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PREFACE

This course was given in the first semester of 2020-2021 at the university
of M’sila. The text is intended for the students of Ms. The main theme of
this course is to give an introduction to the non linear summing operators
in the domain of "the non linear geomerty of Banach spaces". We treat and
study in chapter I, the Lipschitz functions between metric spaces and the
Lipschitz dual space of a metric space. This space is a conjugate Banach
space. We study the predual and their properties. Chapter two is devote
to the notion of Lipschitz p-summing functions introduced by Farmer and
Johnson. We end this by giving the non linear Grothendieck’s theorem. In
chapter three, We introduce and studied some other classes of summability
and their connections. I have tried to make this course fairly complete
and comprehensive. For this, I recommend essentially the excellent book of
Weaver and the papers of Farmer-Johnson and Godfroy-Kalton.



CHAPTER 1

The Space Lipy(X)

1. Lipschitz Functions

1.1. Metric Spaces. The notion of metric spaces was formalized by
Maurice Fréchet in his thesis "Doctorat d’Etat" in 1906 (see, "Sur quelques
points du calcul fonctionnel", Rendic. Circ. Mat. Palermo 22 (1906) 1-74)
and was among the first who used the word space. A good reference for this
is the book of weaver [Wea99].

DEFINITION 1. Let X be a non empty set. We say that d is a distance
on X if d is an application from X? into Ry such that for all x,y,z in X,
we have
(1) d(z,y)=0<=z=y (separation),
(i) d(e.y) = d(y, ) (symmetry),
(131) d(z,z) <d(z,y) +d(y,z) (triangular inequality).

The space X equipped with d is called metric space (X, d).
DEFINITION 2. Let (X,d,e) be a pointed metric space, i.e., a metric
space (X,d) with a distinguished or neutral element e (a fized point in X

which is taken to be the zero element if X is a normed space). We denote
by Mg the class of complete pointed metric spaces.

We now give some particular metric spaces

DEFINITION 3. Let (X,d) be a metric space. One say that d
(1) is ultrametric if it satisfies for all (x,y,2) € X3

(1.1) d(z,y) < max(d(zx, z),d(y, 2))

We can see that any triangle in X 1is isosceles,
(2) satisfies the four point condition (4PC') or is additive or is 0-hyperbolic
if, for any (x,y,u,v) in X* (not necessarily distinct) we have

(1.2) d(z,y) +d(u,v) <max{d(z,u) +d(y,v),d(z,v) +d(y,u)},

Note that if d satisfies the (4PC') then one of the sums must be less or equal
than the other which must be equal (arque by contradiction that one of the
sums is strictly larger than the other two),

(3) satisfies Reshetnyak’s inequality if, for any (x,y,u,v) in X we have
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2 1. THE SPACE Lipy(X)

(1.3) d? (z,y) + d? (u,v) < d? (z,u) + d? (y,v) + d? (z,v) + d? (y,u) .

The inequality (1.1 is called strong triangle inequality or ultrametric
inequality. Sometimes the ultrametric is also called a super-metric. We
observe that in the ultrametric space X all triangles are isosceles with the
two equal sides at least as long as the third side. To see this, consider
z,y,z € (X,d) with d(y, z) > d(z, z) and suppose

d(z,y) < max(d(z, 2),d(y, 2))-
Then d(z, z) = d(y, z) because otherwise
d(y,z) > d(z, z) = d(y, z) > max(d(z,y), d(z, 2)).

REMARK 1. Let (X,d) be a metric space.

(1) If (X, d) is ultrametric then (Y,d,Y) is ultrametric for any Y C X.

(2) If (X1,d1),...,(Xn,dn) are ultrametric spaces then the cartesian
product X1 X ... X X, is ultrametric with respect to

d ((371’ 7-'1/'11) s (yla ceey yn)) = max (dl (fplayl) s ~-'7dn (ﬂCn, yn)) .

(3) Isosceles triangles. If a triangle in (X, d) has sides (distances between
vertices) a < b < ¢, then b = c.

(4) Radius > diameter. For any ball its radius is greater or equal to its
diameter.

PROPOSITION 1. Ultrametric = (4PC') = Reshetnyak’s inequality.

PROOF. Second implication [AO10] . Suppose the elements x1, x2, x3, x4 of
a metric space (X, d) satisfy

d(x1,x2) + d(x3, x4) < max{d(z1,x3) + d(z2,x4),d(x1,x4) + d(z2,23)},
and show that

d(z1,32)* + d(xs,24)* < d(21,23)% + d(22, 24)* + d(21, 74)* + d(22, 23)*.

By scaling and relabeling, we can assume that

d(zy,x2) + d(zs,z4) = 1 < d(z1,23) + d(x2,24).
Let a = d(x1,x2), b = d(x1,x3). Then

d(zz,x4) =1—a, d(xa,m4) > 1—0.
And furthermore

d($1,$4) > |d(IL‘1,.’E3) — d($3,$4)‘ = ]a—i— b— 1’,

and

(g, w3) > |d(x1,22) — d(1,23)] = |a — b].
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Thus, it suffices to show that, for any a € [0, 1] and b > 0,

a4+ (1—-a)?<PP+1-0%*+(a+b—1)2+ (a—b)>
This inequality is easily verified because it is equivalent to (2b — 1)2 > 0.
The reciprocal is false.
The 4PC is stronger than the triangle inequality (take u = wv), but the
ultrametric is stronger than the 4PC [God07]. In fact we have, d (z,y) +
d(u,v) =d(z,u)+d(y,v) or d(z,v) + d(y,u). Indeed, suppose that

d(z,y) +d(u,v) < max{d(z,u) +d(y,v),d(z,v) +d(y,u)}

and
d(z,u)+d(y,v) <d(z,v)+d(y,u).
We have
d(z,u) +d(y,v) <max{d(x,y) +d(u,v),d(z,v) +d(u,y)}
and

d(z,y) + d(u,v) d(z,u)+d(y,v)
max {d (z,y) + d (u,v),d(z,v) +d(u,y)}

d(z,y) + d(u,v)

INIA A

This implies

d(z,y) +d(u,v) <d(z,y)+d(u,v)

or

d(z,v)+d(y,u) >d(z,y)+d(u,v)
and hence d (z,y) + d (u,v) = d(z,y) + d (u,v). O

1.2. Product of Metric Spaces. We interest to M,.

DEFINITION 4. Let {(X;,di,ei),i € I} be a family of metric spaces in
M,. We can define by (HOO X;,d, e) the set of elements x = (x;) such
that supdx, (z;,e;) < 0o, with the metric

el

d(z,y) = supd; (s, ;)
icl

and the distinguished point e = (&;)ic;.
We have (Hoo X, d, e) e M,.

EXAMPLE 1. The product HOO R is [* (R).



4 1. THE SPACE Lipy(X)

1.3. Lipschitz functions. The natural morphism between metric spaces
are Lipschitz functions like linear operators between Banach spaces. In
mathematical analysis, Lipschitz continuity, named after Rudolf Lipschitz,
is a strong form of uniform continuity for functions.

DEFINITION 5. A map f : (X,dx) — (Y, dy) between two metric spaces
is called Lipschitz if there is a positive constant C' such that

Va,y € X, dY(f(fI?),f(y)) SCdX(:E?y)
If C =1, the map is called nonexpansive (and contraction if C < 1).

For a Lipschitz map f, we define its Lipschitz constant by

: dy (f (=), f(y))
fllLi, = Lip (f) = sup———F—"—="+ =
11 Lip (f) U ()
inf {C : C verifying the above inequality}
Let (X,ex,dx), (Y,ey,dy) be pointed metric spaces. We say a map
f:(X,ex,dx) — (Y,ey,dy) preserves distinguished point if f(ex) = ey.

DEFINITION 6. Let (X,dx), (Y,dy) be two metric spaces. A map f :
(X,dx) — (Y,dy) is called bi-Lipschitz or quasi-isometry, if f is bijective
(one-to-one = injective, and onto = surjective) and both f, f~1 are Lipschitz.

In this case X and Y are called
(1)- Lipschitz isomorphic or Lipschitz homeomorphic (Nigel Kalton)
or
(2)- Quasi-isometric (Nik Weaver).
A bi-Lipschitz function f is an isometry if

Vx,yEX, dY(f(x)vf(y)) :dx(ﬁ,y).

In the theory of the nonlinear geometry of Banach spaces, the linear
isomorphisms are replaced by bi-Lipschitz maps, the isometric isomorphism
correspond exactly isometric.

PROPOSITION 2. Let X, Y and Z be metric spaces and let f : (X,dx) —
(Y,dy), g: (Y,dy) — (Z,dyz) be Lipschitz maps. Then go f: (X,dx) —
(Z,dz) is Lipschitz and Lip (g o f) < Lip (g) Lip (f).

Proor. For z,y in X, we have

dz(go f(z),g90f(y)) Lip (9)dy (f (z), f (y))

<
< Lip(g)Lip (f) dx (z,9)
and this shows the proposition. O

THEOREM 1. Let Xy, Yy be metric spaces and let X,Y be their com-

pletions. Let fo : Xo — Yy be Lipschitz. Then f has a unique Lipschitz
extension f: X — Y such that Lip (f) = Lip (fo) .
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PROOF. Since Lipschitz functions are continuous and Xy is dense in X,
there is at most one Lipschitz extension. Consider z in X\ Xy and put

f(z) =1im fo(zn)
where z is a Cauchy sequence in Xy such that z,, — z. We have Lip (f) =
Lip (fo). Indeed

dy (f(z), f(y))

dy (lim fo(zn), lim fo(yn))
limy d(fo(2n), fo(yn))

< lim Lip (fo) dx (2n, yn)
< Lip (fo)dx(z,y).
This implies that Lip (f) < Lip (fo) . For the converse, consider the following
diagram
X, % v
ix |\ iy
x Ly
and we have in the first part
do (i .
Lip (iy 0 fo) = sup. (iy o fo () iy © fo ()

Ay dx (.73, y)
e (fo ) o 1)
T#y dX(l', y)

= Lip(fo)

and in the second part

Lip (7,y o fo) = Llp (f o ’Lx) S Llp (f) .
This implies that Lip (fo) < Lip (f) and this completes the proof. O

PROPOSITION 3. Let (X,d) be metric space. For Lipschitz functions
fy9:(X,d) — R and scalar a € R, the Lipschitz constant has the properties

(a) Lip(f+g) < Lip(f) +Lip(g)
(b) Lip(af) = |a|Lip(f)
(¢) Lip(min(f,g) or max(f,g)) < max (Lip(f),Lip(g))

where min (f,g) (resp. max (f,g)) denotes the pointwise minimum (resp.
maximum) of the functions f and g.

