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Chapter 1
Canonical quantization of the real scalar field
4ddal) dpaludd) J giadl 3 o38N asagil)
A Review of special relativity Aalal) dpuall dra j

The coordinates of an object or event in 4-dimensional space-time, which known by
Minkowski space, form a contravariant four-vector whose four components have upper
indices :

Lo b JSE5 ¢ S s slimis iy pmall ¢ 31 el y SIS Lol sloaill b caan sf (AlS cililaa)
A sle ailal 0 5S3 Cua ge iy puill Callas

x”(x‘)zct,x =X, X" =V,X sz) (1)

Here Crepresents the speed of light in a vacuum. The covariant four-vector whose four
covariant have lower indices :

w38 g ol plad (oo Al ailil (685 oLl aniall ¢ 8l a5 guall de o Jiad € Lin
xﬂ(xozx X ==X =-X,X, = —X s—y,x3:—x3s—z) (2)

In general, this term can be generalized to all quadratic vectors in the Minkowski four-
dimensional space :

sad) el Sad Sine slimd 3 Ae Lyl 4adV) US e 2 0aial) 138 apend (S ole US|

a“(a’ a',a%,a%)

(3)

_ A0 _ 1 _ A2 _ 3
aﬂ(ao_a ,a, =-a',a,=a‘,a,=-a )
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A contravariant four-vector (upper indices) are related to covariant four vector (lower
indices) with the metric tensor g as follows :

Ay sie b e (i) A1) jal) 488 gall A by I as VL (A slall A2V sl Aallaal) Aoy ) dai) Lo i
L“;.\\AS ¢ Lizadll

3
a’=)'9"a, =g"a, (4)
v=0
As the index repeated twice, once upper and lower, is considered a sum index without
mentioning the sum symbol (the Einstien summation convention).

M aal) paall 3ey S5 (s man iy ey JauY) A s AT 5 AoV S35 ye o e Sl Jalal (o Cua
( - n . “.. :..“

the metric tensor 9" in 4-dimensional space-time, which known by Minkowski space as
follows :

+1 0 0 O
0 -1 00
0 0 -10
0 00 -1

9" =g, = = diag(+,—,—,-) ()

The metric tensor g*" satisfies the following orthogonality condition :

s lLiadl) 3..1)44 (58l -gﬂV ;:\:ﬂ\ﬂ\ 2alxtll 433

1 for u=«a
9"9,, =9, =
o |0 for p#a

Now, the scalar product in Minkowski space is defined as follows :
r bl o ymy S S pliad 8 alid) elaaldl oY)

AB=AB, =AB"=g,AB" =g"ABv

6
-=A’B°-AB,-A B, -A,B, (©)
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Lorentz transformations are linear transformations on the components of four-vectors
which leave invariant scalar product :

S5 S sSine pliad 8 Ailide Adllae Jaa 8 Auliall Al A1 G Ak ClBe a5y ) a0l g
t oaludl elaal) iad Jaias

A* = A, A

| (7)
X" = A X"
Where A~ is given by :
aX'V
Aﬂv =
o ®)

When the inertial reference R’ is moved parallel to (Ox) axis of the reference (R) we
have the special case :

14 5 el Aalall Allal) Ll (R) adlanl dleall (Ox) Lsaall 385 R? ullaal) dlaal) &l ja% Loic

A°=y(A°—pA) (A =p(A%+pA )

A =y(A -pA°) | A =y(A,+pA°)

A=A, A =a, 9)
A=A A=A

\/172 and g - Youo . The interval ds?between two events in Minkowski space is
1-pB c

invariant under all Lorentz transformations :

r eSS Sine pliad (8 ias g Jeal Al A0S 3115 il G gl

Here y =

ds® =g, dx“dx’ 10)
= c?(dt)’ (o) - (dy)” - (dz)

It is classified as follows:

ds? = g, dx“dx” =0 Time -like
=g, dx“dx” <0 Space - like (11)

uv

=g, dx“dx" =0 Light -like
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Differential operators d, and o~ in Minkowski space, are defined by :

LS o jad S Sia sl 3 or 5 0, Alalil il

5 =9 (06 _ 10 06 0 0 90 0 _0
B at'oxt ox ox? oy'ox® oz

©ooxt lox® ¢
_(160 06 9 (12)
cot ox oy oz
(S
c ot
And
o9 (0 10 0 0 0 __0 0 __0
Sox, (ox, cotox X' OX, Oy OX, 0z
10 0 0 0
v P P N (13)
cot ox oy oz
5
c ot
And the d’Almbertian :
{8 SO RV KV B
0,0 =0"d,
(L2 efie s
c ot c ot
1o o8 o o (14)
2o’ o’ oyd ard
1 0°
~Zar 20

The conserved four-momentum is given by :

: LS G pay o sinall 38 jall eyl g el
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(15)

A review of relativistic quantum mechanics :

The Shrodinger equation in quantum mechanics is the operator equation corresponding to
the nonrelativistic expression for the energy :
AU 48Ul (38 ¢ Aalaa & oSN elilSa B jaiaa g Aalas
=2
E_P

=om (16)

In the coordinates representations, by means of the operator substitution prescriptions :
aeSill dha o) (3 k) Jlasinly 5 cllaa¥) gliad 3

E—>i7’z2

. ot (17)

Action on the wave function one finds for a free particle :
s e Al an dgs sall Al e 0L

h = OF(F 1)
——V2¥(F t)=ih——
=i (19)

The equations (17) and (18) are not covariant. Thus, the covariant relativistic equation can be
obtained by starting with the covariant equation for the conserved four-momentum :

sball il Aabeall (s AY dallae dlaa (o JEBY) W) 503 3 palall) (iaabia ye (18) 5(17) oilabadl
AS Al el )l g Lt aelall Alsbaall g Leile J gemall (S
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c (19)

