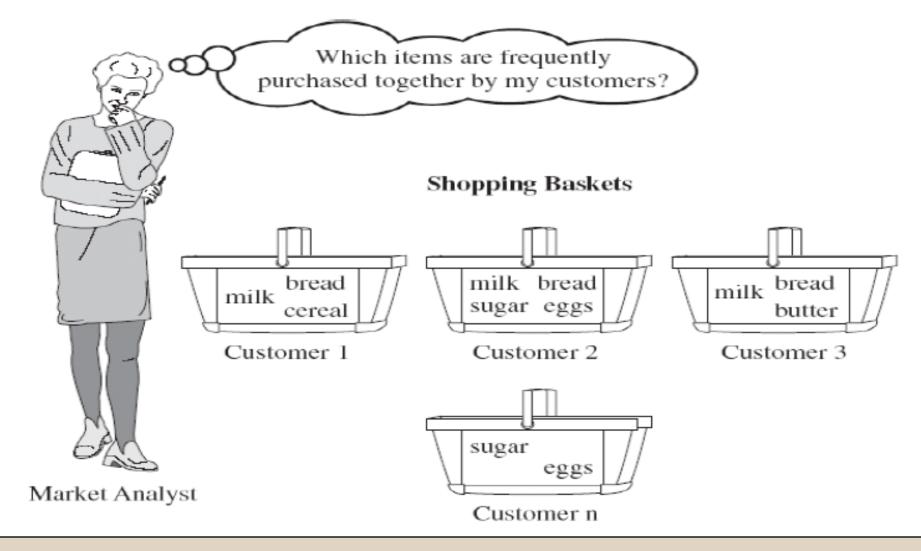
Introduction au

Data Mining

Règles d'Association


Une application habituelle est l'analyse du panier de consommation (market basket analysis) où

- (1) les objets (items) sont fréquemment vendus ensemble au supermarché
- (2) les items ayant même promotion sont arrangés ensemble.

Découverte des Règles d'Association

Market basket analysis

Association Rule Discovery

- Given a set of records each of which contain some number of items from a given collection;
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Butter, Bread
3	Butter, Coke, Diaper, Milk
4	Butter, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Butter}
```

Association Rule Discovery

Market basket:

Rule form: "Body → Head [support, confidence]".

buys(X, `butter') \rightarrow buys(X, "snacks') [1%, 60%]

- (a) If a customer X purchased `butter', 60% of them purchased `snacks'
- (b) 1% of all transactions contain the items 'butter' and 'snacks' together

Notation

 $\#(b_1, b_2, ..., b_k)$: pourcentage des transactions contenant $(b_1, b_2, ..., b_k)$ par rapport au nombre total de transactions.

