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Chapter 1
PATH INTEGRALS IN NON-RELATIVISTIC QUANTUM MECHANICS

In this chapter, we study the concepts of propagators in the framework of non-relativistic
quantum theory. To simplify we work with one coordinate only and then we generalize the
results to the case of two and three dimensions.

pand o5 Baa 5 A ja e Jalatin Japuetill | U oSH A0l jUal 3 550 aaalie G i Juadl) 138 8
sl 5 5 alla) il

Propagator of the Schrodinger equation

It is well known that the nonrelativistic particle in a one-dimensional potential V(x) can
be described by the following Schrédinger equation :

AN i 5 pd Aalae YA (e ddia s (Sas V(X)) OsaSll il palall S aseall o o sladd) (4

W 0P(xt)
2m  ox?

+V(x)¥(xt)= ih%

1)

= H¥(x,t)

Wher h=% is the reduced Planck constant and H is the Hamiltonian operator. This

equation can be rewritten into the following equivalent form :

ISl 385 oSl Aol S 3ale) (o Glisilialell jise g6 H g jemitall clidh ol e /= LH S
2

AL
(ih%— Hj‘P(x,t)= 0 (2)

The Green’s function K(x,t,x,,t,) of the Schrédinger equation is defined as a solution of the
following equation :

AUl Aalaall JaS Cajad jrind g pd dalal K(X't’Xi7ti) e 8 Al

(ih%—H)K(x,t,xi,ti)=ih5(x—xi)5(t—ti) 3)
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It is also called the propagator.
S anti L 8
The propagator K(x,t,x,t,) postulated to satsfy the following intial condition :
Sl (sl da B3l iy 4l Al K(x,t, %, 1) sS40
K(x,t, +0,%,t,)=5(x—x,) 4)

It is possible to propose the following solution of the Schrédinger equation which written in
Eq. (2) as follows :

P2 ady Al i lgie jamall jaia gl dlabead Ul dad) 21 8 Gy

P(x,t)= _[ K (%t i, 8 ) (%, 8 Jx; ©)
We can be proven by replacing a proposed solution in Eq. (2)
2 aby Aalaall & = i) Jall ey g2y 5 pilse Slld (e il (S

The proposed solution to Schrddinger's equation gives us the wave function at any time t that
follows, the initial time t.

A1) Aaall) aey Ut ey Adaad (ol A An gall Ao Lighany jaign s 58 Aalaal - yiaall Jall )
The propagator K(x,t,x,,t,)is interpreted as a probability amplitude for a transition from the
initial coordinate x at the initial time t, to the final position xat letter time t.
X e mmgll Al Aaall) 8 x Alai¥) Adlaa) e JESU Jlaia) dew 4l puis K(x,t, X, 1) U
.t Al dlaall
Homework 1

Show the propagator K(x,t,x;,t,)in terms of the eigenfunctions ¢, (x) and eigenvalues E,
of the underlying Hamiltonian operator H can be expressed as follows :

Sse e dailill B A0 Lead 5 g (x) Ansell JIsd ANV e il Sy K(x,1, 1) 05U O O
D H Obisilaled

K(xt,x,t,)=0(t -t Z(pn ) exp(—%E (t- t)j (6)

Whereas
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Ho, (x) = E g, (x)

Y01 (xJo, 1) = alx- 1) )

®(t t)— 0 for t<0O
ST for t20

Homework 2

Show the propagator K(xt,x,t)in Eq. (6) can be expressed in the Heisenberg
representation as follows :

B § e JaS b 4K (Kay 6 o8 Alslaall i die umall K(x,1,x,,t;) 50 o o

K(x,t,xi,ti)zG)(t—ti)<x|exp(—%H(t—ti)j|xi> (8)
(xtt)
Where
X, t;) =ex _ll:lti X
0.4~ - H, ) ©)

x,t) = exp(—% I—A|tJ| X)

Here H is the time-independent Hamiltonian operator. For simplicity, we shall consider
in the first instance a system described by a generalized Q with a conjugate momentum P,
we have for the Shrodinger picture :

O sl ANl i ALl (o o2l b in Jagunil] (pa 3 e Sl (i slaalel g 4 2ums i Uin
P A a8 g pa il PGl e e

a), =ala), (11)

Since Q, is time-dependent for Heisenberg picture, so are its eigenstates |q,t) satisfied the
following postulate :

A0 Lelsal) (383 [ 1) Ao ladl) illa UL 50 a3l e adind O, £ i e 5 sea o Ly
Qu(t)a.t)=dla.t) (12)

The relevant connections between the two pictures are given by :