Substitution of operators gives the Klein-Gordon equation for real or complex function :

AS ) 5l Agiall J1gall dal (e 053 53-(DIS Aalae &l Jigal) (imy g any

2 —
R )+ il t) = 2 gfg ) (20)

We can rewrite the Klein-Gordon equation in a manifestly covariant form as :
(AU il e daely y dapay (53 s (DS Aalae AU Bale ) LiSay

(az +%)(p(?,t)=0 (21)

The plane waves are present solutions to the Klein-Gordon equation :
(JSEN (e ) sl Aaladd Y ogla yriat 4y 910K G\yx“}!\

o(F.t)= exp(iIZF—a)t) (22)

Allows us to relations between k,wand m as follows :

oLl Al 5l oAl (s A8 sl eanss Lae

n’w* = h’c’k? + m2c*

(23)

= ho = +/h*c’K® + m2c*
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Thus, we obtain two modes of energy, the positive mode, and the negative mode of
energy solutions. If k* = (%Ej present a 4-vector, allows us the covariant form of the
solutions of the Klein-Gordon equation :

=Ll pladll Jiay k* :(Q,Rj O3 ) il 5 gl Jaadl) PR8N (plaad e Jeasi 1Ka
: .

(08-S Aalas J s debua salely o 138 o 54l
o(F t)= exp(ikﬂx”): exp(% pﬂx”j (24)

The general solutions of the Klein-Gordon equation can be rewritten as a superposition of
plane wave solutions :

3 ginall 71 a3 ek a5 A (3 - (plS Alaladd dalall Jglall

o= [ s P e o (Bl p | 25)

The coefficients a(p) and b*(p)are the amplitudes of two independent solutions. For real scalar
field a(p) equal b(p).

okl 5 bty Apaluad) J gindl Jal g cpliine cplad Clandl ey B() 5 a(p) oDlelaal

To generate the continuity equation, we consider the following combinations :
:QJC’J\ S il pried Aol pai) Adalas Ay

" (Shrodinger - equation )—P(Shrodinger - equation )’

We obtain the continuity equation :
:\_JJ\JAE.\.»Y\ MJL&A‘;.Q daa;:uj

%, i = 26
6t+dIVJ 0 ( )

Where
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p=¥"¥ =¥

j=- 220 (\P*%\P —\P%\P*)

(27)

For the Klein-Gordon equation, the continuity equation, we have :
A8y Hlall Gy Wass 4y ) jaiu) dlalas (50 ) -l Alalaal 4l

in (*&p 6(0*]

p:2m0c2 Yo (28)
- ih = =

=- Vo - oVo®

j Zmo(co p—¢ (p)

In the above equation p, is no longer a positive define.
Ao s lagd ol p oo Adalaall 8

To obtain the Klein-Gordon equation in an external electromagnetic field, we make the

two replacements :

B B A:p/‘_}pﬂ__A/u
P—>pP-0q— c

E—>E-qV
a (31)
Cc

Where A* :(% A) Is the 4-quadrivector potential in the Minkowski space, thus the Eq. (19)

becomes as follows :

LS (19) ladll a4 5 * S Sige sz 8 (5ol ol plal Jiny A = (% A] ol &

—

2
(E-qVv) :[p—qéJ ¢’ +mic* (32)

Now, we combined two equations (17) and (32) to obtain :
2230 (18) 5 (17) Cilabaall (s S5 Y

(ihgqvjz(p(x)—ﬁ ih?—q?}zcz +m§c4}(p(x) (33)
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It is well known that the Euler-Lagrange equation in classical mechanics is given by :
AU 3 lally (aad eI SlilSaall 3 il 2 Y- L) dalas Of o sladd) (e

d (iJ LR (34)

dt 84 oq,

Where L(qi,q'ij :T(qij—v(qi) is the Lagrangian function, T(q}j is the kinetic energy,

and V(qi) Is the potential interaction. The canonical momentum p; defined as :

el (5aS V(g)) 5 ASoal 2l s T(qij e Als s L(qi,qijﬂ(q’ij—v(qi) of dua

S iy Py 3l

Ppi=— (35)

The Hamiltonian function defined as a function of ¢; and p; as follows :

Ig;J.-.‘LAS Pi 50 ayay Ot:‘-.’Jﬂ:““L@J\ ala 8yl
H(qi'pi): P; qi_L[qi’qij (36)

The Hamiltonian’s equations of motion can be obtained from Eq ; (36) as follows :
1(36) Wakaall (pa iiias () silelgd A8 jall ¥ alan

% (37)
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The Euler-Lagrange equations (19) are not covariant. Let us replace the generalized
coordinate Q; with a field . A covariant form of the action would involve a Lagrangian
density via :

Joill 53l sl | o Jially f, Fnanall A1a Y1 insnl S3ala i (19) pdy g2 Yo 5L Y sla
sobad e S AAES Jads

S = [Ldt
= [ 3d®xdt (38)
= [ 3d*xdt
Where d*x = d*xdt is an element of volume and L = j5d3x. The term [_ aa_"j in Eq .
q;

(34) replaced by (— 2—SJ and the time derivative % should be replaced with the covariant
P

derivative 0,, allows us to gets the covariate Euler-Lagrange equation :

1o R (34) Ailad) b (_%j awl L= [3d% 5 paall juale Jia dix=dxdt O Cus

. o s . e e . . NPT 03
3 liall C._u\‘)cy_‘)h;\ Aalaa J\A,)}_a MLAA a# 2lall d.u.mﬂ_a day ¢20 (g % ‘_,,_\A)S\ Jazaladl) P g (_ i}

03 03
0 F.0) - 220

The covariant momentum density 11~ is defined by the following relation :

Adaleall A (ga o gad T4 QSJQ\ (“}d\ PEIRN

. 03
1" = 0.0 (40)
The canonical momentum [Tis defined by :
S i yn T (598 S all o 3all
03
[M=11°= 41
ore) )

The energy-momentum tensor T, is given by :
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S ey T, A8 jacdilal) ) g
T/JV :Hy 8\/¢_gyvS (42)

The Hamiltonian operator H is given by :
ol (ary H ol silidlell Sisa

H= j Nd®x (43)
The Hamiltonian density X is defined by :
LS Capad N Ol silialed) AdES
N=Ty, =110,p-3 (44)
Homework :

The massive Klein-Gordon Lagrangian density is :
1 2 2
3p.0,0)= (0,000~ m??)