```
Support:  \#(a_1,a_2,\cdots,a_n,b_1,\cdots,b_k)  Confiance:  \frac{\#(a_1,a_2,\cdots,a_n,b_1,\cdots,b_k)}{\#(a_1,a_2,\cdots,a_n)}  Amélioration:  \frac{\text{confiance}(a_1,a_2,\cdots,a_n,b_1,\cdots,b_k)}{\#(b_1,\cdots,b_k)}
```

Algorithme A-priori

- Algorithme permettant de trouver toutes les règles d'association pour :
 - Un support minimal fixé.
 - Une confiance minimale fixée.

Exemple

Trouver toutes les règles s'appliquant à au moins 30% des transactions, et ayant une confiance supérieure à 80%

Définition 1

- itemset : ensemble d'articles.
- k-itemset : ensemble contenant exactement k articles.
- itemset fréquent : itemset dont la fréquence dans la liste des transactions est supérieure au seuil fixé par le support minimal.

A-Priori

Deux phases:

- 1. Trouver tous les itemsets fréquents.
- 2. A partir de ces itemsets, trouver toutes les règles ayant une confiance suffisante.

Trouver les itemsets fréquents

- Compter combien de fois chaque sous-ensemble d'articles apparaît dans la liste des transactions?
- Impossible : *n* articles, donc 2ⁿ sous-ensembles à explorer.
- n très grand.
- La plupart des sous-ensembles ne sont jamais présents dans aucune transaction.

Propriété A-Priori

Pour qu'un k-itemset soit fréquent, il faut que tous les (k-1))itemsets qu'il contient soient aussi fréquents

Preuve:

- Soit $(a_1, a_2, \dots, a_{n-1})$ un (n-1)-itemset non fréquent.
- Sa fréquence est donc inférieure au seuil.
- Le n-itemset $((a_1, a_2, ..., a_{n-1}, a_n)$ est au plus aussi fréquent que $(a_1, a_2, ..., a_{n-1})$
- Il n'est donc pas fréquent.

Algorithme

- 1. Créer l'ensemble de tous les 1-itemsets fréquents. (k=1)
- 2. Tant que de nouveaux k-itemsets ont été créés faire :
 - Créer tous les candidats (k+1)-itemsets à partir des k-itemsets fréquents (union d'ensembles)
 - Parcourir la liste des transactions pour éliminer les (k+1)-itemsets non fréquents.
- 3. construire les règles

Exemple détaillé

Cinq articles : *I1, I2, ..., I5*

Neuf transactions.

Support minimal: 2/9

1-itemsets fréquents

•	Article	Frequence
•	I 1	6
	l 2	7
	I3	6
	14	2
	I 5	2

Candidats 2-itemsets

t1	l1, l2, l5
t2	12, 14
t3	12, 13
t4	11, 12, 14
t5	I1, I3
t6	12, 13
t7	I1, I3
t8	11 ,12 ,13,15
t9	11 ,12 ,13

On construit tous les couples de 1-itemsets fréquents (I_i, I_j)
 i ≠ j: il y en a 10.

	11	12	13	14	15
I1	Χ	4	4	1	2
I2	Х	Х	4	2	2
13	Х	Х	Х	0	1
14	Х	Х	Х	Х	0
15	X	Х	Х	X	Χ

Exemple détaillé

3-itemsets candidats

- Construire les candidats à partir des 2-itemsets fréquents.
- Si les 2-itemsets sont dans l'ordre lexicographique, il suffit de considérer les couples de 2-itemsets ne différant que

par le *dernier article*

	I1, I2	I1, I3	I1, I5	I2, I3	I2, I4	I2, I5
I1, I2	X	ok	ok	deja vu	non	deja vu
I1, I3	Х	Х	deja vu	deja vu	Χ	Х
I1, I5	Х	Х	Х	Х	Х	deja vu
12, 13	Х	Х	Х	Х	non	non
12, 14	Х	Х	X	Х	Χ	non

4-itemsets

Un seul candidat : (*I1, I2, I3, I5*), *m*ais (*I2, I3, I5*) n'est pas fréquent (i.e. n'a pas été gardé à l'étape précédente. . .) Fin de la recherche des itemsets fréquents.

On a finalement:

- Six 2-itemsets fréquents.
- Deux 3-itemsets fréquents

Construire des règles

Principe: A partir d'un k-itemset fréquent:

• Construire toutes les règles de la forme

SI
$$a_{\gamma(1)} \wedge \dots a_{\gamma(i)}$$
 ALORS $a_{\gamma(i+1)} \wedge \dots a_{\gamma(k)}$

où γ est une permutation et 1≤i<k

- Calculer la confiance de chacune de ces règles.
- Garder les meilleures ou les classer.

Construire des règles

A partir des six 2-itemsets, 12 règles possibles

Couple	Regle	Confiance	Support
l1, l2	I1 ⇒ I2	4/6	4/9
l1, l2	I2 ⇒ I1	4/7	4/9
12, 14	I2 ⇒ I4	2/7	2/9
12, 14	I4 ⇒ I2	2/2	2/9
		•••	
		•••	

A partir des triplets
 (on ne fait que (11, 12, 15)

Regle	Confiance
I1 ^ I2 ⇒ I5	2/4
I1 ^ I5 ⇒ I2	2/2
I2 ^ I5 ⇒ I1	2/2
I1 ⇒ I2 ^ I5	2/6

Remarques

- 1. Si on crée un k-itemset, il faut parcourir la liste des transactions k fois (pour vérifier la fréquence des candidats).
- 2. Mais : les itemsets fréquents deviennent de plus en plus rares.