PROOF. (a) and (b) are obvious. For (¢), let h = max (f,¢) and fix z,y
in X. Let C = max (Lip(f),Lip(g)). Without loss of generality suppose
h(z) > h(y) and h(x) = f(x). Then

h(z) — h(y) < f(z) — f(y) < Cd(z,y).
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Taking the sup over x,y in X, we obtain Lip (¢) < C. From the formula
min (f, g) = —max (—f, —g), we get the second inequality. O

PROPOSITION 4. Let X,Y be metric spaces and let f and {fn},cn be
Lipschitz functions from X to Y. Suppose that f, — f pointwise. Then

Lip(f) < sgpLip (fn)-

PRrROOF. Let x,y be in X. We have

dy (F(@). 7)) = lim dy (fu (@) fu(v)
W@, 0w) Ly U @) fa )
dx (z, yg n—s00 dx (z, y%
B @) FE) |y 5). )
n\T), Jn\Y
S T ()
by permitting the sup, we obtain the result. O

COROLLARY 1. Ifz fn converges pointwise then Lip Z o] < Z Lip (fn) -

n>0 n>0 n>0

n
ProoFr. Let g, = Zfl and f = an then g, — f pointwise and
=1 n>0

n
Lip (gn) < Z Lip (fi). So By Proposition 4] we have
i=1
Lip (f) < supLip (gn)
[e.e]

< ) Lip(f)
i=1
and this ends the proof. ([

ProOPOSITION 5. Let X be a metric space and let f,g : X — R be
Lipschitz maps. Then

(a) Lip (fg) < Ifllo Lip (9) + ll9llo Lip (f) ,

(b) Lip <J1c> < LiIZQ(f), if If ()| > €e> 0 for all z € X.

If diam(X) < oo, then the product of any two scalar valued Lipschitz func-
tions is Lipschitz.

PROOF. (a) For all z,y € X, we have

1fg9(z) = fg(y)] [f (@) 19 () —g W)+ 19 W) If (x) = [ (Y)|

<
< [ lloo Lip (9) + [lglloo Lip (f) -
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(b) For all z,y € X, we have
7o 7wl

fx)  Fy)

IN

Then Lip <;) < Lq;(f)

[f () = [ ()]
|f (2) [ (y)

Lip (/) d(z, ).

O

PROPOSITION 6. Let (X,dx),(Xi,d;) (i € I) be metric spaces in My.

For each i in I, let f; : X — X;

be a Lipschitz map which preserves

distinguished point. Suppose that supLip (f;) < oo. Then, the the product
el

map f: X — Hoo X, satisfies Lip (f) := su?Lip (fi)-
1€

PROOF. Let z be in X. We prove that (f;(z)) € HOO X;. We have

supdx; (fi(z),e) =
el
(d = supd;) <
i€l
<
For z,y in X. We have by definition

d(f(z), f(y))

sg?dxi (fi(z), fi(e))
suplLip (f;) d(, )
i€l

0.

di (fi(), fi(y))

sup

d(.’L‘7 y) el d($a y)
and hence
@) _ i (f(a) £iw)
Ay d(iE, y) r#y i€l z, y)
i) fi)
i€l z#y ($7 y)
= supLip (fi)
el
This implies that Lip (f) := supLip (f;); and we obtain the result. O

i€l

1.4. Extending Lipschitz maps. We give the nonlinear Hahn-Banach

theorem.

THEOREM 2 (Nonlinear Hahn-Banach theorem, McShane-Whitney ex-

tension theorem). Let E be a subset

of a metric space (X,d) and let f :

E — s (I) be a Lipschitz function. Then f can be extended to a Lipschitz

function f: X — I (I) with the same Lipschitz constant (we say that

loo (I) is 1-injective).

PRrROOF. By considering each coordinate separately, it suffices to prove

that for R instead of lo (I). Fix z in X — E. We must find a value for f(z)

such that for all z in F
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|7() ~ ()] < ip(f)d(,2), VaeB

or equivalently

f(y) — Lip(f)d(y, z) < f(z) < f(z) + Lip(f)d(z,2), VyeFE

hence

sup (f(y) — Lip(f)d(y, 2)) < f(2) < inf (f(z) + Lip(f)d(z, 2))

yeE zel

It is possible because for all x,y in F, we have

f(z) = f(y) < Lip(f)d(z,y) < Lip(f)(d(z, ) + d(y, 2)).
Define the function f: X — R by the formula

f(2) = inf (f(z) + Lip(f)d(x, 2))

To see that this function satisfies the results, fix an arbitrary o € E. Then,
for any z € F

f(zo) = f(x) < Lip(f)d(zo,),
< Lip(f) (d(z0,2) +d(z,2)).

This implies (that f(x) + Lip(f)d(z, z) is bounded below)

f(w@o) — Lip(f)d(zo,2) < f(x) + Lip(f)d(z, 2).

So f(z) is well-defined. Also, if z € E, the above shows that f(z) = f(2).
Finally (by definition of the inf), for z,y € X and € > 0, choose z, € E such
that

f(z) > f(z:)+Lip(f)d(z,2.) — €
~f(z) < —f(z.) = Lip(f)d(z,22) + €
Then
fly) = F(z) < fla:) +Lip(f)d(y, z2) — f(x2) — Lip(f)d(z,22) + €
< Lip(f)d(y, z) +e.
Thus, we see that fvis indeed Lip(f)-Lipschitz. [l

THEOREM 3 (Kuratowski-Fréchet). Every metric space (X,d) is iso-
metric to a subset of lo (I) for some set I. If X is separable, then (X,d) is
isometric to a subset of lo (N).
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PROOF. Let X be in My. Consider zg in X and define

f:X —ls(X)

by
f()(y) =
f(z) =
@)l <
We have
d(f (z1), f(z2)) =
<

d(z,y) — d(y, o)
(d(z,y) — d(y, z0))yex
d(z, xg).

sup [f (z1) (y) — f (z2) (¥)|

yeX

sup |d(.’E1, y) - d(‘rQa y)|
yeX

d(l‘l, Iz).

In the other hand if we take y = z2, we have

d(f (xl)af (x2)) > d(ﬂjl,ﬂjg).
This implies that d(f (x1), f (z2)) = d(x1,x2) and hence f is an isometry.
By Frechet’s embedding, (X, d) is isometric to a subspace of I« (N). Fix xg

m X

f: X —

X —

loo (N)
(d(x, zy)

— d(z0, Zn) ) pey

where (x,,) is the subset dense in X. We have in the first part

1f (1) = f (@2)lly, )

and in the second part

1f (z1) = f (@2)ll;_

(we take x = z2)

The theorem is proved.

Linear
Banach space
isometric isomorphism

= sup|d(z1,z,) — d(w2, )|
neN

< supd(zy,x2)
neN

< d(z1,z2)

= sup|d(z1,zn) — d(w2, 2,)|
neN

= sup|d(zy,z) — d(z2, 2)|
reX

> d(z1,x2).

O

Lipschitz

metric space

isometric

topological isomorphism bi-Lipschitz or quasi-isometric
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1.5. Retract spaces. The notion of Lipschitz retract in metric spaces
is like the linear projection in Banach spaces.

DEFINITION 7. Let X be a metric space and let E& be a subspace of X.
A Lipschitz map p : X — E is called a Lipschitz retraction if p/E = 1d.
In this case, we say that E is a Lipschitz retract of X. A metric space E is
called an absolute Lipschitz retract if it is a Lipschitz retract of every metric
space containing it.

PROPOSITION 7. LetY be a metric space. Then, the following properties
are equivalent.

(i) The space Y is an absolute retract space.

(13) For every metric space X, for every subset E C X and for every
Lipschitz function f : E — Y can be extended to a Lipschitz function
f: X —Y.

X
_ f
VAN
g Ly

(7i1) For every metric space Z containing Y and for every metric space
F, then every Lipschitz function f:Y — I can be extended to a Lipschitz
function f: Z — F.

7z

. f
AN
vy LoF

PrOOF. (iii) or (ii) = (i) We take FF =Y and f =idy or £ =Y and
f=idy. N
(i)=(iii) f = f op is the extension by the following diagram

Z

it N NS
id f

Yy — Y —

(i)==(ii) By the last exercise Y can be regarded as a subspace of
loo (Y). Hence there is a Lipschitz retraction p : loo (YY) — Y. Let
kof : E — lx(Y) be a Lipschitz function. By Proposition [2| there is
a Lipschitz extension [’ : X — I (V). If we take f = po f’, we prove this
implication

X
. f! pof’
( N\ N
E Ly oy &
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and we end the proof of the proposition. ([

2. Lipschitz Spaces

DEFINITION 8. (a) Let (X,d) be a metric space. Then Lip (X) is the
space of all bounded scalar valued Lipschitz functions on X with the norm

£l = max {[| /]l , Lip (£)} -

Let now (X, d,e) be a pointed metric space with a distinguished "base point”
e which is fized in advance. We denote by Lipy(X) the space of all bounded
scalar valued Lipschitz mappings on X, vanishing at e with the norm

Lip (£) '_$¢5 dx(z,y)

The spaces Lip (X) and Lipy(X,Y’) become Banach spaces. We put

X# = Lipy(X) = Lipy(X, R).
This Banach space of Lipschitz functions is called also Lipschitz dual. It

has been used by various mathematicians as a framework to extend results
from linear functional analysis to the nonlinear case. We denote by X =

{(z,y) e X?:z #y}.

PROPOSITION 8. Let (X,e,d) be a pointed metric space. The space
(Lipg(X),Lip(.)) is a Banach space.

PRrROOF. 1. One verify that Lip(.) is a norm on Lipy(X). Let f be in
Lipy(X), we have

e - s
— VY(r,y)eX, 2L L
) aGe.y)
— Yoy e X, fz)=F).
This implies that f is constant, As f (e) =0, thus f = 0.
Consider f, g in Lipy(X). We have

Lip (f +g)
B |f(z) +g(z) = (f(y) + 9(v))]
= sup
Ty d(:v,y)
< SupIf(:C) — @)l +lg(x) — g(y)|
) - i) oo o)
— fly g(z) —g(y

< Lip(f)+Lip(g)-
Let f be in Lipy(X)and A be in R. One have



12 1. THE SPACE Lipy(X)

M) = A

d(z,y)
@) = )
£y d(x7y)

= ALip(f).

This means that (Lipy(X), Lip (.)) is a normed space.

We prove now that (Lipy(X),Lip (.)) is a Banach space.

We use this: normed vector space is complete if, and only if, every absolutely
convergent sequence (E[) converges. Indeed, the forward direction of this is
easy. To prove the reverse direction, let (g,) be any Cauchy sequence; we
must show that it converges. Passing to a subsequence, we may assume that
Int1—Gn < 2%1 for all n. Then define f; = ¢ and, forn > 1, f,, = gn—9gn_1-
Evidently f, is absolutely convergent, and since its n-th partial sum is just
gn, the implication “absolutely convergent implies convergent” now entails
that (g,) converges.

Lip(Af) =

THY
Al

| <

o
Let (f.) be a sequence in Lip(X) such that Z Lip (fn) < oo. For any x €
n=1

X we have |f,(z)| < Lip (fn)d(z,e) < co. Thus (f,) converges pointwise,

and the sum f is Lipschitz by Proposition Letting g, = ka be the

k=1
n-th partial sum, we have

Lip (f — gn) = Lip < > fk) < Y Lip(fi) = 0.

k=n+1 k=n+1

This shows that the series f,, converges to f in Lipy(X). By the above, we
conclude that Lipg(X) is complete.
Let (fn)nen a Cauchy sequence in Lipy(X). We have

Ve>0 3dngeN:Vm,n>ng; Lip(fin— fn) <e€

Lo (o — ) = sup LU @) = i (4)) = (&) = f ()
T#y d(xvy)

So, forevery x € X (fm (x)—(fn (x)) is a Cauchy in R and hence converges.

Let f(x) be its limit. We have

2) F(0)= lim f,(0)=0.
b) Let z,y be in X. We have

<e.