A 1-Derive expression for the covariant momentum density and the covariate momentum
A 2-Derive the equation of motion
A 3-Derive expression for the energy-momentum tensor and the Hamiltonian density.

Let » > o+ 059 be a variation of the fields, so the variation of Lagrangian density can be
written as follows :

(e ﬂsﬂ)=a%)5(aw)+%&ﬂ
u

(45)
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The first term vanishes by the Euler-Lagrange equation, the density Lagrangian is invariant

~

.. . i 0
under the variation of the fields, then we require that the second term 8,{@&)} equal
y7

~

zero when azi)&o Is conserved :
@
u

0,i" =0
.03 (46)
"= 5
V= 0.0
The corresponding conserved charge is given by :
Q=[dj° (47)

Canonical quantization of the real scalar field
(hial) aluad) Jall 3 gilal) asasil
We have seen in the first section of chapter one that the canonical momenta p; and the

Hamiltonian H(g;, p;) were given by :

(S el H(G, ) el 5 By A 2520 ) 05 ol 0 31 el L

oq.

H(gi, pi)=p, di—L(qi,q})=Zpi q —L(qi,q}j

P =
(48)

Here all the physical quantities g, =q,", p, = p,” and H(qg,, p;)=H(q,, p;)" are Hermitian
operators on a Helbert space. It is well known that the operators g, =g,” and p, = p,” satisfy
the following Canonical Commutation Relations (CCRs) are postulated :

o pstrall Ga o pla olind Gl (A H(Qi’ pi): H(in pi)+ 50 =0, pr=p Akl el JS
4 alosall 45 580 Jalgl) Be 383 p = p 5 0, =0, < isal
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[a., p.]=[a; (), s (O)] = 0 p; - Py = 0, )Py (©) - p; (Ve (t) = 25,
9,0, ]=[a;(t).q; (t)]=0 (49)

[pi’ pi] [pi(t)’ P; (t) =0

It is important to notice that the CCRs are satisfied in both Shrodinger and Heisenberg
pictures (SP and HP). We have in SP :

sy b Ll & 5u e 5 jaiagpd ) sea e JS (G (3 A il Jalgl) clidle o ) s o aed) (10
ig ¥
D
Ihal‘P(t»s =H(q;, p, )| 2(t))
: (50)
|w(t)), = exp(— m H(t-t, )j|‘P(t0 ),

Where ¥(F.t)=(F|¥(t)), and t, is the initial time. The connection between both SP and
HP is given by :

S (ot & 5 3 5 said g s () e O A8l () e 0 58 by 5 W(FLE) = (FI (L),
), =o0(; Hit-t) | ¥(), =¥l
_ (51)

A (0)=00(; Ht-t,)JA e - HiE )|

And the equivalent physical form is given by :
layl Ll (A6 IS

|T>-4é(%H&tUT%- -
A = exp(—% H(t-t, )jAH (t)exp(% H(t-t, )j

The expectations values are conserved quantities :
Ak gine i Ao siall Lol

s<lP(t)|AS|\P(t)>s:H <LP|AH (tXlP>H (53)
In the special case :
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Aala)) sl s
q,(t)= exp(% H(t-t, )jqi exp(— % H(t-t, )j
p,(t)= exp(% H(t-t, )j p; exp[—% Ht-t, ))
= (54)

q = exp[—% H(t-t, )}qi (t)exp(% H(t-t, )j
p 1) =0 ;W) ea 1 HE )|

While
H(t)= exp(% Ht-t, )JH exp(—% H(t-t, )j
and = H(t)=H (55)
H= exp(— é H(t-t, )JH (t)exp(% H(t-t, )j

Homework :

Show that, by differentiating Eq. (51) in an HP the operator a,(t) obeys the Heisenberg
equation of motion :

Sl ¢ 5 s el iy A () S5l QU § i e i 3 (51) Aabadd) Jualésy o

AT a0 (56)
And
da(t) _ p(t)
@ ) _fg_v (57)
dt ot

Where Mand Vv are the mass and interaction potential, respectively.
The second quantization :

;gJL'ﬁ\ “.\:\ASﬂ\
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The second quantization procedure of scalar real field satisfied by considering both the
field 4@ r)and its conjugate ri(t,r)as Hermitian operators (4(t,F)=¢"(t,F) and II(t,F)=T11"(t,F)
). To satisfies this object, we made the following translations from the Canonical Commutation
Relations (CCRs) :

Sl e (e, F) S e 5 g, r) disd) 0o IS Jliely (REal) (alud) Jiall S apeSl (33 yhe aa3
S0 il b A E Jalill clBe (he Ui Al Sy | TI(LF) =TT (4 F) 5 g(t,F)= 9" (1, F) e

p, > TI(t,F) (58)
r

Here s(r — ') is a 3-dimensional Dirac delta function. The CCRs is the first quantization,
translated to the second quantization by considering the three-simultaneously transformations

on the CCRs, in Eq. (49) :
se) 8 Baadaty U aaSall QI Gl yiad 4 g8l8) Jalll clBdle | el 4536 &l pa-Uila Jiad 57 — ) L
:(58) Adalall GA saaaall Leale Jlaisy)

)
[a,,0,]=0— [g(t. 7). ¢(t, 7)) =0 (59)
[p, pi]=0— [MI(t,F), TI(t, F)] = 0

The new above algebra is known by Equal Time Commutation Relation (ETCCRs). We
have seen that the Hamiltonian operator H, in the first part of chapter one, is given by :

Jaaill e oW andll 3 H b silaaled) Siga o Ll cpe 30 s 8 4 a1 Jaliil) e (o jyay apaad) )
rehleS Sy JsY

H = [Nd°x (Part 1: 43)

The Hamiltonian density X is defined by :
releS i R L silial el A8l

N=Ty =110,0-3 (Part 1:44)
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And S((p,@ﬂ(p):%(@ﬂ(p@”(p—mz(pz) is the Lagrangian density for the scalar real field.

