (TL)#
Id
%

Lip0(X)

The restriction of T# to E� is called the Lipschitz transpose map of T and
is denoted here by T t. The correspondence

T  ! T t

establishes an isomorphism between the vector spaces Lip0(X;E) and L((E�; w�); (X#; w�)),
where w� denote the weak*-topology (see [AJ13, Theorem 3.1]).



CHAPTER 2

p-summing Lipschitz operators

1. Introduction

The nonlinear version of p-summing operators was introduced by J.-D.
Farmer and W.-B. Johnson in [FJ09]. We consider now X a pointed metric
space and E a Banach space.

Definition 11. A Lipschitz map T : X �! E is called Lipschitz p-
summing (1 � p < 1), if there is a positive constant C such that for all
fxig1�i�n ; fyig1�i�n in X and all faig1�i�n � R+, we have

(1.1)
nX
i=1

ai kT (xi)� T (yi)kp � Cp sup
f2B

X#

nX
i=1

aijf(xi)� f(yi)jp

We denote by �Lp (T ), the smallest constant C verifying inequality (1.1). The
space �Lp (X;E) of Lipschitz p-summing functions from any metric space into
Y is a Banach space under the norm �Lp (:). If T is linear then �Lp (T ) �
�p (T ) ( in fact we have �Lp (T ) = �p (T )).

Notice that for any embedding j : Y ! Z, we have �Lp (T ) = �Lp (jT ) and
�Lp (T ) = sup

X0�X

�
�Lp (T=X0) : X0 �nite subset of X

	
. Also, the de�nition

stays the same if we restrict to ai = 1, we can found it implicitly in [FJ09].

Proposition 16 (Ideal property). Let X;Z be pointed metric spaces
and E;F be Banach spaces. Let R : Z �! X; S : E �! F be Lipschitz
functions and T : X �! E be a Lipschitz p-summing operator. Then STR
is Lipschitz p-summing operator and �Lp (STR) � Lip(S)�Lp (T ) Lip(R):

We have

33
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nX
i=1

kSTR(zi)� STR(z0i)k
p

� Lip(S)p
nX
i=1

kTR(zi)� TR(z0i)k
p

� Lip(S)p�Lp (T )
p sup
f2B

X#

nX
i=1

jf(R(zi))� f(R(z0i))jp

� Lip(S)p�Lp (T )
p Lip(R)p sup

f2B
X#

nX
i=1

j f �R
Lip(R)

(zi)�
f �R
Lip(R)

(z0i)jp

� Lip(S)p�Lp (T )
p Lip(R)p sup

g2B
Z#

nX
i=1

jg(zi)� g(z0i)jp:

Remark 13. Every pointed metric space (X; d) is isometric to a subspace
of C (BX#).

Indeed, de�ne

iX : X �! C (BX#) by i(x)(f) = f(x):

We have

d(iX (x1) ; iX (x2)) = sup
f2B

X#

jiX (x1) (f)� iX (x2) (f)j

= sup
f2B

X#

jf(x1)� f(x2)j

= sup
f2B

X#

jf(x1)� f(x2)j
d(x1; x2)

d(x1; x2)

= d(x1; x2)

because jf(x1)� f(x2)j is at most d(x1; x2) whenever f 2 BX# and this up-
per bound is in fact attained: given any two points x; x0 2 X, the function
f : X �! R given by f(:) = d(:; x2) � d(x2; 0) is in Lip0(X;R), has Lip-
schitz constant 1 and satis�es jf(x)� f(x0)j = d(x; x0). This implies that
d(f (x1) ; f (x2)) = d(x1; x2) and hence iX is an isometry.

Proposition 17. Let X be a metric space and E;F be Banach spaces.
Consider two Lipschitz maps T : X �! E and S : X �! F such that
kT (x1)� T (x2)k � C kS(x1)� S(x2)k for a positive constant C. Suppose
that S is injective. Then, There is R : S (X) �! E lipschitzian such that
T = R � S and Lip(R) � C:

Proof. We let R (z) = TS�1 (z) We have R � S (x) = TS�1 (S (x)) =
T (x) and for all z1; z2 2 S (X)

kR(z1)�R(z2)k =


TS�1 (z1)� TS�1 (z2)



(xi = S�1 (zi)) = kT (x1)� T (x2)k
� C kS(x1)� S(x2)k
� C kz1 � z2k
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We end the proof by extended R by density to S (X). �

2. Properties

We give now Pietsch domination-factorization theorem for Lipschitz p-
summing operators.

Theorem 14 ([FJ09]). Let 1 � p < 1. The following properties are
equivalent for a mapping T : X �! E and a positive constant C.