1A sequence (f,) in a normed vector space is said to converge absolutely if Z I/l

converges.
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F@ - F@) = lm [f (@)~ fu )]
“lim Lip (£,) d(a.y)
Kd(z,y)

where K = Lip (f,,). Indeed, by

|Lip (fn) — Lip (fm)| < Lip (fn - fm) <e
Hence (Lip (fn)),cy is a Cauchy sequence in R and thus converges to K. So
f € Lipy(X).
c) (fn) converges to f.
Consider n > ng. We have Lip (f, — f) = mliLnOOLip (fn—fm) < € and

hence (fn)nen converges to f. O

EXAMPLE 2. Let X be a set. We denote by

loo (X) = {f : X — K such that sup |f(x)| < oo}
rzeX

Let X be a pointed metric space of finite diameter, i.e., sup d(z,y) < co.
z,yeX

Show that Lipg(X) C loo (X).

: — i f(@) = f()]
We have Lip (f) := iigw
|f(x)] <Lip(f)d(z,0). Consequently, f € lo (X).

REMARK 2. Let X be a pointed metric space.

(1) Lip(.) is only a seminorm, not a norm on Lip (X).

(2) Consider the set of all real-valued Lipschitz functions modulo the set
of constant functions. Lip (.) descends to a norm on this quotient space and
it is not hard to see that the result is isometrically isomorphic to Lipy (X)
(regardless of the choice of base point). With this procedure there is no good
way to define products or a partial order on the quotient.

(3) The space Lipy (X) does not depend on the choice of base point. If
e1 and es are two different distinguished elements, then the linear map

. This implies that by taking y = 0,

2B LipO(Xvel) - LipO(Xve2)
f —  f—fl(e2)

1S a surjective isometry.

3. The predual of Lipy(X)

It was shown by Arens and Eells [AE56] (see also [Wea99]) that Lipg(X)
is even a dual Banach space (but not reflexive if X is infinite and does not
have constant functions in general), i.e., there exists a Banach space Z such
that Lipy(X) is isometrically isomorphic to Z . This canonical space is
known as the Arens-Eells space by Weaver and the Lipschitz-free space on
X in [GKO03]. It well be noted by F (X, dx).
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3.1. Construction of this space. We show that the unit ball By is
compact.

Product Topology

Let (X;,7;)ier be a net of topological spaces. We note by

xX=]]x
el
The product topology of X noted 7 is the least fine topology making
projections continuous
Di X e )(Z
("Ei)ie] — %
The least fine, i.e., having the fewest openings. The elementary openings
of the product topology are of the form

m pj_ll/lj J (finite) C I.
JjeJ

REMARK 3. Let (Y,S) be a topological space.

(1) The projection p; is an open application.

(2) An application f : (Y,S) — (X, T) is continuous if, and only if,
pi o f is continuous for every i in I.

3.1.1. Tyckonov’s theorem. The celebrate theorem in the product topol-
ogy is the theorem of Tychonov(ff).

THEOREM 4 (Tychonov). A product space product X = HXi is compact

i€l
if, and only if, X; is compact for all i in I. In other words, the topological
product of any family of compact spaces is a compact space.

Pointwise convergence is the same as convergence in the product topol-
ogy on the space YX, where X is the domain and Y is the codomain. If the
codomain Y is compact, then, by Tychonov’s theorem, the space Y¥ is also
compact.

Let (X,d,e) be a pointed metric space. The topology 7, of pointwise
convergence is the topology induced by the product R¥ and determinates
by the condition

fi B f e e X, fi(s) — f (@)

for any net (f;);c; in R¥ and f € R¥.

Let now giving the analog of the Aloaglu (1940 for every Banach spaces)-
Banach (1932 for separable Banach spaces) theorem for the unit ball By#
of Lipy(X).

3.1.2. Compactness of By# is compact. We study the compacteness of
the unit ball of X7.

PROPOSITION 9. The unit bull Bx# is compact for the topology T,,.
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PROOF. Observe that By is closed in R¥ with respect the topology
7,. Indeed, consider a net (fi);c; in R* such that

fiif-

For x,y in X | the inequality

|fi () = fi (y)| < d(z,y)
implies that

(@) = f(y)] < d(z,y)

and consequently f € Byx. Let now f € B. We have
|f(z)] < d(z,e), Yz € X.
This shows that

fe JJ0,d(,e)

zeX
and this implies

Byx# C H 0,d(z,e)].

zeX

The space H [0,d(z,e)] is compact by Tychonov’s theorem and Byxis
zeX
closed so it is compact (closed of compact is compact). O

3.1.3. Conjugate space. Let E be a Banach space. We say that F is a
conjugate space if there exists a Banach space B such that B* is isometrically
isomorphic to F (i.e., B* = F). We now give a simple sufficient condition
to generate that space B exists.

Let us recall that a family of seminorms on a linear space generates a
locally convex topology in the following sense.

THEOREM 5. Let {p; : i € I} be a family of seminorms on the linear
space E£ . Let U be the class of all finite intersections of sets of the form

{z € E:pj(x) <r;}
where j € J (finite) C I, rj > 0. Then U is a local base for a topology
J that makes E a locally convex topological vector space. This topology is
the weakest making all the p; continuous, and for a net {x,} C E, xo — @
in J if, and only if, pi(zq —x) — 0 for each i € I.

THEOREM 6 (Dixmier-Ng theorem). Let E be a Banach space. Suppose
that there is a ( Hausdorff ) locally convex topology o on E such that Bg is
o-compact. Then E is a conjugate space.
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PROOF. Let B = {5 €L :§p, is U—continuous} (E'= algebraic conju-
gate space of F). Then B is a closed linear subspace of E* and is therefore
a Banach space; (to see that B C E* observe that for any £ € B the image
&(Bg) is compact and hence bounded set of scalar; that is, ||€]| is finite and
so & € E*. Also B is closed in E*; because convergence in E* entails uniform
convergence on Br. We now bring in the (canonical embedding ) operator
Je,B : . — B* defined by

(&, Je.B (1)) = £ (z).

This operator assigns to each x € X the functional "evaluation at " in B*,
we clearly have ||Jg g (z)]] < 1. The proof will be completed by showing
that Jg p () is an isomorphic isometry between E and B*. We do this by
showing that Jg p(z) is injective and that it maps Br onto Bp- . The first
assertion follows because B is total. Indeed B contains the dual space F;
which certainly separates the points of E. The second assertion follows from
the fact (evident by definition of B ) that Jg p is continuous from the o-
topology on E into the weak*-topology on B*. This means in particular that
JE,B (BE) is weak™-compact in B*. But, by theGoldstine-Weston density
lemma, this image is also weak*-dense in Bpx. (]

REMARK 4. Any weak”-closed linear subspace F of a conjugate space
E* is dtself a conjugate space. This follows from the observation that Br is
compact in the (relative) weak*-topology.

We now give an example.

ExAMPLE 3. Consider the space Lip(X,d,R) of bounded Lipschitz func-
tions defined on the metric space (X,d) and normed by ||.||;, = max {||.||, ,Lip (.)}.
Let o be the topology of pointwise convergence on X, which we denote by
o (Lip (X,d,R), X). Then Bx is certainly a o (Lip (X,d,R), X)-closed sub-
set of X. We have

Brip (x.ar) C [-1,1]7 .

Since [—1,1] is compact by Tychonov’s theorem we have [—1,1]~. Conse-
quently, By, x,qr) 18 o (Lip (X, d,R), X)-compact and so X is a conjugate
space.

3.1.4. Lipy(X) is a dual space. We have seen that the unit ball Byx
is 7,-compact and according to "Dixmier-Ng theorem" Lipg(X) is a dual
space, for every X € M.

THEOREM 7. The space Lipy(X) is a dual space, for every X € M.

Proor. By Dixmier-Ng’s theorem, it suffices to prove that 7, is Haus-
dorff locally convex.

(1) The topology 7, is locally convex.

(2) The topology 7, is separating.



3. THE PREDUAL OF Lipy(X) 17

(1) Define

pe(f) =1f(z)|, =€ Eand feBxs

and put P = {p, },er. By the precedent theorem, the topology defined
by P is locally convex and it is exactly the topology of pointwise convergence
Tp.

(2) The topology 7, is a Hausdorff topology if, and only if, the family
{pz}zcE is separating, i.e., given f # 0, there exists x € E such that p,(f) #
0. This is the case and this ends the proof. ([l

REMARK 5. On bounded sets the weak -topology agrees with the topology
of pointwise convergence.

3.2. Arens Eells space. Let (X,e,d) be pointed a metric space. A
molecule on X is a real valued function m on X with finite support (i.e.,
the set where m has non-zero values) and satisfies

Z m(z) =0.

zEsupp(m)
Denote by M(X) the real linear space of molecules on X. We can write

m = Z m (7)1,

z€supp(m)
=1

where supp(m) = {21, ..., 5} and 1y, denotes the characteristic function of
the set {z}. For x,y € X we define the basic molecule my, s, = 15,1 — 1{z,}
(with 1,z € X are called atoms). It is easy to to see that every molecule m
can be written as a (non unique) finite linear combination of basic molecule

n
(the condition Zm (z;) = 0 insures that such representations of m exist

i=1
m = MMy gy + (A1 +X2) My o5+ -+ (A1 4+ Ay1)Me,,_y ., ). We have

l
mo= Ya (1~ 1g,)

Jj=1
l
= Z ajmwj,yj.
Jj=1
EXAMPLE 4. Consider m : R — R such that

0) = —4,
1) =1,
2) =3

therwise.

m(
m(
m (
0o
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m = *4.1{0} + 11{1} + 3.1{2},
= —3.1y0y — L1y + L1y + 3.1,
= L(1gy — 1) +3(1gzp — 1qoy) -
Put now

l
Il pgxy = inf $ > lagldx (25, 95) ¢,
j=1

l
over all representation of m = Z Aj (l{xj} — l{x,_}) .
J
j=1

It follows that ||.|[ vx) is a norm on the vector space M(X). Denote by
(X, dx) the completion of the normed space (M(X), .|| y4(x))- This space
was first introduced by Arens and Eells [AE56].in 1956. Originally, the basic
idea goes back to Kantorovich [Kan42]. The terminology Arens-Eells space
E(X,d) is due to Weaver [Wea99|]. A different notation and appellation
was used in [GKO3] by Godefroy and Kalton. It is the Lipschitz-free space
denoted by F (X, d) which we will introduce in the sequel.

REMARK 6. Fvery molecule m is uniquely expressible in the form

l
m = z;aa‘ (1{zj} - 1{e}>
-

where the points x; are all distinct and none equals to e.

isometrically

We now prove that (/E (X))* = Lipy(X).
THEOREM 8. (£(X))" is isometrically isomorphic to Lipg(X).
PROOF. Define

S : E* (X,d) — Lipy(X)
by

(Se)() = ¢ (L} — 1gey)) -
=d(z,2’) for all z,2’ € X (EI), we have

Since Hl{x} — 1@ E(X,d)

|(S) () = (Se) ()]

# ((Liay = Lep)) = @ ((Lay = 1))
(L) — 1))

< [lell d(z, ).

Also (S¢)(e) = ¢(0), so indeed S¢ € Lipy(X). It follows that S is a
nonexpansive linear mapping from A* (X,d) to Lipg(X) i.e., Lip(S¢) <
el g

Al

2Voir Proposition |10 below
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Define now R : Lipy(X) —&* (X, d) by
=Y m(z) f(x)

l
for f € Lipy(X) and m a molecule. If m = Z Aj (l{m].} - 1{95’.})7 we have
J
j=1

(Rf)(m)| = (Zm(m)f(w>>|
l
> oS (@) f ()

Azl

< lfre) 1 (3)
5 g Ald ((25) -

(f)(m)| < Lip(f) [[m|| ps(x» Which uniquely extends to a continuous

linear functional on the completion A(X,d) of M(X), denoted by the same
symbol Rf. Thus Rf € E*(X,d) and ||Rf| < Lip(f). Straightforward
calculations show that R and S are inverses. Indeed, for all z € X

IN

Hence

(SoR)(f)(x) = S(R(f)) (x)
= R(f) (1) — L)

|
=
5

and for all m € M (X)
(RoS)(p)(m) = R(S (@))(m)

- j;xj CICEAREICIEA),
J71
- ;w (1{%}‘1{35/.})

= ¢ (m).