A

Q,
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(A (e Blana (4 ) guall o Alall ¢l dayl g,
Q, (t):exp(iI-Alt/h)@s exp(-iHit/n) (13)
And
lg,t) = exp(il—?t/h)q)S (14)

The probability amplitude that a physical system which was in the eigenstate |q;.t;) at the time
t. will be found to have the value qof the operator Qat time t is given by :

Sisall g Ay 13 5a s raasat, a3l B gt ) AR 8 OIS (Al aUaall A 5l Alal) ol ) Jlaia ) das
;9,31..«5 it adaaldl) L“,’J Q
(gt a,t) =, (g, [expliFi (t—t, )/ ) ). (15)

We start by dividing the time interval between the initial t, and final time t by inserting the
intermediate ime t,. The wave function is first propagated until t,, in a first step, and then until
final timet, in a second step :

Vol dapall Aty (ar sl el Jaal t gl el s, Aaiy) Adaalll o e 3l Jlaall iy T
Al Al jall 3t s a3 sl A St s
Px,t)= _[ K (%0t % 6 H (X Jalx, (16)
And
‘P(x,t)zjK(x,t, Xt (.1, )dx, (17)
We combined these two equations we obtain :
raad bl Gl (g S

‘P(x,t):IK(x,t,xl,tl)K(xl,tl,xi )P (x;, 1, )dx,dx, (18)

Which allows us to get the following interesting result:
Al Al alacls e Las

K(x,t,%,t, )= _[ K(x,t, %, t, K(%,,t,, %, t; )dx, (19)

Allowing conclude that the transition from (x,t,) to (x,t) as a result of a transition from
first(x,,t,) to all possible intermediate points (x,,t, ), which is then followed by a transition from
these points (x,,t,) to the final point (x,t).
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b gl LG JS e (x,t) O Yol JEBY Al 058 (x) (%, 1) O JEEY) ) Uil ey
(% t) Ailedll Adaiil) g JEEOU a0 1asaS aslie by eansd S (x,, 1)
We now dividing the time interval from t, and final time t into N +1small steps of equal

length ¢, with :

Cuny g Jshall bl b puaall adasll 0 N +1 It sl gl 5t Cm e 3N Jlaall s (Y1
(N+1e =t—t, (20)
Let the steps begin at t,,t,,t,,.... t, . We then obtain a direct generalization of the results
(19) to becomes as follows:

‘:Jgus C_\..a.d 19 daladll Ll (-,:wcd\ e dand ) tot,t ety L;\.US\ e lbail) Sl

K(x,t,%,t, )= I...Idxldxz....de K (X, t, Xy sty JK(Xpg oty s Xyt b K (XL %08 ) (21)

We now calculate the elementary propagator for a small time interval  =t,,, —t, from t; to
We apply Eq . (15) to obtain :

2l 15 Adalaad) Gakas i | t, OR =t -t 3 ypeaall dakaall 380 ol Lﬁ)‘a-"d\ ) sl Y

j+1

K( ot Xt ) < (_“:'nlh)xj>
;<xj+l(—iﬁn/h]x.> )
= (%%, ) =i/ (xR x;)
= 5(x,,, - )—|77/h<xj+l H|x; )
We have
6(xm—x,-)=% " gp (23)

The Hamiltonian operator H(p,q) composed of two operators, the first T(p) is the kinetic
energy operator while the second operator V(g) is the potential interaction :

A V(G) S el liw T(p) &S ol B Sfige 58 SV comn e H(P,g) Olisibalell Jige () sSiy
:deldl) ) 5aS
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H(p.4)=T(p)+V(a) (24)
Which allows us to write the following result:
Al Aal) UK W ey Las
f(ﬁxq]‘>+<qj+1’\7(qxqi> (25)
We now, consider the first term in Eq. (25) :

f(quj> = jdpdpl<qj+l

l:l(ﬁ’cuq]'>=<qj+1

(d.1

[P)(PT(B)P)P]a) (26)

<qj+l
We have introduced :
doalal) e Jlaal

Jdplp)(p|=1 27
Japip)(p]=1
Also, we have :
Ll Ll
T(p) p)=T(p) p) 28)

[ p’)(p|=5(p~p)
This allows us to write the following result:
A A il S, Ul pransy Las

T(p)Xp|a) (29)

T\(ﬁjqj>zjdp<qj+l

<qj+1
On the other hand, we have :

Ll 5 Al dga (e g

(pl)=—5re " (30)

Thus the equation 29 becomes a as follows :
r Sl JS3l e 29 a8 ) Aaladll raai Uil

T(p)a,)= ﬁl,.lﬁ(p)e_"p(q”_q")dp (31)