(a) The mapping T is Lipschitz p-summing and �Lp (T ) � C:
(b) There is a probability � on BX# such that

kT (x)� T (y)k � C
 Z

B
X#

jf(x)� f(y)jp d� (f)
! 1

p

:

(c) For any isometric embedding j of Y into a 1-injective space Z, the
following diagram commute

L1 (BX# ; �)
ip�! Lp (BX# ; �)

i " # eT
X

T�! Y
j�! Z

with Lip( eT ) � C:
(d) There is a probability � on K = ext (BX#) (for the topology of point-

wise convergence on X), such that

(2.1) kT (x)� T (y)k � C
�Z

K
jf(x)� f(y)jp d� (f)

� 1
p

:

Proof. The property (a) =) (b).
Let C be the convex cone in C(BX#) of the functions of the form

'ai;xi;yi (f) =

(
nX
i=1

Cpaijf(xi)� f(yi)jp � ai kT (xi)� T (yi)kp
)

where n 2 N, ai 2 R�+ and xi; yi 2 X.
The setM is a convex cone. Indeed, let '1; '2 be inM and a 2 [0; 1] such
that

'
1((a1i);(x1i);(y1i))(f) =

n1X
i=1

Cpa1ijf(xi)� f(y1i)jp � ai1 kT (x1i)� T (y1i)kp

and

'
2((a2i);(x2i);(y2))(f) =

n2X
i=1

Cpa2ijf(x2i)� f(y2i)jp � a2i kT (x2i)� T (y2i)kp



36 2. p-SUMMING LIPSCHITZ OPERATORS

It follows that for a 2 R+

a'
= a'((a1i);(x1i);(y1i))(f)

=
Xn1

i=1
Cpaa1ijf(xi)� f(y1i)jp � aai1 kT (x1i)� T (y1ikp

= '((aa1i);(x1i);(y1i))(f)

and

'1 + '2
=

Xn1

i=1
Cpa1ijf(x1i)� f(y1i)jp � ai1 kT (x1i)� T (y1i)kp+Xn2

i=1
Cpa2ijf(x2i)� f(y2i)jp � a2i kT (x2i)� T (y2i)kp

=
Xn

i=1
Cpaijf(xi)� f(yi)jp � ai kT (xi � yi)kp :

Finally we have

'1 + '2 =

nX
i=1

Cpaijf(xi)� f(yi)jp � ai kT (xi)� T (yi)kp

with n = n1 + n2,

ai =

�
a1i if 1 � i � n1;
a2i if n1 + 1 � i � n

; xi =

�
x1i if 1 � i � n1;
x2i if n1 + 1 � i � n

and yi =�
y1i if 1 � i � n1;
y2i if n1 + 1 � i � n:

By hypothesis, the convex cone C is disjoint from the negative cone

C� = f 2 C(BX#) :  (f) < 0;8f 2 BX#g :
which is an open convex subset of C(BX#). By Hahn-Banach theorem ana-
lytic form "large separation theorem" and Riesz "representation theorem",
there is a �nite signed Radon-Borel (a signed Radon-Borel measure on the
compact is �nite) measure � 6= 0 and a real � such that for all ' 2 C and
 2 C�, we haveZ

B
X#

 (f) d� (f) � � �
Z
B
X#

' (f) d� (f) :

Because 0 2 C and the negative constants are in C�, than we can take � = 0.
Also, one has Z

B
X#

 (f) d� (f) � 0; 8 2 C� () � � 0:

We can put � (BX#) = 1, if is not the case we divide by � (BX#). In
particular we take ' (f) = Cpjf(x)� f(y)jp � kT (x)� T (y)kp, we haveZ

B
X#

' (f) d� (f) =

Z
B
X#

Cpjf(x)� f(y)jp � kT (x)� T (y)kp d� (f)

� 0
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this implies

kT (x)� T (y)k � C
 Z

B
X#

jf(x)� f(y)jp d� (f)
! 1

p

:

The property (b) =) (c).
Let i : X �! L1 (BX# ; �) be the natural isometric embedding which is the
the formal identity from C(BX#) into L1 (BX# ; �) composed with iX . Then
(b) says the the Lipschitz norm of eT restricted to ip (i (X)) is bounded by
C, which is (c).
The property (c) =) (a).
By the above, we have

�Lp (T ) = �Lp (jT ) � Lip
�eT��Lp (ip) Lip (i)

� Lip
�eT��p (ip) Lip (i)

� Lip
�eT�

� C:

The property (a) =) (d) is the same as the proof of (a) =) (b) since the
supremum in the right part of inequality (2.1) is taken on K. This ends
the proof. �

As an immediate consequence, we have

Proposition 18. Let 1 � p < q < 1. If T : X �! Y is Lipschitz
p-summing then, T is is Lipschitz q-summing and �Lq (T ) � �Lp (T ) :

3. Nonlinear version of Grothendiek�s theorem

We start by recalling the linear case of Grothendieck�s theorem (G.T.
in short). For more informations, we can consult [?]. We start by the little
G.T. in the linear case which goes back to Grothendieck.

Theorem 15. Let K be a compact set and let H be a Hilbert space.
(a) Any bounded linear operator u : H �! L1 satis�es






 

nX
i=1

ju (xi)j2
! 1

2








L1

�
r
�

2
kuk

 
nX
i=1

kxik2
! 1

2

; for any (xi) � H:

(b) Any bounded linear operator v : C (K) �! H (or any v : L1 �! H)
is 2summing and satis�es �2 (v) �

p
�
2 kvk :

Let now the dual form. It appeared in [GL75]

Theorem 16. Let H be a Hilbert space. Then any bounded linear oper-
ator w : L1 �! H is 2-summing and satis�es �2 (w) �

p
�
2 kwk :
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The following theorem known as Grotendieck�s theorem is due to Lin-
denstrauss Pe÷czyński [?].

