

TPs Conception des circuits intégrés numériques analogiques CMOS

TP 1 : Initiation sur le logiciel Orcad PSpice

1.Le Logiciel SPICE

SPICE (Simulation Program with Integrated Circuit Emphasis) est un logiciel libre de simulation généraliste de circuits électroniques analogiques. Il permet la simulation au niveau du composant (résistances, condensateurs, transistors) en utilisant différents types d'analyses : point de polarisation (courant continu) ;analyse fréquentielle pour petits signaux et bruit (courant alternatif linéaire) ; transitoire.

2.Historique

SPICE a été créé à l'université de Californie (Berkeley) au début des années 1970 par l'équipe de Ron Rohrer, dont en particulier Larry Nagel. C'est devenu par la suite le standard des simulateurs analogiques. Trois versions se sont succédé dont la dernière, SPICE3, date de 1985. Il est disponible sous licence BSD.

Différents avatars commerciaux existent depuis les années 1980. Parmi les plus célèbres, on peut citer IS_SPICE, PSpice, MICROCAP, HSpice, ELDO, etc.

Aujourd'hui le paysage de la simulation analogique tend à se modifier lentement avec le développement de langages de description matérielle évolués tels que le Verilog-A et le VHDL-AMS. Ceux-ci permettent une plus grande flexibilité de modélisation en facilitant la modélisation mixte analogique-numérique et en autorisant l'écriture d'un modèle sous la forme d'un système d'équations différentielles quelconques. On peut également signaler l'existence d'une extension AMS à SystemC qui a été spécifiée par l'Open SystemC Initiative (OSCI) et implémentée pour l'institut Fraunhofer pour les circuits intégrés.

3.Fonctionnement

SPICE (Simulation Program with Integrated Circuit Emphasis) est un logiciel libre de simulation généraliste de circuits électroniques analogiques. Il permet la simulation au niveau du composant (résistances, condensateurs, transistors) en utilisant différents types d'analyses : point de polarisation (courant continu) ;analyse fréquentielle pour petits signaux et bruit (courant alternatif linéaire) ; transitoire.

Dans son forme originale, vous indiquez à Spice quels sont les éléments du circuit (résistances, condensateurs, etc.), puis entrez le schéma de circuit sous forme de fichier ASCII indiquant À quels nœuds chaque élément est connecté. Un numéro est attribué à chaque nœud. Il existe toujours un nœud de masse, ayant le numéro 0. Vous Indiquez à Spice les informations que vous souhaitez - conditions de biais, réponse en fréquence et / ou réponse transitoire. Spice fait l'analyse du circuit et faire sortir les résultats sous forme de fichier ASCII. Utiliser Spice n'est pas très intuitif, car l'entrée est un fichier ASCII et non un schéma électrique, et la sortie est un autre fichier ASCII aussi au lieu d'un graph.

Plusieurs entreprises ont développé des interfaces utilisateur graphiques pour Spice, qui facilitent son utilisation. Un des plus populaire est PSPice. PSpice fournit une version gratuite de son programme destinée aux étudiants qui peut être téléchargée à partir du site <u>www.pspice.com</u>.

SPICE utilise des composants élémentaires modélisés par un ensemble d'équations. exemple, pour une résistance, on a tout simplement la loi d'Ohm Par U=RI.

Le fait de relier ces composants entre eux permet de créer un système d'équations à l'aide des lois de Kirchhoff. Celui-ci est linéarisé localement autour du point de polarisation courant si besoin et résolu. En non-linéaire, il faut alors itérer jusqu'à convergence (point fixe) avant de passer au pas de temps suivant. Il arrive toutefois que le système ne converge pas, lorsqu'il est mal conditionné ce qui est souvent provoqué par des nœuds en haute impédance.

3.Netlists SPICE

Les Netlists SPICE sont les fichiers d'entrée du simulateur. Ils comportent la liste des composants avec (dans l'ordre) :

leur type et référence (R3 est une résistance) ; les nœuds auxquels ils sont reliés (deux pour une résistance, trois pour un transistor bipolaire...) ;la valeur dans les cas simples ;éventuellement le modèle (jeu de paramètres utilisés) ;éventuellement une liste de paramètres permettant d'altérer le modèle utilisé.

Exemple de Netlist SPICE

* source ACC

R_R1	N00985 1	N00972	3.3k
R_R2	0 N0097	2 3.3k	
V_V1	N00985	0	
+SIN 0 5 1K (0 0 0		

On a ici un générateur sinusoïdal de 0V offset et 5 V à 1 kHz à l'entrée d'un circuit RC passe-bas.