The operators R,S are nonexpansive and Ro S = So R =1d , so S is
isometric ([lz]| = [|(R o S) (z)|| < IR |5 (z)[| < [|S (z)]]) and hence Lipy(X)
is isometrically isomorphic to A* (X, dyx). O

PROPOSITION 10. Let (X,e,d) be a pointed metric space.
(1) For any molecule m we have
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> m(z)f(x)

zeX

Imll px,ax) = sup {|<m, Nl= 1 fe BX#}
and there exists f € Bx# such that (m, f) = [[m|| pxay)-

(2) [l (x,ax) is @ norm on M(X) and Hl{x} — 1{y}HE = d(z,y) for all
x,y in X.

(3) -l s(x,ax) 18 the largest seminorm on M(X) which satisfies for all
2,y in X, 1) = 1l 5 = d(@9)-

PROOF. (1) This follows from the identification of Lip, (X, d) with £(X,d)*
and the Hahn-Banach theorem.

(2) The inequality ||1{m} - l{y}HfE < d(z,y) follows from the definition.
Conversely, fix x in X and define

fa: (y) - d(l’,y) - d(m,e).
We have f, € B, (x,d) because f; () = 0 and Lip (f;) = 1. Indeed,

. o ‘fm (yl)_fac (y2)’
Lip (fz) = S0P T )

v

sup

Ty d(l‘,y)
Z d($7y) — 1'
d(z,y)
and
. |fe (Y1) — fo (32)]
Lip(fz) = sup
() ny  Ay1,92)
G n) ~ d(e, )
Y17y d(y1,y2)
< d(y1,y2 _1
d(y1,92)
By part (1), we have
Ly =Ll = [may, fa)

‘mwy(x)fx (z) + mmy(y)fm ()

\—mmy(x)d(x, e) + mxy(y)d(a:, y) + mmy(y)d(x, e)l
|m$y(y)d(x,y)|

d(z,y).

(3) Let ||.||, be any semi norm such that

VIV IVIV IV

111y — 1gyf, < d(z,9)
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n
for all z,y € X. Let m = Z a;mg,y, be a molecule. We have

=1
n
Z AiMa;y;
=1 0
n
D lail gyl
=1

< Z |a;| d (i, yi)
i=1

Taking the infimum of all such representation of m yields ||m/|, < ||m|| 5. O

lmlly =

IN

COROLLARY 2. The application ix : X — A (X,d) defined by
ix () = 1yzy — Lo} = Mae
is an isometric embedding of X into A(X,dx).
Proor. We have by Proposition

lix(x) —ix(Wg = |1z — Lyl g = d(z,9)
for all x,y € X. So ix is an isometry. O

The following theorem is known as the linearization of Lipschitz opera-
tors.

THEOREM 9 ([Wea99| Theorem 2.2.4]). Let (X,d,e) be a pointed metric
space. Let E be a Banach space and let T : X — FE be a Lipschitz map
which preserves base point (i.e., T'(e) = 0). Then there is a unique bounded
linear operator w : £(X) — E such that T = woi and ||ul]| = Lip(T)
(i: X — E(X)).

E(X)
] \, U
X X E

PRrOOF. Every molecule m is uniquely expressible in the form (EI)
!

m = Z; Aj (1{%} - 1{e}>
p

where the points x; are all distinct and none equals to e. We then define u

by

l
u(m) = NT ()
i=1

3Voir Remark |§|
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Since u is essentially an extension of T that is T' = woi and we automatically
have ||u|| > Lip(T"). For the rest it will suffice to show that ||u|| < Lip(7T)
(in particular, this implies that u is bounded and hence it extends to all
AE(X,dx)). Define a semi norm ||.||, on the space of molecules by setting

Then
11 — L3l (Lip(T)) " | T(x) = T(y)||

(mmy = Mge — mye) < d(xy y)

for all z,y € X. This implies that ||.||, < |||z by Proposition Thus
|u(m)|| < Lip(T).||m|| g, which shows that ||u|| < Lip(T") as desired. The
uniquess is simple. ([

The operator v is denoted by T7.

PROPOSITION 11. The weak -topology o (Lipy(X), £ (X)) topology agrees
with the topology of pointwise convergence on bounded subset of Lipy(X).

PRrOOF. Let T;,T be in Lipg(X) such that

T, — T, o(Lipy(X), & (X,dx)).

Then, for all z in X we have

T (z) = (T, (Lgay — Lgep) — T (Lgay — Lgep) = T(2).

& (X)
ix | N\ TL
X X, E
For the converse, it is a classical result. O

Let T € Lipy(X,Y) and let iy, iy be the isometric embedding of X, Y
into Lipg(X), Lipg(Y'), respectively ). Let U(T') :E(X,dx) — Y be the
bounded linear operator attached to T and let ¢ = iy o . Let S, R be the
linear isometrics between the spaces Lipg(X) and &A(X,dx), and Lipy(Y)
and A(Y,dy).

TuroREM 10 ( [Cob03]). We have T# = S10¢(T)* o Ry or equivalently
H(T)* = Ry oT# 0 Sy, i.c., the following diagrams are commutative

B, dy) "D m(X,dy)
Ry (=R)1 Si(=871)1

Lipg(Y) 5 Lipy(X)



3. THE PREDUAL OF Lipy(X) 23

or equivalently

(Y, dy)" o A(X,dx)"
S (=R | Ri(=8)1
Lipg(¥) 5 Lipg(X)
ProOF. We have
(3.1) P(map) =iy (¥ (1)) (me0) = iy (T(x)) = mp()o-
Put
F = Sl o (b(T)* ¢} RQ.
Therefore
(5190)(56) = @ (MSE,O) ) HAES X?QO €k (X)*
o(IT)* () = oo(T), YeE(Y)
(Rag)(m) = > m(y)g(y), g€ Lipo(Y),meM(Y).
yey

Taking into account these formulas, the definitions of the operators R and
S, and Formula [3.1] we obtain successively:

(Fg)(z) = (S109(T)" o Rg)(9)(x) = S1(a(T)" (Ra(g))) (x)
O(T) () = Si1(Ra(g)oo(T))(x) =
(R2g) (m) = S1(Ra(g) o ¢(T)) (Mayp) =
= Ra(g)(map) = goT(z)=T%(g) ().
This proved the theorem. ([l

3.3. Banach free space. The following theorem was independently
proved by Flood in [Flo75] and Pestov in [Pes86].

THEOREM 11. Let (X, d,e) be a pointed metric space. then there exists a
unique, up to an isometric isomorphism, Banach space B (X) over the field
F and an isometric embedding ix : X — B (X) such that

1. The linear span of ix (X) is dense in B (X).

2. BEvery map T in Lipy (X, E) can be extended to a continuous linear
operator Tr, : B(X) — E such that |Tr|| = Lip(T) for any arbitrary
normed space.

3.4. Lipschitz free space. J.-A. Johnson in [Joh70], proved without
any reference to molecules that the closed linear subspace of (X #) * spanned
by the evaluation functions d, : X# — K, given by

0 (f) =f(2x); zeX
is a predual of X# (we note that any weak -closed linear subspace B of

a conjugate space E* is itself a conjugate space. This follows from the
observation that Bp is compact in the (relative) weak -topology). This
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space was called Lipschitz-free space and denoted F (X) by Godefroy and
Kalton in [GKO03].

DEFINITION 9. The Lipschitz free space on X is

F(X,dx) =span{d,, =€ X}7Lip°(X)*.

We say that v € F (X, dx) is finitely supported if

v € span{d,, =€ X}.

Then, the support of such a v (denoted supp~y) is the smallest subset F' of
X which contains e and such that v € span{6,, =€ F}.

REMARK 7. By applying the bipolar theorem, we give a precise c(lsescmg)—
xz — Oy

~ d(z,y)
defined on X7, where (x,y) runs through X = {(z,y) € X% : x # y}.

(1) The closed unit ball of F(X) is the closed, convex, balanced hull of
the set {d(zy) : (T,y) € X} in (X#)*,

(2) The space F(X) is the closed linear hull of the set {0 : © € X} in
(xX#)".

(3) From (1), we deduce that F(X) is the closed linear hull in (X#)* of
the set {0z : (z,y) € X}.Then (2) follows since the linear hulls of this set
and the set {0, : x € X} coincide. Notice that 0, = d; — 0o = d(x,0)0 (4 )
(e X,x#0).

tion of Br(x)by means of the Lipschitz evaluation functional 6, ) =

isometrically

PROPOSITION 12. For any metric space X, F (X,d)" = Lipy(X).

PROOF. We define a linear surjective isometry J on Lipy(X) with values
in F(X,d)" by J(f)(d:) = f(z) and we extend by continuity to F (X,d).

Consider f in Lipy(X) and m in span {é,, = € X} such that m = Z a;i0g, -
i=1

J(f)(m) = Z a; f (x;) . We show that J is a surjective isometry.
i=1

a) Consider f in Lipy(X) and m in F (X,d). We have

IO =m0

(3 110) (Lipy (X Lipg (X))
< Lip (f) [[mll £x)
and we obtain ||J(f)|| < Lip (f).

> )
b) Let (z,y) be in X and put m =

d(z,y)

because ¢ is an isometry see Proposition [I3] below and

. We have [[mlzy) =1
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v

|J(f) (m)]
‘f(w)—f(y)‘
d(z,y)

(we take the sup) > Lip(f) ;

1T (N7 x,a)°

Y

c) Consider p € F (X,d)*. Then ¢ is determinate by J, for every = in
X. We put for every z in X, f (x) = ¢ (d,) and we prove that f is Lipschitz
and J(f) = .

(1) We show that f € Lipy(X).

- 1(0) = ¢ (30) = ¢ (0) = 0.

- Let z,y be in X

[f (=) = 1 ()] |0 (62) = ¢ (0]

(¢, 02 — dy)|
H‘PHJ—‘(X,d)* |62 — 5y||(Lip0(X))*
H‘P”f(x,d)* d(z,y).

INIA I

(1) Letm = Z a;0z, beinspan {0, : x € X}. Then, ¢ (m) = Zaif (x;) =
i=1 i=1

J(f)(m). O

PRrROPOSITION 13. Define

The application § is an isometry, i.e., for every x1,x2 in X, one have
102, — 0uy || = d (z1,22) (this implies that ||0,]| = d (x,0)).

PROOF. For x1,x2 € X, we have in the first part

02) — 0zyll = sup [0z, (f) = 0z (f)]
Lip(f)=1
= sup ’f(xl) - f(372)\
Lip(f)=1
< d(zy,z2).