Theorem 17. Let H be a Hilbert space. Then any bounded linear op-
erator w : L1 �! H is 2-summing and satis�es �2 (w) � K kwk for some
absolute constant K. The best constant K is noted by KG, the Grothendiek
constant for the real case and KC

G for the complex case.

We now give the nonlinear version of Grothendiek�s theorem.

Theorem 18 ([FJ09], [CZ11] and [Saa15]). Let X be pointed metric
space such that X embeds isometrically into an R-tree. Then for any Hilbert
space H, we have

�L1 (X;H) = Lip0(X;H)

and

�L1 (T ) � KGLip(T ) for every T in Lip0(X;H):

Proof. Consider the diagram as in Theorem 9

Æ (X)
iX # & TL

X
T�! H

where Æ(X) is isometrically isomorphic to L1 (R). We have TL is 1-summing
and �1 (TL) � KG kTLk � KGLip(T ):

Other proof. In the category of metric space with Lipschitz maps as
isomorphisms, weighted trees play a role analogous to that of L1 in the linear
theory. In particular, every �nite weighted tree has the lifting property,
which is to say that if X is a �nite weighted tree, T : X ! Y is a Lipschitz
mapping from X into a metric space Y , and q : Z ! Y is a 1-Lipschitz
quotient mapping, then for each � > 0 there is a mapping S : X ! Z so
that Lip(S) � Lip(T ) + � and T = qS.

Z
S % # q

X
T�! Y

Letting Y be a Hilbert space and Z an L1 space, we can deduce from
Grothendieck�s theorem and the ideal property of �L1 that if every �nite
subset of X is contained in a �nite subset of X that is a weighted tree
(in particular, if X is a tree or a metric tree), then �L1 (T ) � KGLip(T ),
where KG is Grothendieck�s constant. Here we use the obvious fact that
�p(T : X ! Y ) is the supremum of �p(TjK) as K ranges over �nite subsets
of X. �



CHAPTER 3

Other notions of summability

1. Lipschitz � (p)-summing operators

The following de�nition was studied by X. Mujica in [Muj08] for mul-
tilinear operators, which generalizes absolutely � -summing linear operators
introduced by A. Pietsch in [Pie80].

Definition 12 ([MT17]). Let T be in Lip0(X;E) and consider 1 �
q � p < 1. We say that T is Lipschitz � (p; q)-summing if there is a
positive constant C such that, for all n 2 N; (xi) ; (x0i) � X; (a�i ) � E� and
(�i)1�i�n � R+, we have

(1.1)

 
nX
i=1

�i jhT (xi)� T (x0i) ; a�i ij
p

! 1
p

� C sup
kfk�1
kak�1

 
nX
i=1

�i j(f(xi)� f(x0i)) ha�i ; aij
q

! 1
q

where f 2 X# and a 2 E. We will denote this class of mappings by
�L�(p;q)(X;E) and we equip it with the norm �L�(p;q) (T ) = inf C, for the
constants that appear in the above expression, for which it becomes a Banach
space. When p = q, we write �L�(p) and �

L
�(p) instead of �

L
�(p;p) and �

L
�(p;p)

respectively and we say that T is Lipschitz � (p)-summing. If p = q = 1,
we simply write �L� and �L� and we say that T is Lipschitz � -summing.
Like the linear case, if 1 � s � r � q � p; then �L�(q;r) � �L�(p;s) and

�L�(p;s) (T ) � �
L
�(q;r) (T ) for all T in �

L
�(q;r). Moreover, it follows that

�L�(q;r) � �
L
�(p;r) and �

L
�(p;r) (T ) � �

L
�(q;r) (T ) for all T in �

L
�(q;r)

and
�L�(q;r) � �

L
�(q;s) and �

L
�(q;s) (T ) � �

L
�(q;r) (T ) for all T in �

L
�(q;r):

Remark 14. 1- The de�nition is the same if we restrict to �i = 1 (by
the same argument cited implicitly in [FJ09]).

2- By Goldstine�s theorem, we can replace a by a�� 2 E�� in the inequal-
ity (1.1).

Remark 15. - If T is linear then T is � (p)-summing implies that T
is Lipschitz � (p)-summing and �L�(p) (T ) � ��(p) (T ). We do not know if

39
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the converse is true. Because there is no factorization theorem and BX# is
di¢ cult to handle. Is it a good generalization?

Lemma 1. Let 1 � p < 1. For n 2 N, (xi)1�i�n ; (x0i)1�i�n � X,
(a�i )1�i�n � E� and (�i)1�i�n 2 R+; let v : lnp� �! X �" E� be a linear

operator such that v (ei) = �(xi;x0i)
��

1
p

i a
�
i ; where (ei) denotes the unit vector

basis of lnp� and � denotes the Lipschitz tensor product as introduced in
[CCJV15]. We have

kvk = sup
kfk

X#
=1

kakE=1

 
nX
i=1

�i
���f(xi)� f(x0i)� ha�i ; ai��p

! 1
p

:

Proof. We have

kvk = sup
k�kln

p�
=1
kv (�)kX�"E�

= sup
k�kln

p�
=1







nX
i=1

�iv (ei)







X�"E�

(� =
nX
i=1

�iei)

= sup
k�kln

p�
=1







nX
i=1

�i�(xi;x0i)
� �

1
p

i a
�
i







X�"E�

= sup
k�klnp=1

sup
kfk

X#
=1

kakE=1

 
nX
i=1

�i�
1
p

i j(f(xi)� f(x0i)) ha�i ; aij
!