<qj+1
Homework 3
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Show the second term in Eq. (25) (q;,,M(d)a;), can be expressed as follows :

oS aie el (S (g, N (G) ;) 25 A0 Aslead) 5o S sl o

(a;:V(@)a;) =ﬁlh vig, B (32)

Now, we compained between the two Egs. (31) and (32) to obtain the elementary
propagator as follows :

K(qj+1vtj+1vqj’tj): le Jdpjv(qj)exp{%[pj(qjﬂ_qj)_nH(pj’qj)]} (33)

L
n—0 ZHh
In the above equation H(p;,q;) is just a function of the variables (p;,q;) and doesn't represent

an operator. We now insert Eq. (32) which present the elementary propagator into Eq. (21)
to obtain the propagator:

(32) Aslaall Jaaly (¥ a5l Sise Jici Vs (p,q,) sl s me & H(p,,q,) odef Aaladll
) e Jpasll (21) Adbaall b (5 peaiall LEU (e s il

K(q,t,qi,ti)=LimIH kuH—exp{%i[ (a0 —a;)- nH(p,-,q,-)]} (34)

N->0 ° k=1 j=1
In the limit N — +w, for the exponent we obtain :
:ua&\ e diani N > 40 Algdll ¢l ja) i

Sl fo-a)-mlona IS o[ 20 - loa)

=t

(35)
Which allows us to rewrite the propagator to the new form :
ypaa) JCEIL Hal LS sale) U gy Lea

K(@ta.t)=[0,[0, exp{ fou i 22 <(>,q<t->>}} (34)

: . dpl
Here D, =] [dq, and D, _H2
k=1 1=1
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For the special case, in which the Hamiltonian function H(p(t)q(t)) depends only
quadratically on variable p(t') :

ualal) Al dallaa

2

H(p, q)—p—m+V(q) (35)

We combined the Egs. (35) and (34) to find easily the expression
A g 2331 (34) 5 (35) OiValaall any Licd

K(a.tq,.t;) lefl_[quﬂ_lme p{; Z{ (q‘“ qj] %W(q,-)} (36)

N—0 k=1 j

Homework 4

Apply the special integral relation :
s dalal) JalSil) A8 aladiuly

+Jioexp(— ap® +bp + c):ip = Eexp(i—; + Cj (37)

Show that the propagator expressed, in Eq. (36), will be in the following form :
r ol ) S 36 Aalaall 8 die ) S0 () G

K(@.1.6,:1)=N[ D, o0{ -5(a(t)] (39)

Here N represents the factor and the classical action S(q(t')) is given by :

(B i S(g(t) (oSS Jadll 5 Jalaa Jiai N Lia

s(a(t) = oL % o) (39)

! dt

And
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dt 2 dt

([(dat) o y) - M dat)) 40
[(44.at))- 5[ 4] —v@@ (40)

Homework 5

For free particle, we have V(q)=0, thus the propagator reduced to the following expression :

A 3 jlall 3G iy ML 5 V()= 0 sl avadl dal

Ka0,)=N]0, o0 5,000}
N+1 (41)

s m 2 N l Nm Q.1 —0;
-Lim{spiy ) [0S0 2|

Apply the special integral relation
aalal) JalSill ddle aladiinly g

iqul---qu explil(q, ~a)* +(a, ~a, ) + ..o~ ) = ( (,\ilel[)lN jexp(Ni—il(b— a)ZJ (42)

To find the free propagator, in the coordinates space, expressed in the following form :
(shleS Aldlaal) eliad & sl ) sy

K(a.t,q,.t)= (#MJM exp{%%} (43)

where At=t-t. and Ag=q-gq,. In the momentum representation, the free propagator
expressed as follows :

rsheS AU e i) (S A8 jall daaS slimd B Aq=q -0, 5 At=t—t, O Cus

K,(p,At)= J'efgmq K,(Ag, At)dAq

1 . . 44)
1 m " i i m(Aq)® (
i o) 2o{ a5 T
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Apply the special integral relation
- Lalal) JalSill A8 aladiuly

Iqu exp (— a(aq)® + bAq) = E exp(ﬁJ (45)

4a

To find the free propagator expressed in Eq. (43) will be in the following form :
‘g\ﬂ\ Jaly . L;JS\ 43 adaladll ‘_g e pmall ad) 3G ALY

Ko(p,At):

L exp(— ip—zAtJ
J2T1R i 2m (49)

Allows reading of the eigenvalues of free particle :
all (s.n.u.éjj;\_\.l:\ﬂ‘ (a:ﬁ\ ey . Laa