In the second part, for a fixed xg € X, let g € Bx# defined by

g(z) =d(z,71) — d (20, 72) -
We have

H(sm _5:52” 9(371) —g(.CCQ)

d (a;l, JZQ)
and this ends the proof. U

AV
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REMARK 8. The subset § (X) is linearly independent in (X#)" see ([Mic64].
Indeed, let x1, ..., Tpn, Tpy1 be distinct elements of X, then 64, , cannot be a
linear combination of 4, ...,04, . So, if g (z) = d(z,{z1,...,xn}) forxz € X,
then g € X* and

0z, (9) = g() for1<i<n
51’n+1 (g) = g (anrl)
This implies that 0., ,, cannot be a linear combination of 0z, ...,0,, and

*

consequently § (X) is linearly independent in (X7)

The Banach space F (X) has some remarkable properties, from which
we mention the following universal property; called "universal linearization
property".

THEOREM 12 ([GKO3|). Let (X,d,e) be a pointed metric space and let
E be a Banach space. Let T : X — FE be a Lipschitz map such that
T(e) = 0. Then, there is a unique linear map w (noted Ty,) : F (X) — E
with ||Tr|| = Lip(T') and such that the following diagram commutes

X — E

lox Tp )/
F(X)

Moreover, the linear isometry ¢ : Lipy(X, E) — B(F (X),E) such that
o (T) =Ty, is onto.

PRrOOF. Extend linearly 7' from X onto span{d, : x € X} and denote
this extension by u. We only need to check that ||u|| = Lip(T"). Pick
some a € span{d, :x € X}. Then [ju(a)|| = f(u(a)) for some f € Bx-.
However, foT then belongs to Lipy(X) and Lip(f oT) < Lip(T'). It follows
that [|u (a)|| < |Ju|| Lip(7T") which proves the claim. Then we can extend u
to F (X), the closure of span{d, : x € X}.

Let us fix a Lipschitz map T' € Lipy(X, E). Let u be the linear map defined
n n

on span{d, : © € M} by U(Z ai0y;) = Z%T (x;) € E. We have
i=1 i=1
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u(zn: ai0g,;)
=1

Zn: a; T (z;)
=1

E
= sup ZaiT(xi),e*>‘, e* € B«

E

, €€ Bpx

= sup Zai (T (z;),€e*)

< sup Zaif (), e € BE*| , [ €Lip(T)Bx#
i=1
< Lip(T) | aids,)
i=1

F(X)

Thus [Ju]| < Lip(7T). Now we want to prove the reverse inequality. Fix

e > 0 and consider z # y such that ||T'(x) — T (y)|| > (Lip(T") — €)d(z,y).
z = 0y)

i , d(z,y)

IT (@) =T > Lip(T') — e. We conclude that |u|| > Lip(T"). To finish,

d(z,y)
we extend v to F (X) and we denote 77, this unique continuous extension

which has the same norm. It remains to show that the linear isometry
¢ : Lipg(X, E) — B(F (X), E) is onto. Consider u € B(F (X), E). Then,
define T" on X by T'(z) = ud, for every x € X. The map T is clearly
Lipschitz and satisfies ¢ (T') = u. O

We now define my, := Clearly ||mgy| = 1 and ||T (mgy)|| =

Using this universal property of F (X)), it is immediate to see that
F (X)" = Lipy(X). Indeed, it is enough to consider X = R in the universal
property mentioned above. Moreover, the weak* topology coincides with
the topology of pointwise convergence on bounded sets of Lipy(X). We also
deduce the following variation of the universal property.

REMARK 9. By Theorem the predual of X provided by the Dizmier-
Ng theorem coincides with the Lipschitz-free space of X, i.e., F(X,d) is
isometrically isomorphic to A(X,d).

COROLLARY 3. Let (Xi,d1),(X2,d2) be two pointed metric spaces. Let
T : X1 — Xz be a Lipschitz map such that T'(0) = 0. Then, there is
a unique map T : F(X1) — F(X2) such that f5X1 = 0x, T, i. e., the
following diagram commutes.

X1 i) X2

l(SXl R l(SXz
F(X1,d1) - F (X2,d2)

and HT\H = Lip(T).
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REMARK 10. If Xy is a subspace of a metric space X, then F (Xo)
is linearly isometric to a subspace of F (X). Indeed, denote Id : Xg —
X the identity map. Then the application Id given by Corollary @ s the
desired isometry. In order to prove this last claim, one uses "nonlinear Hahn
Banach theorem" Furthermore, we also have the following.

REMARK 11. Let X be a metric space and let X be its completion. Then,
the spaces F (X) and F ()?) are linearly isometric. Indeed, the operator

T: Lipy(X) — Lipy(X)
o= f/X

is a onto linear isometry which is weak*-to-weak® continuous.

COROLLARY 4. Let (X1,d1), (X2,d2) be two pointed metric spaces. If X3
Lipschitz embeds into X, then F (X1,d1) linearly embeds into F (Xo,d2).
Moreover, if X is Lipschitz equivalent to Xo, then F (Xi,d1) is linearly
isomorphic to F (Xg,d2).

Proor. Let T : X; — X5 be a Lipschitz embedding map. Then, T
is bi-bijective from X; into T(X2). We then consider the bounded linear

operators T : F(X1) — F(T(X2)) and f*\i\ F(T(Xs) — F(X1)

—

given by Corollary . It is easy to see that ToT 1= ldF(7(x,)) and T-1o
T = Idz(x,) so that T is a linear isomorphism from F (X1) to F(T(X2)).
Since F (T(X2)) is isometric to a subspace of F (X2) we get that F (X;)
is isomorphic to a subspace of F (X3). The second part of the corollary is
clear. O

EXAMPLE 5. 1. We have F (R) = L(R).
Indeed, define

T: Lipy(R) — L*(R)
f —f
T is a surjective linear isometry. This implies that (F (R))* = (L'(R))".
Theorem (Rademacher 1919-Lebesgue 1900) Let X be a Banach
space of finite dimension and f : X — R be a Lipschitz function. Then f
is a. e. differential. Moreover

EXAMPLE 6.

@)= 50) = [ rar

Lebesgue for f : R — R monotone and Rademacher for dim (X) <
4o00. In infinite dimensional spaces there is no Lebesgue measure. If we
want to extend Rademacher’s theorem to infinite dimensional case, we have
to extend the notion of a. e. to such spaces. This problem had been
resolved independently by Christensen, Mankiewicz, Aronszajn and Phelps
by introducing and used different notions of almost everywhere.
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We have
1@ -1 = |[ o
/)
< IF(t)] dt
< Suplf’ Oz —yl
This implies that W < ||l for all (z,y) € R and hence

Lipo(f) < [[f'llso

In the other hand, we have the inequality |f'(z)] < sup f@) = fy)
(@yer!l TTY
and hence || f'||., < Lip(f).Thus || f’||,, = Lip(f) and consequently T is an
isometry..
The operator T is surjective. Indeed, Let g be in L*(R). We let f(z) =
x

/ g(t)dt; which is lipschitzian because
0

@) - 1l = | / ' (t)dt‘

< /Ig

< sup [g(t)] ]z -y
tefz,y]

< l9lle |z — vl

and this implies that Lip(f) < ||g||,,. Consequently, T" is a surjective linear
isometry.
We prove that the operator

EXAMPLE 7.
S : f(R) — LI(R)
5.’2 — 1[07:0]

extends to an isometry from F(R) onto L'(R). The operator S verifies
S* = T—1. Indeed, S* : L®°(R) — Lip,(R) is defined by

(5 (f),02) = (f,5(0z))
— [ s
0
= T7H(f) (@)
Let S : X — Y be an operator between Banach spaces such that S* is a
surjective linear isometry, then S is a surjective isometry. Indeed, we have

(S(z),y*) = (x,5* (y*)) and thus
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15 ()]

ﬁulﬁ [(x, S* (y*))]
y*
sup [[] |5 (y*)

<
fly* |l

< sup [|zf| [y
lly* |l

< lef]-

In the other part, on have
EXAMPLE 8.
(57 ()7 (@) ,2)| = I, a)

= (597" @), 8 @)
< =[S @)l

and this gives ||z| < ||S (z)]| .
The surjectivity. Let (z,y) be in R (z < y) and consider g € Lo, (R). We
have

EXAMPLE 9.

(S (5, 02).9) = / 9(t) (Lo, — o) (£)

B ,
_ /yg(t)dt—/og(t)dt
= /Qg(t)dt

= [g) 1y @)dt

R
= (jzy 9) -

Then S (span{d, : z € X'}) is dense in L; (R) by Remark [7| This implies
that S is a surjective isometry
2. Let X = N. The linear operator

T: F(N) — [L(R)

is an onto isometry.
3. Let X =10,1]. The linear operator

St F(0,1]) — L'([0,1])
0o g
is an onto isometry.
EXAMPLE 10. The space Lipy[0, 1] of Lipschitz functions on [0, 1] vanish-

ing at 0 with the Lipschitz norm is isometrically isomorphic to the Banach
space L>®[0,1]. The isomorphism is given by the correspondence
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S: L*®[0,1] — Lipyl0,1]
o= 1= [ s

The inverse mapping T—1 : Lipy[0,1] — L*°[0,1] is given by T"(g) = ¢/,
a.e..

REMARK 12 (Godfroy ). We can see F (X,dx) as the completion of the
set of all measures p of finite support under the norm

lpll = sup{/fdu :Lip (f) < 1}.

The following theorems are due to Lindenstrauss [Lin64] when X is a
Banach.

THEOREM 13 (Lindenstrauss, weak form). If X is a Banach space then
there is a norm one projection p from Lipy (X) onto its subspace X*.

ProrosiTionN 14. If Xg is a subset of a metric space X containing the
base point, then A(Xo) can be identified naturally and isometrically as a
linear subspace of A(X) .

Proor. Consequence of Hahn-Banach Theorem. O

3.5. Adjoint of Lipschitz operators. The aim of this subsection is
to show that the Lipschitz adjoint of a Lipschitz mapping 7', defined by
I. Sawashima, in [Saw75, Saw75], corresponds in a canonical way to the
adjoint of a linear operator 17, associated to T

DEFINITION 10. Consider X,Y in Mg and let T : X — Y be a
Lipschitz map which preserves base point. We define T? : Lipy (Y) —
Lip, (X) by

T#(g) () = (9o T) () = g(T (2)).

The definition make sense by the property of composition maps.

ProrositioNn 15. Consider X,Y in Mg and let T : X — Y be a
Lipschitz map which preserves base point. Then T# is a bounded linear map
and HT#H = Lip(T) = HT# ly+|| (if Y is a Banach space).

PrROOF. We have

Lip (T# (g)> = Lip (9o T) < Lip (g) Lip (T

SO HT#H < Lip (7). For the converse inequality, fix p,q € Y. Let go =
dy (.,q) — dy (ey,q), then Lip (go) = 1. Indeed,

|dy (z,q) — dy (y,9)|

l90 () — g0 ()| =
< dx(.ilf,y).
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this implies that Lip (go) < 1. We have also

Lip (o) > 190 (p) — g0 ()]

dy (p, q)
dY (p7 Q)
dy (p, q)
> 1.
And hence
IT#[} = Lip (77 (9))
L T (9) () = T% (9) ()]
- dX (.%', y)
9T () — 9T (y)|
- dx (z,y)
97 (x) — 9T (y)| dy (T (=), T (y))
T dy (T(2),T(y)  dx(z,y)
Taking the supremum over z and y, we find ||T%| > || T|. O

If Y = E is a Banach space, we shall show that 7% corresponds in a canonical
way to the usual adjoint of the linear operator attached to 7' by Theorem [9]
of linearization, i.e., T |y«= (T1)".