= sup
kfk

X#
=1

kakE=1

 
nX
i=1

�i j(f(xi)� f(x0i)) ha�i ; aij
p

! 1
p

.

This proves the Lemma. �
Proposition 19. Let T be in Lip0(X;E). The operator T is Lipschitz

� (p)-summing if, and only if, for all n 2 N, (xi)1�i�n ; (x0i)1�i�n � X,
(a�i )1�i�n � E�, (�i)1�i�n � R+ and all linear operator v : lnp� �! X �" E�

such that v (ei) = �(xi;x0i)
� �

1
p

i a
�
i , we have

(1.2)

 
nX
i=1

�i
��
T (xi)� T �x0i� ; a�i ���p

! 1
p

� C kvk :

We now give the left ideal property in "Pietsch�s sense".

Proposition 20. Consider T in Lip0(Y;E) and R in Lip0(X;Y ). If T
is Lipschitz � (p)-summing operator, then T � R is Lipschitz � (p)-summing
and �L�(p)(T �R) � �

L
�(p)(T )Lip (R).
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Proof. Let n 2 N, (xi)1�i�n ; (x0i)1�i�n � X, (a�i )1�i�n � E�and
(�i)1�i�n � R+. It su¢ ces by inequality (1.2) to show that 

nX
i=1

�i
��
T �R (xi)� T �R �x0i� ; a�i ���p

! 1
p

� �L�(p)(T )Lip(R) kwk

where w : lnp� �! X �" E� such that w (ei) = �(xi;x0i)
� �

1
p

i a
�
i :

Consider the following commutative diagram

lnp�
v�! Y �" E�

w # R� idE� %
X �" E�

where

v (ei) = �(R(xi);R(x0i))
� �

1
p

i a
�
i

and

R� idE�
�
�(xi;x0i) � �

1
p

i a
�
i

�
= �(R(xi);R(x0i))

� �
1
p

i a
�
i :

The Lipschitz injective norm " is uniform by [CCJV15, Theorem 7.1] and
by [CCJV15, Proposition 4.2], we have

�
nP
i=1

�i jhT �R (xi)� T �R (x0i) ; a�i ij
p

� 1
p

� �L�(p)(T ) kvk

� �L�(p)(T ) kwk kR� idE�k
� �L�(p)(T )Lip(R) kwk :

This implies by inequality (1.2) that T � R is Lipschitz � (p)-summing and
�L�(p)(T �R) � �

L
�(p)(T )Lip (R) and this ends the proof. �

Proposition 21. Consider T in Lip0(Y;E) and S in Lip0(E;F ). If T
is Lipschitz � (p)-summing operator, then S � T is Lipschitz � (p)-summing
and �L�(p)(S � T ) � Lip (S)�

L
�(p)(T ).

Proof. Let (yi)1�i�n ; (y
0
i)1�i�n � Y; (b�i )1�i�n � F �and (�i)1�i�n �

R+, we have �
nP
i=1

�i jhS � T (yi)� S � T (y0i) ; b�i ij
p

� 1
p

=

�
nP
i=1

�i
��
T (yi) ; S# (b�i )�� 
T (y0i) ; S# (b�i )���p� 1

p

=

�
nP
i=1

�i
��
T (yi) ; St (b�i )�� 
T (y0i) ; St (b�i )���p� 1

p
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(St is the transposed of the linear operator attached to S)

=

�
nP
i=1

�i
��
T (yi)� T (y0i) ; St (b�i )���p� 1

p

� �L�(p)(T ) sup
kfk

Y#
�1

kakE=1

�
nP
i=1

�i
��(f(yi)� f(y0i)) 
St (b�i ) ; a���p� 1

p

� �L�(p)(T )


St

 sup

kfk
Y#

�1
kakE=1

�
nP
i=1

�i

����(f(yi)� f(y0i))�St(b�i )kStk ; a

�����p� 1
p

� �L�(p)(T )


St

 sup

kfk
Y#

�1
kakE=1

�
nP
i=1

�i

���(f(yi)� f(y0i))Db�i ; SL(a)kStk

E���p� 1
p

� Lip(S)�L�(p)(T ) sup
kfkB

Y#
�1

kbkF=1

�
nP
i=1

�i j(f(yi)� f(y0i)) hb�i ; bij
p

� 1
p

:

Therefore, S � T is Lipschitz � (p)-summing operator and �L�(p)(S � T ) �
�L�(p)(T )Lip (S). �

We will present the following characterization (Pietsch�s domination the-
orem) concerning this class of Lipschitz operators. For the proof, we use the
same idea as used for example in [AMS09] and [Muj08, Theorem 3.6]. Be-
fore this, we �rst announce the Ky Fan�s lemma. The proof can be consulted
in [DJT95, p. 190].

Lemma 2. Let K be a Hausdor¤ topological vector space and let C be a
compact convex subset of K. Let M be a set of functions on C with values
in (�1;1] having the following properties.