Allows us to get the Hamiltonian density & for the scalar real field as follows :
e o) B8 Sy sy i palol) Jinll (st 230V BES 4 5, 0,0)= (0,000 -7
rstiall el Jaall
8=t (@) +mip?] (60)

Now, applying the Heisenberg equation to obtain :
il 48 all & i sl Aalas V) Gk

dg(t,r)

LN

_ (61)
= L [ar (P47

Where dr'=dx'dy'dz’. Using ETCCRs (Eq . (59)) and the expression of the Hamiltonian
density for the scalar real field, the commutator [x(t,r),#(t 7)] Will be taken the following
result :

Jaall | all alud) Jisll b silulgll 48ES s ETCCRS (EQq . (59)) Jexias | di'= dx'dy'dz’ of Sus
LS mars [N( 7, (2, 7)]

[N(t, 7)), ¢(t, F)] = —iT1(t, )5 (F — F') (62)
Allows us to gets :
Aol eansy
@ () (63)

For the conjugate momenta ri(t, ), applying the Heisenberg equation to obtain :

AS Al g e Asbae Gakai (e, 1) (S o 52l dal e

(64)

Using ETCCRs (Eq . (59)) and the expression of the Hamiltonian density for the scalar
real field, the commutator [N(t, ), 11(t, F)] will be taken the following result :
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Aol [N(t, )T )] Jisal) 3ol hiad) ool Jiall (s ilialel) 2858 5 ETCCRS (EQ) . (59)) Jasins

Al
[N(t, P LI, F)] = iV g(t, PV S(F - ')+ im2gi(t, F)S(F - 7) (65)
Allows us to gets :
by ansy
W) _ G2t r)-mgte. 1) (66)

Combined between Egs. (63) and (66) to show that the operator of the scalar real field
»(r, 1) Is satisfied with the Klein-Gordon equation (in the system c=7=1) :

) GsE-0lS Aalae 333 (7 1) (el Jiall Sise o) il Eqs. (63) and (66) crilabaall (o S
((C=h=1 sl ol

(62 +m (7 t)=0 (67)

Here »(r,t) IS an operator and not a function. Because the operator of scalar real field
»(7, 1) satisfies the Klein-Gordon equation, it is possible to expand it of a propagating plane
wave as follows :

OEaVLE (53 ) g2l Alalae (383 (F 1) (oaloall il e (¥ a8l 5 e yiiad p(F 1) Ui
Sl JSEl e & gl o) sal (385 W s

olr )= |52 2 e L pxe o (ples Lo, | (69

2E ,(211)’

We have replaced in Eq. (Ch_1: Part 1, 25) both the numbers a(p) and a*(f))with the

operators a(p) and a+(ﬁ), respectively. The energy E, =P°=,/p?+m?in the natural system

c=h=1. We can write Eq. (68) as a sum of two moded, the first one is the positive mode while
the second is the negative frequency mode as follows :

Sar, a'(P) 5 a(p) < Ssall sl e (Eq. (Ch_1: Part 1, 25)) a'(p) 5 a(p) e oay sats Lid
M O e 5 gl SE 5 o ge J5Y) (haail g saneS (68) @) Aoleall A4S
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2,0 ' (69
o 00)= ] e B .
The conjugate field r(t, 7)is :
S R (N RIS
0= [ ) eplon| - b -2 (e 0, | (70

Homework :
Show that the operators a(p) and a (ﬁ) can be written as follows :

soadll e Legili€ GSaYL a7 (B) 5 a(p) cnsisall of o

a(p)= [drf2e, (21} [ 1 ;(t,rjg;f(t,r) -
a*(p)= [orf2g, (2] “ (. 7)o, £, (. 7)

Where
1 :
fr(t,7)= explip , x*
p [ZEP(ZH)S]UZ ( )
D0 = 0304 (72)

Hence, their commutators is given by :

a(p)a (6]~ arfor arnyee £ V[ NG, H0 DA PR, £, ()

_efzE,5(p- )

= (2r1) [dr [dr[aE, E, 2 £, (6 P, f,.(t' Pt F)Ia(t 7] (73)

Similarly, for the two commutators [a(p),a(p")] and [a*(ﬁ),a+(ﬁ')], one can obtain the

following results :
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s e [a (B a’ ()] s fa(p).a(p) oo ass ey

[a(p).a(p)]=0
[a*(p)a" ()]-0 9

We observe a complete similarity between the algebra of Egs. (73) and (74) with the
creation and annihilation operators of the quantum mechanical Harmonic oscillator. To
profound this complete similarity further, we recall the operator's relations :

(oS8l ) ad) 8 Ll 5 oS Gl e pa (74) 5 (73) ci¥alaadl b puall G JlS gl U
1l i pall iy S L agd (Branil

=0 (75)
a

Which allows us to get :
bl anst (A

(76)

This means that, if the operator a(p) acting on the state |n(p)) reduces its eigenvalue by

one, while a+(ﬁ) raises its eigenvalue by one. Besides, the number operator of occupation n(p)
IS non-negative, because :