Lipg(E) >  Lipy(X)

pl 1 /
E*
E* 1 Lipy(E) — Lipg(X)
(Tr)* Id
N L@t s
Lipo(X)

The restriction of T# to E* is called the Lipschitz transpose map of T and
is denoted here by T*. The correspondence

T+ T

establishes an isomorphism between the vector spaces Lipy (X, E) and L((E*,w*), (X%, w*)),

where w* denote the weak -topology (see [AJ13, Theorem 3.1]).



CHAPTER 2

p-summing Lipschitz operators

1. Introduction

The nonlinear version of p-summing operators was introduced by J.-D.
Farmer and W.-B. Johnson in [FJ09]. We consider now X a pointed metric
space and E a Banach space.

DEFINITION 11. A Lipschitz map T : X — E is called Lipschitz p-
summing (1 < p < ), if there is a positive constant C' such that for all
{xi}lgz‘gn , {yi}lgz‘gn in X and all {ai}lgign C R*, we have

(L1 Y aillT(x) =Tyl < C” sup Y ail f(wi) = f(yi)l”
=1

feBy# i=1

We denote by 7r£ (T'), the smallest constant C verifying inequality . The
space Hﬁ (X, E) of Lipschitz p-summing functions from any metric space into
Y is a Banach space under the norm 775 (.). If T is linear then 775 (T) <
mp (T) ( in fact we have 77{; (T) =mp (T)).

Notice that for any embedding j : Y — Z, we have 775 (T) = 775 (yT') and

7r£ (T) = sup {775 (T/Xo) : Xo finite subset of X }. Also, the definition
XoCX

stays the same if we restrict to a; = 1, we can found it implicitly in [FJ09].

ProproSITION 16 (Ideal property). Let X,Z be pointed metric spaces
and E,F be Banach spaces. Let R : Z — X, S : E — Fbe Lipschitz
functions and T : X — FE be a Lipschitz p-summing operator. Then STR
is Lipschitz p-summing operator and 71'5 (STR) < Lip(S)WZ{J (T') Lip(R).

‘We have

33
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Y _ISTR(zi) — STR(z))|”
=1

IN

Lip(S)? Y |ITR(z) — TR(z))|”
=1

n

< Lip(S)my (T sup > [f(R(=)) — F(RED)F
Eby# j—1
o DTl p ~ foR . foR .

< Lip(S)Pmy (T)" Lip(R)? sup Y |g(=zi) — g(z)IP-

REMARK 13. Every pointed metric space (X, d) is isometric to a subspace
Of C (Bx# ) .
Indeed, define

ix : X — C(Bx#) by i(z)(f) = f(x).

We have
d(ix (z1),ix (z2)) = sup [ix (21) (f) —ix (22) (f)]

feBxy

= sup |f(z1) — f(a2)]
B 4

_ |f(z1) — f(a2)|

N feszlslf# d(x1,z2) Ao, )

= d(xl,:rg)

because | f(z1) — f(x2)| is at most d(z1, z2) whenever f € Bx% and this up-
per bound is in fact attained: given any two points z,z’ € X, the function
f: X — R given by f(.) = d(.,z2) — d(z2,0) is in Lipo(X,R), has Lip-
schitz constant 1 and satisfies |f(z) — f(2')| = d(z,2’). This implies that
d(f (x1), f (z2)) = d(x1,x2) and hence ix is an isometry.

ProOPOSITION 17. Let X be a metric space and E, F be Banach spaces.
Consider two Lipschitz maps T : X — E and S : X — F such that
|T(x1) —T(z2)| < C||S(x1) — S(x2)|| for a positive constant C. Suppose
that S is injective. Then, There is R : S(X) — E lipschitzian such that
T =RoS and Lip(R) < C.

PRrOOF. We let R(z) = TS~ (2) We have Ro S (z) = TS~ (S () =
T'(x) and for all 21, z0 € S (X)

[R(z1) = R(z2)]|

( o ( )) HTSil (21) —Ts1 (ZQ)H

T (1) — T(2)||
C||S(z1) — S(=2)||
C |21 — 2|

INIAC
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We end the proof by extended R by density to S (X). O

2. Properties

We give now Pietsch domination-factorization theorem for Lipschitz p-
summing operators.

THEOREM 14 ([FJ09]). Let 1 < p < oo. The following properties are
equivalent for a mapping T : X — E and a positive constant C'.

(a) The mapping T is Lipschitz p-summing and 71'5 (T) < C.

(b) There is a probability n on Bx# such that

IT(@) — Tl < C ( /B (@) — F)P du (f))
X#

(¢) For any isometric embedding j of Y into a l-injective space Z, the
following diagram commute

P

Loo (By#,p) —2 Ly ) (Bx#, 1)
17 1 T
x Ly J. oz

with Lip(T) < C.

(d) There is a probability u on K = ext (Bx#) (for the topology of point-
wise convergence on X ), such that

(2.1) 7@ -7l <€ ( [ 176 - sl du(n)’

PRrOOF. The property (a) = (b).
Let C be the convex cone in C(By#) of the functions of the form

Paswiy () = {Z CPag|f(xi) = f(ya)” — ai [T (z:) — T(yi)llp}
i=1

where n € N, a; € R and z;,y; € X.
The set M is a convex cone. Indeed, let ¢y, py be in M and a € [0, 1] such
that

ny
gpl((ali)v(zli):(yli))(f) = Z Cpali‘f(xi) - f(yli)‘p — Q51 HT(wlz) - T(yu)HP

and

na
Py ((ana),(2), (w2)) () = Z CPag;| f(v2:) — f(y2:)[" — a2i [|T(w2:) — T(y2i)||”
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It follows that for a € Rt

ap
ni a(p((ali)v(wli),(yli))(f)
Zizl CPaaqy;|f(xi) — f(y1:)|P — aan | T (1) — T(yuil|P

P((aars),(e10), (1)) ()

and

©1 T P9

ni

= > Craulf(ew) = fy)l — an | T(21:) = Tyaa)II” +
D Crazilf(am) = F)lP = a2 1T (@2) = T(y)
= > Crailf() — FulP - ai T (s — )|

Finally we have

o1+ =Y CPail f(a) = f(y) P — i | T (i) — T(ys)|IP
i=1

with n = nj1 + no,
a'_{ali if 1<i<ny, m'_{xu if 1<i<ny,
v agy if m+1<i<n 7" ro; if m+1<i<n
{ yu if 1 <4< ny,

yoi if ni+1<i<n.
By hypothesis, the convex cone C is disjoint from the negative cone

Co={p e CBx#) : (f) <O,Vf € Bx#}.
which is an open convex subset of C(By#). By Hahn-Banach theorem ana-
lytic form "large separation theorem" and Riesz "representation theorem",
there is a finite signed Radon-Borel (a signed Radon-Borel measure on the
compact is finite) measure p # 0 and a real « such that for all ¢ € C and
1 € C_, we have

and y; =

/ w(f)du(f)éaé/ o (F)du(f).
BX# BX#

Because 0 € C and the negative constants are in C_, than we can take oo = 0.
Also, one has

/B B () di(f) <0, Vi€l > p>0.
X#

We can put p(Bx#) = 1, if is not the case we divide by A (Bx#%). In
particular we take ¢ (f) = CP|f(z) — f(y)|P — ||T(x) — T(y)||*, we have

/ @ (f)du(f) =/ CPIf (@) = F)IP = 1T () = T(y)II” dpu (f)
By S OBX#
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this implies

IT(x) =Tl <C (/B /() = f)I" dps (f)) y
X#

The property (b) = (c).

Let i : X — Lo (By#, i) be the natural isometric embedding which is the
the formal identity from C(Bx#) into Lo, (Bx#, 1) composed with ix. Then
(b) says the the Lipschitz norm of T restricted to i, (i (X)) is bounded by
C, which is (c).

The property (¢) = (a).

By the above, we have

my (T) =y (jT) < Lip(T)my (i) Lip (1)
< Lip (T) 7, (i) Lip ()
< Lip T
< C.

The property (a) = (d) is the same as the proof of (a) = (b) since the
supremum in the right part of inequality (2.1) is taken on K. This ends
the proof. O

As an immediate consequence, we have
ProrosiTiON 18. Let 1 < p < g < oo. If T : X — Y is Lipschitz
p-summing then, T is is Lipschitz q-summing and 775 (T) < 775 (T).
3. Nonlinear version of Grothendiek’s theorem

We start by recalling the linear case of Grothendieck’s theorem (G.T.
in short). For more informations, we can consult [?]. We start by the little
G.T. in the linear case which goes back to Grothendieck.

THEOREM 15. Let K be a compact set and let H be a Hilbert space.
(a) Any bounded linear operator w: H — Ly satisfies

1
n 2
s
(St gﬁ b (1) foromy 2 .
=1

b) Any bounded linear opemtor v:C(K)— H (oranyv: Looc — H)
is 2summmg and satisfies wo (v) < /T ||v] -

Let now the dual form. It appeared in [GL75]

THEOREM 16. Let H be a Hilbert space. Then any bounded linear oper-
ator w : Ly — H is 2-summing and satisfies ma (w) < /75 |lw] .
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The following theorem known as Grotendieck’s theorem is due to Lin-
denstrauss Pelczynski [?].

THEOREM 17. Let H be a Hilbert space. Then any bounded linear op-
erator w : L1 — H is 2-summing and satisfies wo (w) < K ||w]|| for some
absolute constant K. The best constant K is noted by K¢, the Grothendiek
constant for the real case and Kg for the complex case.

We now give the nonlinear version of Grothendiek’s theorem.

TueorEM 18 ([EJ09), [CZ11] and [Saal5|). Let X be pointed metric
space such that X embeds isometrically into an R-tree. Then for any Hilbert
space H, we have

i (X, H) = Lipg(X, H)
and

i (T) < KgLip(T) for every T in Lipy(X, H).

PROOF. Consider the diagram as in Theorem [J]

E(X)
ix | N\TL
X L, m

where (X)) is isometrically isomorphic to L (R). We have T'* is 1-summing
and m1 (T1) < K¢ ||TL|| < KgLip(T).

Other proof. In the category of metric space with Lipschitz maps as
isomorphisms, weighted trees play a role analogous to that of L in the linear
theory. In particular, every finite weighted tree has the lifting property,
which is to say that if X is a finite weighted tree, T : X — Y is a Lipschitz
mapping from X into a metric space Y , and ¢ : Z — Y is a 1-Lipschitz
quotient mapping, then for each ¢ > 0 there is a mapping S : X — Z so
that Lip(S) < Lip(T') + € and T' = ¢S.

Z
S/ lq
x L vy

Letting Y be a Hilbert space and Z an L; space, we can deduce from
Grothendieck’s theorem and the ideal property of 7% that if every finite
subset of X is contained in a finite subset of X that is a weighted tree
(in particular, if X is a tree or a metric tree), then 7¥ (T) < KgLip(T),
where K¢ is Grothendieck’s constant. Here we use the obvious fact that
mp(T : X — Y) is the supremum of m,(7|x) as K ranges over finite subsets
of X. O



CHAPTER 3

Other notions of summability

1. Lipschitz 7 (p)-summing operators

The following definition was studied by X. Mujica in [Muj08] for mul-
tilinear operators, which generalizes absolutely 7-summing linear operators
introduced by A. Pietsch in [Pie80].