(a) each f 2M is convex and lower semicontinuous;
(b) if g 2 conv(M); there is an f 2M with g(x) � f(x);8x 2 C;
(c) there is an r 2 R such that each f 2M has a value � r.

Then there is an x0 2 C such that f(x0) � r for all f 2M.

Theorem 19. Consider T 2 Lip0(X;E) and C a positive constant.
(1) The operator T is Lipschitz � (p)-summing and �L�(p)(T ) � C.
(2) There exist Radon probability measures �1 on BX# and �2 on BE�� ;

such that for all x; x0 in X and a� in E�, we have

(1.3)
jhT (x)� T (x0); a�ij

� C(
R
B
X#

R
BE�� j(f(x)� f(x

0) ha�; a��ijp d�1(f)d�2(a��))
1
p ):

Moreover, in this case
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�L�(p)(T ) = inf fC > 0 : for all C verifying the inequality (1.3)g :

Proof. We are interested only to the �rst a¢ rmation because using
inequality (1.3), one easily shows that T is Lipschitz � (p)-summing and
�L�(p)(T ) � C. Consider the sets P (BX#) and P (BE��) of probability mea-
sures in C (BX#)� and C (BE��)� respectively endowed with their weak*-
topologies. These sets are compact and convex. We are going now to apply
Ky Fan�s Lemma withK = C (BX#)��C (BE��)� and C= P (BX#)�P (BE��)
which is convex and compact.
LetM be the set of all functions ' from C with values in R of the form

'((xi);(x0i);(a�i );(�i))
(�1; �2)

=
nP
i=1

�i jhT (xi)� T (x0i); a�i ij
p � C

R
B
X#

R
BE��

�i j(f(xi)� f(x0i)) ha�i ; a��ij
p d�1 (f) d�2 (a

��)

where (xi)1�i�n ; (x
0
i)1�i�n � X ; (a�i )1�i�n � E� and (�i)1�i�n � R+.

These functions are continuous and convex. The set M is a convex cone.
We now apply Key Fan�s Lemma (the conditions (a) and (b) are satis�ed).
For the condition (c), since BX# is a compact Hausdor¤space in the topology
of pointwise convergence on X and BE�� are weak � compact and "norming"
sets, using the fact that X is isometrically embedding into BX# and by the
classical Goldstine�s theorem there exist for ' 2M two elements, f0 in BX#

and a��0 in BE�� such that

sup
ka��kE��=1
kfk

X#
=1





�� 1
p

i (f(xi)� f(x0i)) ha�i ; a��i
�



p

lnp

=
nP
i=1

�i jf0(xi)� f0(x0i) ha�i ; a��0 ij
p :

If �f0 and �a��0 denote the Dirac�s measures supported by f0 and a��0 respec-
tively, we have

'((xi);(x0i);(a�i );(�i))
(�f0 ; �a��0 ) =

nP
i=1

�i jhT (xi)� T (x0i); a�i ij
p � Cp

nP
i=1

�i jf0(xi)� f0(x0i) ha�i ; a��0 ij
p �

0:

Hypothesis (1) yields

sup
n
'((xi);(x0i);(a�i );(�i))

(�1; �2) : (�1; �2) 2 K
o
� 0:

By the conclusion of Key Fan�s Lemma, there is � = (�1; �2) 2 C such that
�(') � 0 for all ' inM. If ' is generated by the simple elements x; x0 2 X;
a� 2 E� and � = 1, we �nd
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'(x;x0;a�;1)(�1; �2)

= jhT (x)� T (x0); a�ijp � CpR
B
X#

R
BE�� j(f(x)� f(x

0) ha�; a��i)jp d�1 (f) d�2(a��) � 0:

It follows that

jhT (x)� T (x0); a�ij

� C
�R
B
X#

R
BE�� j(f(x)� f(x

0) ha�; a��i)jp d�1 (f) d�2(a��)
� 1
p

and this completes the proof. �

As corollary, we get.

Corollary 5. �L�(p) � �
L
�(q), when 1 � p � q < 1 and �L�(p) � �

L
p ,

for all 1 � p <1:

2. Lipschitz strongly p-summing operators

The following notion was introduced independently by [Saa15] and
[YAR16]. For our convenience, we will adopt the notation of [YAR16].

Definition 13. A Lipschitz map T : X ! E is Lipschitz strongly p-
summing (1 < p � 1) if there is a constant C > 0, such that for all n 2 N,
(xi)1�i�n, (x

0
i)1�i�n in X, (a

:�
i )1�i�n in E

� and (�i)1�i�n in R+, we have

(2.1)
nX
i=1

�i
��
T (xi)� T �x0i� ; a�i ��� � C

 
nX
�i

i=1

dX
�
xi; x

0
i

�p! 1
p

!p� ((a
�
i )i) :

We denote by DLst;p (X;E) the class of all Lipschitz strongly p-summing
operators from X into E and dLst;p (T ) the smallest C such that inequality
(2.1) holds. This generalizes the de�nition introduced by [Coh73] in the
linear case. If T is linear, then in the absence of BX# we have DLst;p (X;E) =
Dp (X;E).