S5l O G (8 Ban) 53 I g (e (i 4lé [n(p)) Aad) o 55 Leie g(p) isall Of (i 120
0¥ Ll 5% o () DUt Jige ol Cia 3ol s 20 wdll iy a°()

|
:N@w ) 77

The ground state |0)is defined by
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) Al A

a(p)o)=0 (78)

Let us now write the Hamiltonian operator H as a function of the creation and
annihilation operators a(p) and a (p)

8" (B) 5 a(p) CesSU 5 elaV) S ise Ay H s sladlgll e yund
H =J'Nd3x
(79-1)
jdr—[H v¢t r +m2¢(t,F)2]

Using the explicit forms of the field operator and its conjugate expressed in EqQs. (68)
and (70) to gets the following form of the Hamiltonian operator H :

JSE s (70) 5 (68) Cxiflalaall & 5 5l a5 palid) Jaa il g yuall S Jlaninly
H o siliale) Sigal Ll

H=H,+H,+H, (79-2)
Where the three terms H, , H, and H;are given by :

rebleS axi Hy g H, | Hy 233060 2 sl o s
1 '[ZE oy o ZE‘:;;[)S (i, J-iE, )f df{a(ﬁ)exp(—% pﬂxﬂj_eﬁ(ﬁ)exp(% pﬂxﬂﬂ
[a(rwexp(—ip-# xﬂ]—awrr)exp(% 23l
_IZE (en1y I2E B, JiE jd{ eXp(“p Xﬂj + iﬁ)a%ﬁ)e)(p[% p”xyﬂ
{a(ﬁ')(iﬁ')exp(—% 3 ] A (Re 1,0
2 IZE(:EZ?'I)s’IZEjZZpI P E, N, Idr[ EXp("p X#}a (p)eXp(% p“xyﬂ

FRS N

Using the following special integrations :

(80)
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alal) oSl Jletinly

+ P)explt 2iE, t)

—
o
=
@
x

o
-+
—

=]
- U_
=
N —
>
=
~—~—
Il
—~
N—
—
el
el

(81)

We get the following results :
) ) s

: =ZI2E (2H)3 2

L P (e (p)+a (o) (82)

2E,(211) E,
m2

d’p
__'[ZE ey E, "

Which allows us to obtain the Hamiltonian operator H as a function of the creation and
annihilation operators a(p) and a (p) as follows :

12" (B) 5 a(p) OS5 AV S50 ANV H ol sibielgll Ssa dady crans Las

a(pla’(p)+a"(p)a(p)] (83)

B I 2F (211)3
It is useful to calculate the commutators |H,a"(p)| and [H.a(p)] , using the Eq. (83) to obtain :
353 (83) Aot Juaxins | [H,a(p)] 5 H,a" (5)] caasadl a3l 10
[H.a*(p)]-
S0 (e ()2 (Pl (6)

27 2E (2m1)” °

3

L dp
27 2E (211)’

_L 9P e be(plap)at (b))t (DR ()

2 2Ep,(2n)3

225, o (P 2E,6°(5 - )+ (1) 28,07 (o P (7)

=+E,a"(p)
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Similarly, for the [H,a(p)], we get :
2ani [H, ()] Jasell dawailly il Sy

[H,a(p)]=~E,a(p) (85)
Allowing the following results :
ol Al e
Ha'(p)E)=(a*(p)H +E,a*(p))E) = (E+E, " (P E) )
Ha(p)E) = (a(p)H —E,a" (p))E) = (E - E, Ja(P) E)

Thus, the operators a(r)) and a*(ﬁ) are the annihilation and creation operators. We can

write the Hamiltonian operator as a function of the occupation number N(p)=a"(p)a(p) by
using the commutator which presents by Eq. (73) as follows :

JesY) Jise ANV ol silalell S bt 0 &) 5 W a%([) 5 a(P) o sl oS 4k
(74) sladl) L a5l ¥l Jleninds N(P) =2 (p)a(p)

_ L)SE’)‘:N(K)%L%&)‘)} (87)

Where &, is just denotes the quantity: (2r1)°E,6(p-p). Now, if we calculate the
expectation values of energy (0|H|0) we obtain :

- <O|H|O> A8l A8 gial) Al Lnaa s ’<2H)3Ep5(r’_ pl) Sl e i Laid 5pp‘ Oi SATEN

(0= b €| ONRION)+ 5, 0] -
¢ dp 1
= Im E, E§pp —

We have used N(p)0)=0 and (0]0)=1. Thus, the canonical quantization leads to a

quantum theory non-renormalizable. Notice, that the eigenvalues of the operator n(p) are non-
negative, the eigenvalues n(p)=0,4,2,...and known as occupation numbers. Furthermore, if we
have multi-particle states with occupation numbers n, (p,).n,(p,)..the global occupation

numbers n = n,(p,)+n,(p,)+... i the state |n(p))=|n,(p,)n,(p,)..).
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VB LYY Jaad (saclie) alaia- e A kil (g3 () aaesill 4ia 5 (0)0) =15 N(P)0) =0 Lilexicd
daa L\.JJS il \J} IR A_A.r_ cJLiJ ’d\.su.n\}(\ e:ﬂd ‘;Aulj }n(ﬁ)z 01,2,.... G@A Al &Lu.n:\l N(I—j) JS)J 4:\3\33\ ?5‘53‘ 8]
Al B non(p)+n,(p,)+... gsexall s MY 2l (5)n,(p,).. Slemall e de st

I’l(f)» :|n1(ﬁ1)’ nz(ﬁz)v“">

We have seen that the field operator »(r,t)composed of two moded, the first one is the

b

positive mode ¢(,t) while the second is the negative frequency mode ¢ (F,t) as follows :