4.Démarrage du PSpice

Pour utiliser PSpice, commencez par le programme PSpice Schematics. Lorsque vous démarrez, vous obtenez un écran qui ressemble à ceci:

Pour insérer un composant, utilisez le menu déroulant Dessiner, puis sélectionnez Obtenir une nouvelle pièce (ou utilisez le raccourci Ctrl-G). Cela fera apparaître une boîte de dialogue qui vous permettra de sélectionner des parties des bibliothèques. Si la partie que vous souhaitez ne figure pas dans la liste, essayez une autre bibliothèque - des composants tels que des transistors seront probablement présents. eval.slb, tandis que des éléments tels que les sources de tension seront en analog.slb. Sélectionnez la partie souhaitée et placez-la sur le schéma:

	Spice Schematics - Be Edit Draw Navi	<mark>(*Schen</mark> gate ⊻je	nati <mark>ct p.1]</mark> w <u>O</u> ptions <u>A</u> nalys	is Toolis Markers Window He	4p			
	🖉 🖬 🚙 🖂 (Ba) 📾	1 10 -	2	5 5 0 5 02N2222		None None	- PR	VINII
2	Part Browser Basis			2				-
닁	Part Nome							
0	Decementation							
	NPN bipolar transisto	SF.						
	0							
	PAL20RP48 PARAM	~	Close	er j				
	POT PRINTI PRATOCTI CHAS		Elece	-5				
	PWRS		Place & Glose					
	02N2907A 02N3904 02N3906		Help					
	O2N6059 ObredkL	100	Libraries					
	Obreck/N3 Obreck/N4	-	Advanced >>					
	Full List							
	000000000	11.11						
	11010101							
	22222222							
	111111111							
	12222222							
	2121111							
	<)							>
1.58	8, 1.13						Crind: Place F	ant

Continuez à placer les composants dont vous avez besoin. (Si vous avez besoin d'un composant du même type que celui que vous avez déjà placé, vous pouvez utiliser la commande Draw -

Raccourci pour placer une partie (Ctrl-P).) Vous pouvez faire pivoter un objet en cliquant dessus pour le mettre en surbrillance, puis utiliser Edition - Rotation (ou Ctrl-R). Vous pouvez changer la valeur d'un composant en double-cliquant sur la valeur du composant et en entrant une nouvelle valeur. Vous pouvez connecter des composants ensemble en plaçant des fils –Dessin - Fil (ou Ctrl-W). Assurez-vous de placer une masse analogique (AGND). Utilisez le composant VDC pour les alimentations en courant continu et VAC pour le signal sources. Une fois terminé, vous aurez quelque chose qui ressemble à ceci:

Assurez-vous de sauvegarder le fichier, puis allez à Analysis - Setup. Ici, vous indiquerez à PSpice ce que vous voulez faire. Sélectionnez toujours Détail du point de biais. Dans ce cas, nous sélectionnerons également AC Sweep qui donnera la réponse en fréquence du circuit.

Enabled		Enabled		
	AC Sweep		<u>O</u> ptions	Qlose
Г	Load Bias Point		Parametric	
Г	Save Bias Point		Se <u>n</u> sitivity	
Г	DC Sweep		Temperature	
F	Monte Carlo/Worst Case		Transfer Eunction	
1	Bias Point Detail		Transient	
	Digital Setup	1		

Cliquez sur AC Sweep pour indiquer la plage de fréquences que vous souhaitez utiliser:

Sweep Type	Sweep Parameter	s
Linear	Pts/Decade:	50
<u>O</u> ctave	Start Freq.:	100
Decade	End Freq.:	1Meg
oise Analysis		
Noise Enabled	Output Voltage:	
House Chabled	I/V Source:	
	Interval:	

Ici, nous allons couvrir les fréquences de 100 Hz à 1 MHz. (Remarque: utilisez Meg pour 106

. Si vous utilisez M, PSpice interprétera cela comme un milli (10-3).) Maintenant choisissez Analyse -Simulate s'exécutera et PSpice s'exécutera et affichera une fenêtre d'analyse:

		1.1.1. A.		
Bee Edit New Sunnrat	ion Trace Bot Tools Window	Helb Bl		- 181
	X Ph 🛍 🗠 😂 🗍 Testi	► 11		
2 Q @ Q III h ×		《水场对导品公律定		
1				
1				
10KHz	100KHz	1.0MHz	10MHz	168MH
10KHz	100 ^k Hz	1.0MHz Frequency	1 OMHz	100MH
10KHz	100 ^k Hz	1.0MHz Frequency	10MHz	160MH
10kHz	100KHz	1.0MHz Frequency	10mHz	1.00MH
10KHz	109KHz	1.0MHz Frequency	10MHz	100MH
10KHz Testl (act., Calculating bias point Bias point calculated AC (and Noise) Analysi	100KHz	1.0MHz Frequency	10MHz	1 GOMH
10XHz Testl (act.) Calculating bias point Bias point calculated AC (and Noise) Analysis AC-Analysis finished	100KHz	1 . OMHz Frequency Start = 10.00E-03 Freq = 101	10HHz	1 GOMH
10KHz Testl (act.) Calculating bias point Bias point calculated AC (and Noise) Analys AC Analysis finished Simulation complete	109KHz	1.0MHz Frequency Start = 10.00E-03 Freq = 10	1 0MHz 0.0E-06 End =	1 GOMH

Dans cette fenêtre, choisissez Trace - Ajouter une trace. Puisque nous nous intéressons au gain du circuit, nous voulons tracer la tension de sortie divisée par la tension d'entrée. La tension de sortie est la tension

sur le collecteur de Q1 et la tension d'entrée est la tension sur la borne + de V3. Nous avons donc tracé VC (Q1) / V (V3 +).