Let T 2 Lip0 (X;E) and v : lnp ! E� be a bounded linear operator. The
Lipschitz operator is a strongly Lipschitz p-summing if, and only if,

(2.2)
nX
�i

i=1

��
T (xi)� T �x0i� ; v(ei)��� � C
 

nX
i=1

�idX
�
xi; x

0
i

�p! 1
p

kvk

Remark 16. Let u be a bounded linear operator from E into F and
1 � p � 1. Then dp(u) = dLst;p(u) because BX# is not involving.

Now, we give the domination theorem of the strongly Lipschitz p-summing
(see [Saa15] and [YAR16]).
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Theorem 20. A Lipschitz operator T from X into E is Lipschitz strongly
p-summing (1 < p <1) if, and only if, there exist a positive constant C and
Radon probability measure � on BE�� such that for all x; x0 2 X, we have

(2.3)
��
T (x)� T (x0); a���� � CdX �x; x0�

0B@ Z
BE��

ja� (a��)jp
�
d� (a��)

1CA
1
p�

:

Moreover, in this case

dLst;p (T ) = inf fC > 0 : for all C verifying the inequality (2.3) g :

Proposition 22. The following properties are equivalent.
(1) The mapping T belongs to DLst;p (X;E).
(2) The linear operator TL belongs to Dp(Æ(X); E).

Even more, DLst;p (X;E) = Dp(Æ(X); E) holds isometrically.

Proof. See [Saa15, Proposition 3.1.]. �

3. Cohen Lipschitz p-nuclear operators

We introduce the following generalization to Lipschitz operators of the
class of Cohen p-nuclear operators studied in [Coh73]. It is a particular
case from that de�ned by J. A. Chàvez-Domènguez in [Cha11] which called
the Lipschitz (r; p; q)-summing operators if we take (r; p; q) = (1; p; p�) and
ki = 1 for all i. The notion of p-nuclear operators was introduced in [PP69]
by A. Person and A. Pietsch. Initially the de�nition of nuclear operators for
Banach spaces, was given by Grothendieck in [?]. J. S. Cohen has initiated
another concept of p-nuclear operators in [Coh73] which is not the same
as the precedent notion and was generalized to (p; q)-nuclear operators (1 �
q � 1) by H. Apiola in [Api76]. In [CZ12], D. Chen and B. Zheng has
generalized this notion to Lipschitz operators. For distinguish these two
notions, we say Cohen p-nuclear operators for that investigated by J. S.
Cohen and we try to generalize this notion to Lipschitz operators.

Definition 14. A Lipschitz operator T : X �! E is Cohen Lipschitz
p-nuclear (1 < p <1), if there is a positive constant C such that for any n
in N; (xi)1�i�n ; (x0i)1�i�n in X; (a

�
i )1�i�n in E

� and (�i)1�i�n in R+, we
have
(3.1) �����

nX
i=1

�i hT (xi)� T (x0i); a�i i
�����

� C sup
f2B

X#

 
nX
i=1

�i jf(xi)� f(x0i)j
p

! 1
p

sup
kakE�1

 
nX
i=1

jha; a�i ij
p�

! 1
p�

:
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The smallest constant C which is noted by �Lp (T ), such that the above
inequality (3.1) holds, is called the Cohen Lipschitz p-nuclear norm on the
space NL

p (X;E) of all Cohen Lipschitz p-nuclear operators from X into E
which is a Banach space. For p = 1 and p = 1 we have like the linear
case NL

1 (X;E) = �
L
1 (X;E) and NL

1(X;E) = DLst;1(X;E) (see below). The
de�nition remains the same if we restrict to �i = 1; like that in [FJ09]. We
use this de�nition with the �i only in the proof of " Pietsch�s domination
theorem".

We know (see [DJT95]) that lp (E) � l!p (E) (the symbol � indicates
that two Banach spaces are isometrically isomorphic) for some 1 � p < 1
if, and only if, dim (E) is �nite. If p = 1, we have l1 (E) � l!1 (E).
We have also if 1 < p � 1, l!p (E) � L (lp� ; E) isometrically. In other
words, let v : lp� �! E be a linear operator such that v (ei) = ai ( namely,

v =
1P
i=1

ei 
 ai, ei denotes the unit vector basis of lp) then,

(3.2) kvk = k(xi)kl!p (E) :

Let T be a Lipschitz operator between X;E and v : lnp� �! E� be
a bounded linear operator. By (3.2), the Lipschitz operator T is Cohen
Lipschitz p-nuclear if, and only if,

(3.3)

�����
nX
i=1

�i hT (xi)� T (x0i); v(ei)i
�����

� C sup
f2B

X#

 
nX
i=1

�i jf(xi)� f(x0i)j
p

! 1
p

kvk :

Proposition 23. Consider T in Lip0(X;E), R in Lip0(E;F ) and S in
Lip0(Z;X). If T is Cohen Lipschitz p-nuclear operator, then R � T � S is
Cohen Lipschitz p-nuclear operator and �Lp (R�T �S) � Lip(R)�Lp (T )Lip(S).