M S e sl Gl S Ly 0 (7)) o se D) (a0 (S o(p, 1) Jiadl e o L

o' (F1)=] ZE(:(32|€>H)3 a(r))e)(p(_% p”xy} = 2E(:|(32|DH)3 “(Ple(-ip (89)
P 1)=] 2E(:(32FIT)3 a+(ﬁ)exp(% p#x”] = 2E?(32|21)3 a” (p)exp(ipx)

The normal product :

It is easy to get the product of two operators o(x = r,t) and o(y =r',t') :

oy =7,1) 3 p(x =7,t) Rzl (gall slaall dlag) Jell (04

ololy) =" (<)o" (y)+ 9" (ho () + 9™ (X" (y)+ 0™ (<)o (y) (90)
Now, if we calculate the expectation values (Op"(x)o"(y)0), (Op"(x)o (y)O)
(0lp~ (x)p* (y)0)and (0l (x)o~(y)0), we obtain :

(0o~ (x)o~(y)0) 5(00" (x)p" (¥)0), (Ol (X} (¥)0) , (Ol (X)p" (y)|O) Axd siall sl Lismun 13} Y]

(0lp™ (x)p" (y)0) =0
(Olg* (x)o"(y)0) =0 (o1)
(Olp~ ()" (y)0) =0
(0lp~ ()~ (y)0) =0

Thus, the expectation value of the second term of Eq. (90) is not zero, to this physical
reason it is useful to introduce a new product known as the normal product instead of ordinary
product, the normal product noted by : o(x)p(y): OF N[p(x)e(y)] :
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aaa elaa Jal ndall (e (s 5l Gl 13¢] A gara G (90) Ualaall (o (G aall 428 gial) daadl) (40)
IN[p((y)] 3 2 p(x)p(y): oM 4l 3a s galadl ehaadl e Yay (gralall elaally G g

:p(Jply)= 0" (X" () + 9 (Yl (x)+ 0" ()" (y)+ 9 (x)o (y) (92)
Thus, we obtain immediately
it L8 Jeand dda
(0]:0" () (y):[0) =0 (93)

It is easy to get the difference between the ordinary product and the normal product using
Egs. (90) and (92) :

;L..gd\.d\ 9 Gz.\.\lal\ glaadl Hu Gl Glus Jeaddl (1a

ox)oly):~o(holy) =-lo" (<) (x) (94)

If we replaced the ordinary product with a normal product in the Hamiltonian operator, it
Is evident to show that the expectations values become zero :

e sna g Al 3 48U a8 giall dagdll praal i silialed) 3 jle 8 oadall elaadly galall elaadl Llagiad 13
H —:H:=(0|:H:[0)=0 (93)

Thus, the canonical quantization leads to a guantum theory renormalizable if we used the
normal product instead of the ordinary product.

(s el eanl e Yy alall olaal) Uileaiod 13 &l e A i ) el W ety 4l

Now, if we have a physical system composed of many real scalar fields {go| (X)}with
I =1,2,....N each type of mass M, the Lagrangian density is the sum of all densities as follows :

M A 508 212, N ua ) (X)) Taaludl Claseal) diae e JSa 15l 38 alai Linal IS 13 )
:&‘}.’i}” alia ol el & sana A OQ@}M\ 1S

5=3 10,00, -m?e?)
~5—ZE L2070 — My, (94)

Each type characterized by conjugate momentum :

o518 0 5 Spar g 58 S

_ 03 _ do, (X)
1_[I(X)_ a[d@(x)j - dt (95)
dt
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The ETCRs for each type characterized by the following quantum algebra :
cadl LeiETCRs Wl 53 <
)L,
’ )’ ¢S (t’rl)]: 0 (96)

)
] )| and [H,a,(p)] satisfy the algebra:
ol gint [H,a, (B)] 5 [H.ay (p)] st cisdie ¢ 53 01

A

For each type, the commutators [H a’(p

[H,a; (B)]=E,,a; ()

[H,a,(p)]= —E ()

The mode ¢, (F,t) and its conjugate Hl(F,t) of each type are given by :

(97)

S lany g 5 ST () sl an e 5y () daal

o (F.t)= J%[‘% (r))exp(—% D#X”jwt ar(ﬁ)exp(% p, X" H

2E, (211

100 o e aew - px |- o |

The occupation number is given by :

(98)

B3 okally any JSY) Sise
N
N (99)
2
Complex scalar fields :

18 sl Zgaluad (g

If we combined two scalar real fields o (r,t) and ¢,(7.t):
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L0, (Ft) 5 oo (F,t) O Caalis (plia U yiie ) 1)

(Pl(F,t):j d’p {al(p)exp(—% p#x“j+ af(ﬁ)exp[% pyxﬂﬂ

2E,(211)°
3 _ _ (100)
o) [ o2 2 o Lo, s a1 )|
With the model :
S sall (35
olf.)= .7 ) +ig, (7.
V2 (101)

Gives the following complex scalar field :

Syl bl Jaa) Laas
ole)=[ 55 P apless( -1 o, b (e pe || (102

2E,(211)°

With
a(p)= 7 [a,(p) +ia,(p)] 09
" (p)= o ()+1a; (b)) = " ()= [au(p) iy (0]
The Lagrangian density for the complex scalar field is given by :
1S all bl Jaall a2 D) 35S
3=0,0'0"p-mp'p (104)
The CCRs of the creation and annihilation operators which crate the ETCRs are given by :
(S (haad CCRS JS5 Al 0 sSall 5 mddd) &l fisal CCRS Jalall cilddle
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a(p).a” ()] (211 2E,6% (5 - p)
b(p)b* (p)]= (211)°2E 6% (p - P)
la(p).a(p)]=0
a(p)a (p)]=0 1)
[b(p).b(5)]=0
b (p)b* ()]= 0
For the complex scalar field, the commutators |H,a*(p)|, [H.a(p)], [H,b*(p)| and [H,b(p)]

satisfy the algebra:
ins [H,b(B)] s [Ha ()], [Hoa(p)], [H,b" (B)] casad o b ol G

(106)