DEFINITION 12 ([MT17]). Let T be in Lipy(X, E) and consider 1 <
g < p < oo. We say that T is Lipschitz T (p,q)-summing if there is a
positive constant C such that, for all n € N;(z;), («}) C X;(af) C E* and
(Ai)1<j<n C Ry, we have

(Z AT () — T (a) ,a;-*>|p>
< Csup (ZM <x;>><a:,a>|Q)q

RS

(1.1)

vz

where f € X # and a € E. We will denote this class of mappings by
Hf(p (X, E) and we equip it with the norm 7r£(p o (1) = inf C, for the

constants that appear in the above expression, for which it becomes a Banach

space. When p = ¢, we write Hf(p) and 7T7L_(p) instead of IIZ T(op) and 7r£(p )

respectively and we say that T is Lipschitz 7 (p)-summing. If p = ¢ = 1,
we simply write IIZ and 7% and we say that T is Lipschitz T-summing.

Like the linear case, if 1 < s < r < ¢ < p, then ITF Tar) C HL( ) and

T\q," T\P,S
7T7L_(p 9 (T) < =k o) (T) for all T in IIE Moreover, it follows that
It T C Ikt

T(g,r)’

and WT(p’T) (T) < WT(q”,) (T) for all T in Hf(q’r)

7(p,r)
and

Ik, C Ik, and 7l o (T) < 7k, o (T) for all T in IIE

T(q,r T(g,r)’

REMARK 14. 1- The definition is the same if we restrict to \; = 1 (by
the same argument cited implicitly in [EJ09]).
2- By Goldstine’s theorem, we can replace a by a™* € E** in the inequal-

ity .

REMARK 15. - If T is linear then T is T (p)-summing implies that T
is Lipschitz T (p)-summing and 7T7lf(p) (T) < 7o) (T). We do not know if

q,s q,s)

39
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the converse is true. Because there is no factorization theorem and Bx# s
difficult to handle. Is it a good generalization?

LEMMA 1. Let 1 < p < oo. Formn € N, (i)1cicp» (%)) 1<i<n, € X,
(a7)1<icn C E* and (Ni)1<i<p € R+; let v:Ip. — XK. E* be a linear
operator such that v (e;) = 5( )&/\p al; where (e;) denotes the unit vector

basis of I} and X denotes the szschztz tensor product as introduced in
[CCIV15]. We have

RS

= s (ZA (7w = £a) <a::a>\p)

11l =1
llall p=1

PrOOF. We have

ol = swp o (@)lxm.e
llalln, =1
n n
= sup Zaw €; (a = Zaiei)
”O‘HZ;L =1 i=1 XX, E* i=1
= sup Za 1 (i X )\p ¥
“aHl” =1 XK, E*

. (ZW '—f(xé))<afaa>l>

IIaHln—leIIX# 1

lallg=1
1
p
= sup (ZA |(f flz ))<a2‘,a>!”>
11l =1
llall p=1
This proves the Lemma. (I

PROPOSITION 19. Let T be in Lipy(X, E). The operator T is Lipschitz
7 (p)-summing if, and only if, for all n € N, (i)1<icp s (T})1cicp, T X,
(a7)1<i<cn € E*, (Ni)1<icn C R+ and all linear operator v : ljh — X K. E*

z}

(1.2) (ZNKT(%)—T(SU%)7a2‘>|p>p < Clol-
1=1

We now give the left ideal property in "Pietsch’s sense".

such that v (e;) = 5( +) X )\p ¥, we have

PRrOPOSITION 20. Consider T in Lipo(Y, E) and R in Lipo(X,Y). If T
is Lipschitz T (p)-summing operator, then T o R is Lipschitz T (p)-summing

and ﬂf(p) (ToR) < Wf(p) (T")Lip (R).
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PROOF. Let n € N, (2i)1<ip» (7)1, € X, (€])14c,, € E"and
(Ai)1<i<n C Ry. It suffices by inequality (1.2) to show that

(ZM@mm ~To R (a) WY—@ﬂmwwn
=1

1
where w : [ — X K. E* such that w (e;) = 5( XA af.

Consider the following commutative diagram

ool
l‘u%)

I LN Y K. E*
w | RWRidg /
X X. E*

where

1
v (€i) = O(na),n(ay) WA @
and
1 1
et )y B

The Lipschitz injective norm ¢ is uniform by [CCJV15, Theorem 7.1] and
by [CCJV15l Proposition 4.2], we have

1
(EXITeR@)-ToRED.a)F) < w4y @ o
=1
< Wf(p)(T) Jw| || R X idg-||
<

Ly (DLip(R) [|w]| .
This implies by inequality (1.2) that T'o R is Lipschitz 7 (p)-summing and
T( )(T oR) < ( )(T)Lip (R) and this ends the proof. O

ProprosITION 21. Consider T in Lipo(Y,E) and S in Lipy(E, F). If T
is Lipschitz T (p)-summing operator, then S o T is Lipschitz T (p)-summing
and wf(p)(S oT) < Lip(S) wf(p) (T).

PROOF. Let (yi)lgigna(yz,‘)lgign cy, (bz)lgign C Frand (\);<i<, C
R, we have

B =

A IS o T (4) SoT<y;>,bz<>|p)

(\
I

|
Sl

T~
ﬂ‘

<.
Il
N

%

Xi |(T (i), S* (b7)) — (T (y;), 5% (bf)>\p>

=

NE

N ()8100) = (7 )5 D))
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(St is the transposed of the linear operator attached to S)

1

- <Z)\ (T (yi) = T (), S (5))]" >p

<l (T) sup (z NI ) = £ (' 1) ) )
T o su Py ) ) {5 a "\
< w1 s (35500 - 160 (30 )
llall =1 )
. s (3 — p) (b, SENT)
< T)|s anuyfﬂ (Z;/\z (f () f(yl))<bw (Kl >‘ >
llall =1 L
< L)k, @ s (8100 - £00) 610P)
If1l 5 a1 V=l
HbHF 1

Therefore, S o T is Lipschitz 7 (p)-summing operator and ﬂ'f(p)(S oT) <
()( )Lip (5). 0

We will present the following characterization (Pietsch’s domination the-
orem) concerning this class of Lipschitz operators. For the proof, we use the
same idea as used for example in [AMS09] and [Muj08, Theorem 3.6]. Be-
fore this, we first announce the Ky Fan’s lemma. The proof can be consulted
in [DJT95| p. 190].

LEMMA 2. Let K be a Hausdorff topological vector space and let C' be a
compact conver subset of K. Let M be a set of functions on C with values
in (—o0, 00| having the following properties.

(a) each f € M is convex and lower semicontinuous;

(b) if g € conv(M), there is an f € M with g(x) < f(z),Vx € C;

(c) there is an r € R such that each f € M has a value < r.

Then there is an xg € C such that f(xzg) < r for all f € M.

THEOREM 19. Consider T' € Lipy(X, E) and C a positive constant.
(1) The operator T is Lipschitz T (p)-summing and wf(p) (T) < C.

(2) There exist Radon probability measures py on Bx# and py on Bgx,
such that for all z,x’ in X and a* in E*, we have

(T'(x) = T("),a")]
Cls,, Jope. ((f(@) = F@') (0, a)" dpy (f)dpz(a™)) ).

Moreover, in this case

—~
—_
w

~—

=
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Wf(p) (T) =inf {C > 0: for all C verifying the inequality (1.3)} .

PrOOF. We are interested only to the first affirmation because using
inequality (|1.3)), one easily shows that 7' is Lipschitz 7 (p)-summing and
ﬂf(p) (T') < C. Counsider the sets P (Bx#) and P (Bg+) of probability mea-

sures in C (By#)" and C (Bg«+)* respectively endowed with their weak -
topologies. These sets are compact and convex. We are going now to apply
Ky Fan’s Lemma with K = C (Bx#)*xC (Bg+)" and C= P (Bx# )X P (Bpg=~)
which is convex and compact.

Let M be the set of all functions ¢ from C with values in R of the form

(@), (a2) () (1o H2)

n

= ; Ai (T (i) — T'(x5), af)[” — CfBX# fBE**
Ai|(f (i) = f (=) a7, a™)" dpy () dpss (™)

where (7);<;<n s (T 1<icn © X 3(a)) 140, € EF and (M), C Ry
These functions are continuous and convex. The set M is a convex cone.
We now apply Key Fan’s Lemma (the conditions (a) and (b) are satisfied).
For the condition (c), since By is a compact Hausdorff space in the topology
of pointwise convergence on X and Bp«+ are weak * compact and "norming"
sets, using the fact that X is isometrically embedding into By# and by the
classical Goldstine’s theorem there exist for ¢ € M two elements, fy in By#
and aj* in Bp+ such that

p
sup
lla* || gx =1

1l =1
= L Ailfol(m) — folws) (i ag) "

If 67, and d4¢+ denote the Dirac’s measures supported by fo and ag* respec-
tively, we have

(¥ (7t — s a0

Iy

(@) (at), ) (O for Oa) -
21)\2' (T(z;) — T(}),al)|? — CP ;Ai fo(zi) — folah) {aZ, at™) P <
0. =

Hypothesis (1) yields

sup {(p((mi),(x;),(a;‘),()\i))('u’17MQ) sy, p) € K} <0.

By the conclusion of Key Fan’s Lemma, there is p = (uq, 19) € C such that
() <0 for all p in M. If ¢ is generated by the simple elements z, 2’ € X,
a* € E* and A =1, we find
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Pl a* 1)(”17“2)
= (T(2) - ( ) as)” —
J5 - fBE** (z) — f(= ) (a*,a* )P dpy (f) dug(a™) < 0.

It follows that

[(T'(2) = T("),a")]

1
C (S, S 1) = (&) (0, ™) dsy (f) dptn(a™))”
and this completes the proof. (I
As corollary, we get.
L L L
COROLLARY 5. HT(p) - HT(q), when 1 < p < g < oo and HT(p) c 11,

forall1 <p < o0.

2. Lipschitz strongly p-summing operators

The following notion was introduced independently by [Saal5s|] and
[YAR16]. For our convenience, we will adopt the notation of [YAR16].

DEFINITION 13. A Lipschitz map T : X — FE is Lipschitz strongly p-
summing (1 < p < o0) if there is a constant C > 0, such that for all n € N,

(mi)lgz‘gm (:c;)lgign n X, <aé‘*)1§i§n i E* and (Ai)lgign in Ry, we have

(21) Y N (zi) =T () ,a5)| < C (Z)\idX (xi,mé)p) p wp+ ((a7);) -

=1 =1

We denote by Dstp(X E) the class of all Lipschitz strongly p-summing
operators from X into E and dstp( ) the smallest C' such that inequality
. holds. This generalizes the definition introduced by [Coh7 3| in the
linear case. If T is linear, then in the absence of By# we have DL (X, E) =
D, (X, E).

Let T' € Lipy (X; E) and v : [ — E* be a bounded linear operator. The
Lipschitz operator is a strongly Lipschitz p-summing if, and only if,

st,p

(2.2) D NT (i) = T () ,v(e))| < C <Z)\idX (fﬂi,l‘;)p) P ]l
=1

i=1
REMARK 16. Let u be a bounded linear operator from E into F and
1 <p<oo. Then dy(u) = dstp( u) because Bx# is not involving.

Now, we give the domination theorem of the strongly Lipschitz p-summing
(see [Saal5] and [YARI16]).
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THEOREM 20. A Lipschitz operator T from X into E is Lipschitz strongly
p-summing (1 < p < 00) if, and only if, there exist a positive constant C' and
Radon probability measure i on Bg« such that for all z,x' € X, we have

(2.3) }<T(:B) —T(2'),a*)| < Cdx (z, ') / la* (a*) P dp (a*)

BE**

Moreover, in this case

dsLt,p (T) =inf {C > 0: for all C verifying the inequality }.