Proof. (a) Let n 2 N; (zi)1�i�n ; (z0i)1�i�n � Z and (a�i )1�i�n � E�.
By (3.3), it su¢ ces to prove that

���� nP
i=1
hTS (zi)� TS (z0i) ; a�i i

����
� �Lp (T )Lip(S) sup

f2B
Z#

�
nP
i=1
jf(zi)� f(z0i)j

p

� 1
p

kvk

where v : E �! lnp� de�ned by v (a) =
nP
i=1

a�i (a) ei. We have
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���� nP
i=1
hTS (zi)� TS (z0i) ; a�i i

����
� �Lp (T ) sup

f2B
X#

�
nP
i=1
jf(S (zi))� f(S (z0i))j

p

� 1
p

kvk ;

� �Lp (T )Lip(S) sup
f2B

X#

�
nP
i=1

����f(S (zi))Lip(S)
� f(S (z0i))

Lip(S)

����p� 1
p

kvk ;

� �Lp (T )Lip(S) sup
g2B

Z#

�
nP
i=1
jg(zi)� g(z0i)j

p

� 1
p

kvk :

This implies that
�Lp (T � S) � �Lp (T )Lip(S):

(b) Let n 2 N; (xi)1�i�n ; (x0i)1�i�n � X; (b�i )1�i�n � F �. It su¢ ces by
(3.3) to prove that���� nP

i=1
hRT (xi)�RT (x0i) ; b�i i

����
� �Lp (T )Lip(R) sup

f2B
X#

�
nP
i=1
jf(xi)� f(x0i)j

p

� 1
p

kwk

where w : F �! lnp� de�ned by w (b) =
nP
i=1

b�i (b) ei. We have���� nP
i=1
hRT (xi)�RT (x0i) ; b�i i

����
=

���� nP
i=1



T (xi)� T (x0i) ; R# (b�i )

����� ;
� �Lp (T ) sup

f2B
E#

�
nP
i=1
jf(xi)� f(x0i)j

p

� 1
p

kuk ;

� �Lp (T )Lip(R) sup
f2B

E#

�
nP
i=1
jf(ei)� f(e0i)j

p

� 1
p

kwk :

Where u (y) =
nP
i=1



R# (b�i ) ; a

�
ei =

nP
i=1
hb�i ; R (a)i ei.

This implies that T is Cohen Lipschitz p-nuclear and �Lp (T �R) � kRk �Lp (T ).
�

Let us present the �Pietsch�s domination theorem�concerning this class
of Lipschitz operators. The proof is like that used in [AMS09]. In [Cha11],
J. A. Chávez-Domínguez gives domination theorem for r; p; q such that 1=r+
1=p+ 1=q = 1 and T in Lip0 (X;E

�).

Theorem 21. Consider T 2 Lip0(X;E) and C a positive constant.
Then the following assertions are equivalent.
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(1) The operator T is Cohen Lipschitz p-nuclear and �Lp (T ) � C.
(2) For any n in N; (xi)1�i�n ; (x0i)1�i�n in X; (a�i )1�i�n in E� and

(�i)1�i�n in R+, we have

(3.4)

nX
i=1

�i jhT (xi)� T (x0i); a�i ij

� C sup
f2B

X#

 
nX
i=1

�i jf(xi)� f(x0i)j
p

! 1
p

sup
kakE�1

 
nX
i=1

jha; a�i ij
p�

! 1
p�

:

(3) There exist Radon probability measures �1 on BX# and �2 on BE�� ;
such that for all x; x0 in X and a� in E�, we have

(3.5)
jhT (x)� T (x0); a�ij

� C(
R
B
X#
jf(x)� f(x0)jp d�1(f))

1
p (
R
BE�� ja

�(a��)jp
�
d�2(a

��))
1
p� :

Moreover, in this case

�Lp (T ) = inf fC > 0 : for all C verifying the above inequality (3.5) g :

4. Relationships between �Lp (X;E);DLst;p(X;E);�L�(p)(X;E) and
NL
p (X;E):

In this section, we investigate the relationships between the various
classes of Lipschitz operators.

Theorem 22. We have for a Lipschitz operator T : X ! E.
(1) NL

p (X;E) � DLst;p(X;E) and dLst;p(T ) � �Lp (T ) for 1 < p � 1.
(2) NL

p (X;E) � �Lp (X;E) and �Lp (T ) � �Lp (T ) for 1 � p <1.
(3) �L�(p)(X;E) � D

L
st;p�(X;E) and d

L
st;p�(T ) � �L�(p)(T ) for 1 � p <1.

(4) �L� (X;E) � NL
p (X;E) and �

L
p (T ) � �L� (T ) for 1 � p � 1.

Proof. (1) Let T 2 NL
p (X;E): Consider x; x

0 in X and a� 2 E�. We
have by inequality (3.1)

jhT (x)� T (x0) ; a�ij

� �Lp (T )(
R
B
X#
jf(x)� f(x0)jp d�1(f))

1
p (
R
BE�� ja

�(a��)jp
�
d�2(a

��))
1
p�

� �Lp (T )(
R
B
X#

dp (x; x0) d�1(f))
1
p (
R
BE�� ja

�(a��)jp
�
d�2(a

��))
1
p�

� �Lp (T )d (x; x
0) (
R
BE�� ja

�(a��)jp
�
d�2(a

��))
1
p� :