Simulation Output Variables			Functions or Macros	
			Analog Operators and Fun	uctions 💌
∧(∧S.+) ∧(∧S.+)	(A)	🗑 Analog	0	
/(V3-) /(V3-)		C Digital		
v1(C1) v1(C2)		🖙 Yoltages	1	
/1(R1) /1(R2)		Currents	@ ABS()	
/1(R3)		Thorse (V*//Hz)	ARCTAN()	
/1(R6)		🔽 Alias Names	AVG()	
2010/11 21/22 22(C1) 22(F1) 22(F12) 22(F12) 22(F12) 22(F14) 22(F14) 22(F14) 22(F17)		🗖 Subcecut Noden	COS() DE() ENVMAX(,) ENVMAX(,) EXVMIN(.) G() MG() LOG()	
/B(Q1) /C(Q1) /E(Q1)	~	69 variables listed	LOG10() M() MAN()	
ull List				

Nous voyons maintenant le tracé de la réponse en fréquence:

Elle E	idit Yew Sir	nulation Trace	Blot Tools y	Window Help 8	5			_ 6
•	s ts 🗆 🛎	1 & B B	22 T	esti	I I			
0.1	Q 00 9		孫 💔 🏹 🚽	太平子)	* 冲游的壁槽	22		
1				.1.44				
	2.0							
			_0					
		/			<u> </u>			
	1 0	/						
5								
	, cr							
						~		
	e						-0	i
	100Hz		1.0KH:	z	10KHz	10	OKHz	1.0MH
	υŲ	ic(a1) / U	(V3:*)					
-					Frequency			
	Testl (act.)							
Calc	ulating bias p	pint		<u> </u>				
Bies	point calculat and Noise) Ar	ed whysis						
ACA	malysis finish	ed		Start -	100 Freq	1 000E+06	End = 1.0	000
Simu	lation comple	ite		~		1.00	. 500 100	100 C
				and the second se	and the second sec	1		

Nous voyons que le circuit a un gain d'environ 1,5 à une fréquence de 1 kHz. La valeur théorique est d'environ (RL \parallel RC) / RE, ou 1.8.

Pour voir les tensions et les courants de polarisation, vous pouvez consulter le fichier de sortie ASCII. Cependant, il est plus facile de revenir au programme Schematic et de sélectionner Analyse - Afficher les résultats sur Schematic puis Activer l'affichage de la tension et / ou Activer l'affichage du courant. Voici le schéma avec les tensions de polarisation affichées:

Il est instructif de regarder le fichier de sortie ASCII. Et voici une partie:

Q_Q1 \$N_0002 \$N_0001 \$N_0003 Q2N2222 R_R4 \$N_0004 \$N_0003 1k R_R2 \$N_0004 \$N_0001 10k C_C2 \$N_0002 0 0.01u V_V2 \$N_0004 0 -15V R_R6 \$N_0006 \$N_0005 1k V_V3 \$N_0006 0 DC 0V AC 0.1V V_V1 \$N_0007 0 15V R_R1 \$N_0001 \$N_0007 20k R_R3 \$N_0002 \$N_0007 2.2k R_R7 0 \$N_0002 10k C_C1 \$N_0005 \$N_0001 0.1uF C'est le type de fichier dont Spice a besoin - il montre que Q1 est un transistor 2N2222 et que son

collecteur est connecté au nœud 2, sa base au nœud 1 et son émetteur au nœud 3. Plus tard dans le fichier de sortie, nous trouvons les spécifications du transistor 2N2222:

Q2N2222 NPN IS 14.340000E-15 BF 255.9 NF 1 VAF 74.03 IKF .2847 ISE 14.340000E-15 NE 1.307 BR 6.092 NR 1 RB 10 RC 1 CJE 22.010000E-12 MJE .377

Dr H.BAKHTI

CJC 7.306000E-12 MJC .3416 TF 411.100000E-12 XTF 3 VTF 1.7 ITF .6 TR 46.910000E-09 XTB 1.5 CN 2.42 D .87 Le modèle Spice standard suppose que le 2N2222 a un β de 255,9. Vous pouvez modifier le modèle de transistor si vous souhaitez utiliser une valeur différente de β .

Nous pouvons également voir les tensions de polarisation aux nœuds:

NODE VOLTAGE NODE VOLTAGE (\$N_0001) -5.3359 (\$N_0002) -3.7732 (\$N_0003) -6.0390 (\$N_0004) -15.0000 (\$N_0005) 0.0000 (\$N_0006) 0.0000 (\$N_0007) 15.0000