Thus, a(p) and p(p) are presents of annihilations of the complex scalar particle with charge

positive and the complex scalar particle with charge negative while a*(ﬁ) and b+(r)) are presents

of creations of the complex scalar particle with charge positive and the complex scalar particle
with charge negative.

b () 5 (P) o b B se o) Al Diny S jall alud) Janll (bl il e Dy (p) 5 a(p) 1350
Al A e Ainiiy S e el Jiad oSN i ey

Charge conservation :
Aia ) Jaldas)
We have seen in the first part of the first chapter, Eq. (46), the conserved current |* is
obtained by applying Nother’s theorem :
38 Al Gadaty agle Jgeanll (S [ Jagiaall Ll G (46) Aalaall & J5Y) il (g0 J 5V muidl) A L)

j“ =62“(p p and 0,j" =0 (107)

U

If we consider phase transformations :
(sl Jysadll U el 13)
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p(x)— ¢'(x)=exp(iB)p(x)
0" (x) > ¢ ()= exp(=iB)p" (x) (108)

If the infinitesimal parameter g is a constant, this symmetry is known by global gauge
transformations, thus the phase transformations reduced to the form :

skl Jysaill e 5 dlaa¥) s laall lalii Co ey Sl 13a ol el g jreall b oaliiall Jag sl 13)

il o paitg
o(x) > ¢'(x) = (L+iB)p(x) = dp(x) = ¢'(x) - p(x) = i B(x) (109)
9" (x) > ¢'(x)= L-iB)p(x) = 5" (x)= 0" (x)— 9" (x) = —iBp " (x)
And
03
az;¢ ’ (110)
.0 07

Thus, the conserved current *is taking the following form :

LS [ L gl Ll o) oS 4

i* =i gp*(x)(a”go(x))—( ot (x))(p(x): (111)

We have replaced the ordinary product with a normal product. The corresponding
conserved charge is given by :

OsSa 4.95\},43\ PR 5 le ‘j.’_”\.dan ¢laally LQJL’J\ ¢laad) U gy Liad

Q=[d*° (Ch_1, Part: 1, 47)

Homework :

1 In terms of creations and annihilations operators show that the conserved charge is taking
the following form :

(hlaS () oS5 Ak ghaall A B () (g sSll g lA) e AV
_(_d%p (Va5 (R 112
Q j—zEp(znf [a* (B)a(p)~b" (B)o(p)] (112)
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2-Show that the charge satisfies the following algebra :
Ao yal) GlEMall g3t sl o)

.a(p)=a"(p)

[Q.a(p)]=-a(p) (114)
Q.67 (p)]=-b"(p)

[Q.a(p)]=—(-)a(p)

We conclude from these results that the operator a+(f)) can create a particle with charge
positive and the operator a(p) can annihilate a particle with charge positive also, while the

operator b+(ﬁ) can create a particle with charge negative and b(p) can annihilate a particle with
charge negative.

Lowss o1&l 43Sy () 5l Laf L s 0 s e 5SS A0S @7() Uil (e il il DA (00 i
£l a5Laly () el 5 Lol Ui LS o Lybas Lo (3 685 4i€anh () isall o (m g8 Lo 0 U s Ll
Al Al el e

Covariant commutation relations :

In this section, we want to generalize ETCRs to any time, which we have seen in Eg. (59).
It is easy to show that the general commutator [p(x),¢(y)] can be written to the following form :

Jasall ) i ) Sgasdl (30 (59) Aoleall 8 Laliy y Al *pia j diad s Y ETCRS asans & i 5 jaill aila b
S e S oS [pl(x) ply)] ple/

[ox)o(y)]=lo* (xho* (V)¢ o X))+l (Do ()| + Lo~ (<)o (y)] (115)

Since we have :
al Y

(116)

The only non-null commutators are :

P LN TR

[ oly)l=le* () (V)]+o~ () (v) (115)
If we use the two modes which we have seen in Eq. (89):
£ (89) Aabaall & Laaly) y Glall (laaill Lileai 13
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‘(o d’p :
r,t)= al p)exp(—Ipx
o' (7.1) JZEp(ZH)S ()exp(-ipx)

o) | ZE‘:;;;)s a (p)exo(ipx)

(89)

The commutator [gf(X), qo’(y)] is then taking the form :
dsal 3 [p' () (y)] dsad

lo* )0 (V)]=| | 2E?(32F;1)3 a(ﬁ)exp(—ipﬂj%a*(ﬁ')wp(ip'y)
_r_d°p d’p' e a5 At (e
_IzEp(szn)sszp.gzn)g ex(-ipxipyle(p)a’ (7) (116)
= 2Ed(2|?1)3I 2Ed.(2pn)3 exp(-ipcipyYer)'26,05(p - P)
=] ZEd(})s exp(~ip(x - y))

If we introduce the following function :
rU) e il ki) 13)

. . d? .
A (x)= —|I 2Ep(2?'l)3 exp(—ipx) (117)

Allows us to write Eg. (116) as follows :
il e (116) Aabaall S mransy 128
" (o (y)|=i (x-y) (118)
Now for the commutator [(o‘(x), (p+(y)] is then taking the form :

322 334 [p (%) 9 ()] Jasad 91
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o (0 )= | [ 5 o Blolioa) [ s alpon-iny)

B d’p d3p' . - N

=] 2EZ(2H)3 252.(211)3 oxlpe—ip'y)a(?) " (p) (119)
=] ZEd(zpn)3 2Ed.(2pn)3 exp{ipn—ip'y Y1’ 26,5°(5 - P)