Hence by , T is Lipschitz strongly p-summing and dLst;p(T ) � �Lp (T ):
(2) Let T be an operator in NL

p (X;E). We have by inequality (3.1)
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kT (x)� T (x0)k
= sup

a�2BE�
jhT (x)� T (x0) ; a�ij

� sup
a�2BE�

�Lp (T )(
R
B
X#
jf(x)� f(x0)jp d�1)

1
p (
R
BE��

ja�(a��)jp
�
d�2)

1
p�

� �Lp (T )(
R
B
X#
jf(x)� f(x0)jp d�1(f))

1
p :

By Pietsch domination theorem [FJ09], T is Lipschitz p-summing and �Lp (T ) �
�Lp (T ):

(3) Let T be in �L�(p)(X;E). Consider x; x
0 2 E and a� 2 E�. We have by

(1.3)

jhT (x)� T (x0) ; a�ij

� �L�(p)(T )(
R
B
X#

R
BE�� j(f(x)� f(x

0) ha�; a��ijp d�1(f)d�2(a��))
1
p )

� �L�(p)(T )d(x; x
0)(
R
B
X#

R
BE��

��� (f(x)�f(x0)d(x;x0) ha�; a��i
���p d�1(f)d�2(a��))1p )

� �L�(p)(T )d(x; x
0)(
R
B
X#

R
BE�� supx6=x0

��� (f(x)�f(x0)d(x;x0) ha�; a��i
���p d�1(f)d�2)1p )

� �L�(p)(T )d(x; x
0)(
R
BE�� jha

�; a��ijp d�2(a��))
1
p ):

This implies by (2.3) that T is Lipschitz strongly p�-summing and dLst;p�(T ) �
�L�(p)(T ).

(4) Let T 2 �L� (X;E). For n in N, (xi)1�i�n ; (x0i)1�i�n in X and (a�i )1�i�n
in E�, we have

nX
i=1

jhT (xi)� T (x0i); a�i ij

� �L� (T ) sup
kfk�1
ka��k�1

 
nX
i=1

j(f(xi)� f(x0i)) ha��; a�i ij
!

� �L� (T )!
L
p (1; (xi) ; (x

0
i))!p�

�
(a�i )i

�
by Hölder inequality.

This proves that T 2 NL
p (X;E) and �

L
p (T ) � �L� (T ) : �

From the results obtained above we get.

Theorem 23. Consider 1 � p � 1. Let T 2 Lip0(X;E) and L 2
Lip0(E;F ), If L is Lipschitz strongly p-summing operator, and T is Lipschitz
p-summing operator, then L � T is Cohen Lipschitz p-nuclear operator and
�Lp (L � T ) � dLst;p(L)�Lp (T ).

Proof. Let x; x0 2 E and b� 2 F �. By (2.3) we have
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jhL � T (x)� L � T (x) ; b�ij
= jhL (T (x))� L (T (x0)) ; b�ij

� dLst;p(L) kT (x)� T (x0)k
R
BF�� jb

�(b��)jp
�
d�2(b

��))
1
p� ,

and by Pietsch domination theorem in [FJ09]

jhL � T (x)� L � T (x) ; b�ij

� dLst;p(L)�
L
p (T )(

R
B
X#
jf(x)� f(x0)jp d�1)

1
p
R
BF�� jb

�(b��)jp
�
d�2)

1
p� :

This gives that L � T 2 NL
p (X;F ) and �

L
p (L � T ) � dLst;p(L)�Lp (T ). �

Corollary 6. If p � 2. Then �L�(p)(L � T ) � d
L
st;p(L)�

L
p (T ).

Theorem 24. Let 1 � r; p; q < 1 and 1
r =

1
p +

1
q : Let T 2 Lip0(X;E)

and L 2 Lip0(E;F ). If L is Lipschitz � (r)-summing and T is Lipschitz p-
summing, then L � T is Lipschitz (r; p; q)-summing operator and �L(r;p;q)(L �
T ) � �L�(r)(L)�

L
p (T ).

Proof. Let x; x0 2 X and b� 2 F �. We have by (1.3)

jhL � T (x)� L � T (x0) ; b�ij
� �L�(r) (L) (

R
B
E#

R
BF�� j(f(T (x))� f(T (x

0)) hb�; b��ijr d�1(f)d�2)
1
r ):

Using general Hölder�s inequality and the fact that T is Lipschitz p-summing,
we get

jhL � T (x)� L � T (x0) ; b�ij

� �L�(r)(L)(
R
B
E#
jf(T (x))� f(T (x0))jp d�1)

1
p (
R
BF�� jhb

�; b��ijq d�2)
1
q

� �L�(r)(L) kT (x)� T (x
0)k (

R
BF�� jhb

�; b��ijq d�2(b��))
1
q

� �L�(r)(L)�
L
p (T )(

R
B
X#
jf(x)� f(x0)jp d�)

1
p (
R
BF�� jhb

�; b��ijq d�2)
1
q :

This implies that L � T 2 �L(r;p;q)(X;F ) and �
L
(r;p;q)(L � T ) � �

L
�(r)(L)�

L
p (T ).

�
Corollary 7. Let 1 < p <1. Let T 2 Lip0(X;E) and L 2 Lip0(E;F ).

If L is Lipschitz � -summing and T is Lipschitz p-summing , then L � T is
Cohen Lipschitz p-nuclear operator and �Lp (L � T ) � �L� (L)�Lp (T ).
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