ProprosITION 22. The following properties are equivalent.
(1) The mapping T belongs to DL (X, E).
(2) The linear operator Ty, belongs to Dy(AE(X), E).

Even more, DSLW (X,E) = Dy(H(X), E) holds isometrically.

PROOF. See [Saal5l Proposition 3.1.]. O

3. Cohen Lipschitz p-nuclear operators

We introduce the following generalization to Lipschitz operators of the
class of Cohen p-nuclear operators studied in [Coh73|. It is a particular
case from that defined by J. A. Chavez-Domenguez in [Chall] which called
the Lipschitz (r, p, ¢)-summing operators if we take (r,p,q) = (1,p,p*) and
k; = 1 for all i. The notion of p-nuclear operators was introduced in [PP69]
by A. Person and A. Pietsch. Initially the definition of nuclear operators for
Banach spaces, was given by Grothendieck in [?]. J. S. Cohen has initiated
another concept of p-nuclear operators in [Coh73] which is not the same
as the precedent notion and was generalized to (p, ¢)-nuclear operators (1 <
q < o0) by H. Apiola in [Api76]. In [CZ12], D. Chen and B. Zheng has
generalized this notion to Lipschitz operators. For distinguish these two
notions, we say Cohen p-nuclear operators for that investigated by J. S.
Cohen and we try to generalize this notion to Lipschitz operators.

DEFINITION 14. A Lipschitz operator T : X — FE is Cohen Lipschitz
p-nuclear (1 < p < 00), if there is a positive constant C such that for any n
in Ny (%) 1<i<n» (%) 1<icn 1 X5 (a]) 140y, i B and (Ni)y<i<,, 0 Ry, we
have
(3.1)

< € sup (ZAi|f<xi>—f<x;>\p>p sup (Z|<a,a:>|p*>p .

lallp<1 \3=1
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The smallest constant C' which is noted by nﬁ(T), such that the above
inequality holds, is called the Cohen Lipschitz p-nuclear norm on the
space NPL (X, E) of all Cohen Lipschitz p-nuclear operators from X into E
which is a Banach space. For p = 1 and p = oo we have like the linear
case N{(X, E) = ¥ (X, E) and N4 (X, E) = DL (X, E) (see below). The
definition remains the same if we restrict to A; = 1, like that in [FJ09]. We
use this definition with the A; only in the proof of " Pietsch’s domination
theorem".

We know (see [DJT95]) that [, (E) = Iy (E) (the symbol = indicates
that two Banach spaces are isometrically isomorphic) for some 1 < p < oo
if, and only if, dim (EF) is finite. If p = oo, we have I (E) = 1% (E).
We have also if 1 < p < oo, I/ (E) = L(Ip+, F) isometrically. In other
words, let v : [)» — E be a linear operator such that v (e;) = a; ( namely,

o0
v =) e ® aj, e; denotes the unit vector basis of {,) then,
i=1

(3.2) oIl = (@)l &) -

Let T' be a Lipschitz operator between X,E and v : lj. — E* be
a bounded linear operator. By (3.2), the Lipschitz operator T is Cohen
Lipschitz p-nuclear if, and only if,

DX (i) = T(x), v(es))
=1

(3.3) N 1
< O swp (zxiwx»—f(x;)\p) ol

feBx# \i=1
ProprosITION 23. Consider T' in Lipy(X, E), R in Lipy(E, F') and S in

Lipo(Z,X ). If T is Cohen Lipschitz p-nuclear operator, then RoT o S is
Cohen Lipschitz p-nuclear operator and nﬁ(RoTo S) < Lip(R)ng (T")Lip(S).

PROOF. (a) Let n € N; (zi)lgign,(zg)lgign C Z and (a:)lgign c E*.
By (3.3)), it suffices to prove that

NE

(TS (z;) =TS (%)), a})

1/

i=1

< nl(T)Lip(S) sup (
fEBZ#

=

p

F(z) - f<z;>|p) o

n
i=1

where v : B — [} defined by v (a) = }_ aj (a) ;. We have
i=1
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; (TS (2) — TS (), a7)

L su 3 2)) — 2P g v,
< D s (L1556 16 EP) bl
LLin(S) sun (=[G FSEDPY
< woues) s (5 5EE - T5a )
) ,

nE(T)Lip(S) sup (2 9(z) — g<zg>|p) ol
=1

9EB 44
This implies that
nﬁ(T 098) < nﬁ(T)Lip(S).
(b) Let n € Ny (2i)1<ip» (79140 € X5 (0))1<i<, € F*. It suffices by

(3.3) to prove that

; (RT (2;) — RT (x),b7)

=

< nE(T)Lip(R) sup (irfm)—f(asmp) ol

fGBX# i=1

where w : F' — [7. defined by w (b) = >_ b7 (b) ;. We have
i=1

> (RT (xi) — RT (x7) , bj)

= S (T @) - T R <bz>>' ,

S
Il
—

=1
1
L & \|P P
< n,(T) sup (Z |f (i) — f(a7)] ) Jull,
fEBE# =1
1
. n P
< LR s (S5 - FEDF ) ol
fGBE# i=1
Where u (y) = > <R# (b7) ,a> ei= . (bl,R(a))e;.
=1 i=1
This implies that 7" is Cohen Lipschitz p-nuclear and nﬁ(T oR) < ||R|| nﬁ(T ).

O

Let us present the “Pietsch’s domination theorem” concerning this class
of Lipschitz operators. The proof is like that used in [AMS09]. In [Challl,
J. A. Chavez-Dominguez gives domination theorem for r, p, ¢ such that 1/r+
1/p+1/g=1and T in Lip, (X, E*).

THEOREM 21. Consider T' € Lipy(X,E) and C a positive constant.
Then the following assertions are equivalent.
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(1) The operator T is Cohen Lipschitz p-nuclear and nL(T) <C.
(2) For any n in N; (%i)1<i<p+ (T)1<icn ™ X5 (a )1<Z<n in E* and
(Ai)1<i<n i Ry, we have

Z/\\ T(z;), )|
< C sup (Z)\\fgcZ > ”S||11p<1<2’ )p.

(3) There exist Radon probability measures j1; on Bx4 and py on Bg«=,
such that for all xz,2" in X and a* in E*, we have

(T(x) = T(a'), a")
s, 1) = F)P duy(f

Moreover, in this case

1

(39 5 (s 10 (@) dpig(a®)) 7"

*c\»—‘

nﬁ(T) =inf {C > 0: for all C verifying the above inequality }.

4. Relationships between II} (X, E), DL,
NE(X,E).

In this section, we investigate the relationships between the various
classes of Lipschitz operators.

(X, E), 1L, (X, E) and

THEOREM 22. We have for a Lipschitz operator T : X — E.

(1) NE(X,E) C DL (X, E) and dsLtp(T) <nE(T) for 1 <p < oc.

(2) J\/L(X E) CTLY(X,E) and o (T) < nk(T) for 1 < p < occ.

(3) I ( (X E) C DSLtp (X, E) and dstp (T) < ﬂf(p)(T) for1 <p < oo.
) I

(4) IF(X, E) C N (X, E) and ny (T) < 7k (T) for 1 <p < co.

PRrOOF. (1) Let T € NF(X, E). Consider z,2’ in X and a* € E*. We
have by inequality ([3.1])

(T ()~ T (&) )] 1 1
< O, 17@) — L@ dis (D) (.. la* @) dpala™)7
< Wy, @ () . 0" dia(a )

< D)) ([, 10 (@) dus(a™)7

Hence by , T is Lipschitz strongly p-summing and d% »(T) < 775 (7).
(2) Let T be an operator in /\/;f (X, E). We have by inequality (3.1)
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)

T () — T ()]
= s (T (z) — T (2'),a")|

,_A

« 1
< s ap(N [y, 1) = F@F du)? (... lo* (@) dua)
E* 1

< ny(D)(Jp, 1f @) = F@) dpa(£))P

By Pietsch domination theorem [FJ09], T is Lipschitz p-summing and 7(T) <

L
1y (T).
(3) Let T be in Hf(p) (X, E). Consider x,2' € E and a* € E*. We have by

3

(T (z) =T ("), a)]

< Al g S (@) = 5@ (@) diy (dpa(a™))P)
<l (Md(e,a') #IBEM %m*,a*ﬂpdm(f)dw(a**»%)
<l (D) [ Sy 0 [ SR o) iy () )
<l (D), 2) ([, . o, a™) P dug(a™)) 7).

This implies by (2.3)) that T is Lipschitz strongly p*-summing and dZ, p* L(T) <
7Tf(p) ().
(4) Let T € X (X, E). For n in N, <$i)1§i§n , (x;)lgign in X and (a )1<l<n

in E*, we have

ZI (), a7)]

< 7k (T) sup, (Z |(f (i) — f(a})) (a*, a;*>>
<1 \j=1
[la**[[<1
< b (T)wk (1, (2:), (2])) wpe ((a});) by Holder inequality.
This proves that T € N} (X, E) and n} (T) < o2 (T). O

From the results obtained above we get.

THEOREM 23. Consider 1 < p < oo. Let T" € Lipy(X,E) and L €
Lipo(E, F), If L is Lipschitz strongly p-summing operator, and T is Lipschitz
p- summing operator, then L oT is Cohen Lipschitz p-nuclear operator and

ni(LoT) <dh (L)yrk(T).

PRrROOF. Let 2,2’ € E and b* € F*. By (2.3) we have
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(LoT(x)~LoT (z),b")
(L(T (2) - L(T (') ,b")] 1

diip (D) 1T (@) = T (&) [g,... 10* )" dpg(b*))7",
and by Pietsch domination theorem in [FJ09]

IN

|<LoT(a:) —LoT(x) b*)|

1 . 1
< dh (Dmp (D) g, 1F(@) = F@) dun)?P [, 0077 dps)P
This gives that Lo T € NL(X, F) and nf(LoT) < dk (L)w5(T). O

COROLLARY 6. If p > 2. Then nt Ly(LoT) < db (L)xL(T).

THEOREM 24. Let 1 < r,p,q < oo and % = 5 + a- Let T € Lipy(X, E)
and L € Lipy(E, F). If L is Lipschitz T (r)-summing and T is Lz’pschz’tz p-
summing, then L oT is Lipschitz (r,p, q)-summing operator and 7T( )(L )

T) < WT(T)(L)WIE’(T).

™P,q

PRrROOF. Let 2,2’ € X and b* € F*. We have by ([1.3))

{LoT (x) — LoT (z'),b")] )
< 7wy (D) Us, Jape. [(F(T (@) = £(T (2)) (07, 07)" dpy (F)dpz) 7).

Using general Holder’s inequality and the fact that 7" is Lipschitz p-summing,
we get

(LoT (x)— LoT (&)%) 1 1
< 7l (D, 11T @) = T @ di)? gy |05 diay)
< "L IT @) ~T @) . <b=*:b**>|qm(b**))l
<l (DRED) ., 1) — 1@ di)? (. 067,67 dpy).

This implies that Lo T € I}, (X, F) and n(,, (LoT) < wk  (L)my(T).

O

COROLLARY 7. Let1 < p < 0o. LetT € Lipy(X, E) and L € Lipy(E, F).
If L is Lipschitz T-summing and T is Lipschitz p-summing , then L oT is

Cohen Lipschitz p-nuclear operator and 771’;“(L oT) < ﬂf(L)ﬂg(T).
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