[P ep(ip(x- y)

2E, (211)’

If we introduce the following function :

el L) 13
_ _i d 8 p . 120
A (x)=if TRET; exp(ipx) (120)
Allows us to write Eg. (120) as follows :
il e (120) Uabeall LUK srans 12a
[ () (y)] =i (x-y) (121)
Which give the following result:
il el e Las
[p(x). oy)]=iA(x-y) (122)

Where A(x-—y) is given by :
(JSAlL ey A(x—y) O Eua
Alx=y)=A"(x=y)+A (x-y)

= 2] 0P sin(p(x - y)

2E, (2r1)*

(123)

The quantity [p(x)e(y)] is a Lorentz scalar and must be invariant under Lorentz
transformations. It is clear, that the function A(x-y) is real and may be written in a covariant
form as follows :

A(x—y) O gl s e, 3585 51 Dl sty Bl (65 o)) i () Aals 1S 2 (%), ()] A
S e S e 1 5
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Alx—y)=-i jﬁf{—zgyzna(pz —m?)e(py)expl- iplx y) (124)

Where p, € J-oo,+0[ and d*p = d*pdp, While &(p,) is given by :

okl (et g(py) O s 2 d“p=d®pdp, 5 P, € ootoo| O Cus

Py _|*1 for p, >0 195
g(pO)_|p0|_{—1 for p, <0 (125)

The quantity A(x-y) satisfies the Klein-Gordon equation and vanishing when the
interval space-time is a space like :

tbaill g ) e sl o (e pani 5 (925 58-S Aol 383 A(x—y) A

(x=y) =t ~t.) =06 =% )" = (v, = %:)" = (2, - 2.) <0=[p(x).¢(y)]=0 (126)

Thus, the micorocausality condition is satisfied. It is important to notice that the p?-m?
can be written as follows :

(LS 0 5Ss M p?mm? s agall (e Bine 5 A L) Ja p (la 1S

p? -’ = pi - p* -’

127
=p§—E§=(pO—EpoO+Ep) ( )

Allows to consider two poles, the first at p, = E, and the second at p, =—E,, thus the
various invariant A"(x—y) and A (x-y)as a contour integrals in the complex p, plane is given
by :

5 A(x—y) saball adll Cilise ML 5 p =B S 5 p =B, JsY) kel 0 sSh rens Lee
LS py S el (5 sl (B COLST 558 (ST AT (x - y)

A (X 3 y) _ _ﬁk d*p eXp(p—ziﬁ(r);z— Y)) (128)

The time ordering operation T is defined as :

retleS G pmy T L) &l Sl (o 3 fige
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T<¢<x<t,r>>¢<y<t:r->>>={(”(X)‘”(y) for -t (129)

o(y)p(x) for t'-t
Using the step function T(p(x(t, F)lp(y(t',7"))) is given by :

T(p(x(t. P)e(y(t', 7)) = 0t - U)p(x)p(y) + Ot -tJo(y ()

_ N [+1 for t-t (130)
with ot-t)= {O for t'-t

The Feynman of the bosonic fields is noted with A, (x—y) is defined as an expectation
value of the quantity :

6 Al 8 Aad giall Al a9 AL (x—y) = b e A s sl Jsall laidld Al

iA(x—

[T ((x(t, F)le(y(t', F))0)

(t—t'X0e( X)(p y)|0 + 0t} 0lo(y Jo(x) 0)

(t-t) ]0 o(t-t)0lo~(x). 0" (y)]0)
)
tia

(131)

(0
(0
(0

(t—t ||A+ X — y)|O o(t-t)ofia (x - y)|0
(t-t)ia*(x— y)0]0) —o(t-t)ia (x - yX0|0)
(t-t)ia"(x - y)-o(t-tha (x—y)
Thus, the Feynman function for the real scalar field A_(x-y) is given by :
rehleS et AL (x—y) glapd Adly Jull
Ar(x—y)=0t-t)A" (x~y)-O(t-t)A (x~y) (132)
For t'>t, the Feynman function for the real scalar field A, (x - y) reduces to the quantity

(0lp(y)e(x)0), we interpreted as a propagation of a virtual particle from the coordinate x(t,r)

(which is created with creation operator a*(p))to the coordinate y(t',7") which annihilates with
annihilation operator a(p).

el e L i (0](y )p(x) 0) el jusiad A (x— y) Aiiad) fpaludl J giall lais Alla st Jal 00

audlae) o Cus y(t', F) easell H5d 8t (p) cosSl Sise x(tF) sl 8 Loty (pual 81 apnen Ll Jis
=il yise

)=(0
0
0
0
0
0
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For t > t', the Feynman function for the real scalar field A, (x - y) reduces to the quantity
(0lp(x)p(y)0), we interpreted as a propagation of a virtual particle from the coordinate y(t',7")
(which is created with creation operator a*(p))to the coordinate x(t,r) which annihilates with
annihilation operator a(p).

PRSIV WA ,<O|(p(x)(p(y)|0> LSl il AF(x_y) sl Al Jsall laild Adls g -t dal e

aalae) o Cus x(t, F) asall i gt (p) cusSill Sise y(t, ) aaasall 8 Lasy oaal 538 aaen il Jiai Ll
o=l Jisa

Finally, the Feynman function for the complex scalar field A.(x-y) is given by :
oS (o et A yall dpaluadl J giall el Alla | ya)
i (x= y) = (O[T (p(x(t, Pl (y(t', 7)) 0) (133)
il el Jiadl Al 3 i) o sl ity Allsall Aadlae o 55
The physical treatment must be similar to the case of the scalar real field.
Wait for the second chapter soon
A e 5l g R
Wait for the second chapter soon
Gl £ el g A
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