E=P (50)

~2m
This is, of course, the expected result.
Jall Anday 428 gie Anis &
Perturbative expansion :

We consider a particle moves in potential V(q,t) and the form Hamiltonian function
H(p,q) is:

158 H(p,q) silialel) il JSE 5 V() 05aS) e Jelity ppmin yiad

2

H(p,q)=;—m+v(q) (1)

We have seen that the propagator, in this case, can be written in the following form :
eSS o) S Alladl asla 8 U ol Lyl

K(a.t.q,.t;)=N|D, exp{%s(q(t'))} (2)
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Where the classical action is given by :

eSSl Jadl) o s
s(att) - Jerr{ ) g ©
And
{20 q0) =3[9 v @
We can write the exponent function exp{%s(q(t'))} as :
exp {% S(q (t))} = exp {%j%(d?’—?)}z dt} exp{— éjv (q, t)dt} (5)

It is possible to expand the second term as follows :
rstieS (SN sl 555 oSy

-t t

exp{—éjv(q,t)dt} = 1—%jv (g, t)dt —Z—;(Iv(q,t)dt] + o (6)

5 5

Which allows us to write the expanded propagator as follows :
rehleS o plall G S0 AUS) e L

i , i 1 ([ 2
K(@:t.g.4)=N[D, exp{gso(q(t ))}{1_% Jv(q,t)dt—ﬁ[ ;!'V(q,t)dtJ +] )
Of course, the first term for the Eq.(7) is just the free propagator, we introduce the

following notations :
A sl Jaal | el SGN Jie (7) Dabaal) e J Y0 2all aiha
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K, (a.t,q;.t) = ——ID exp{ (Q(t'))} [Vv(a.t)dt

_ t 2 (8)
K,(a.t.0,.t)= —%ZIDq exp{%So(q(t'))}[IV(q,t)dtJ

Where K (a,t,q,.t,) and K,(q.t,q,.t,) are known by first-order propagator and second-order
propagator, respectively. It is possible to rewrite the first order propagator as follows :

IS Y 5 e a5 V1A 0 ca LE ey K (0,8, 00t) 5 Ko (Gt g ) o s

reeS (¥ Al (e
TA N qj+1 j i
Ki(a,t,q;.t) = LNLm(znm J “quk exp{ Z [ J}!V(q,t)dt 9)
If we use the approximation :
sl Jleainly
J.V(q’t)dt = zv(qa’ta) (10)

t a=1

The Eq. (9) will be to the following form :
(S e et (9) Alalaall

N

Kl(q,t,qi,ti)———Ll Kznm jHIqukZV (a1, exp{ nZ [q‘”n J} (11)

N—0

Homework :

Show that the first order propagator as follows expressed in Eg. (11) can be rewritten as
follow :
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Kl(q!t'qwti)___lesz‘qu q t.q,, )\/(qa7ta)K0(qa'ta’qi’ti)] (12)

N—->0 =1

Where

a H N
KO(qa ’ta7qi ’ti): N 2 J.dxl"'dxafl exp{%Z(qjﬂ - qj )}

j_

o ool S0, )

(13)

N-a+1

Ko(a.t,q,.t,)=N

Here K,(q,.t,,q,.t;) present the free propagator between initial coordinates (q;,,t,) and
intermediate coordinates (q,.,t,) while K,(q.t,q,.,t,) is the free propagator between
intermediate coordinates (q,,t,) and finale coordinates (g,t), in the intermediate coordinates
the reaction is done with the potential v(q,,t,). Based on the Egs. (12) and (13) one can be
established the first order propagator as follows :

O (0,01, Rl osall 5 () Y msall n ol HAU) Jie Ko(g, 0t 001) L
(el Gaany ass l guca sall (2 (g, 1) (el qomsall 5 (a sl quim sall o0 pall 20N iy K (08,0108, )
oS (391 28 sall a3 sm3 o 0% (13) 5 (12) ol o slaie YL

'+oo +0

Kl(qf,tf,qi,ti)———IdtquK (a .t a.tV (@K, (at L) (14)

—00 —00

Homework :
Similarly, show that the second-order propagator can be written as follow :

_‘;J\_d\

1 +»
K0t 000t )= = [doda,dtdt, Ko (gt 0t W (06K (00 8 8 8V (02,8 )Ko (02,010t ) (15)
With condition t, <t, <t, <t, Or t;, >t, >t, >t

Lot ot ot s to<t, <t <t, L
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Allowing to gets the expanded propagator as a sum of the free propagator and the first
order propagator in addition to the second-order propagator and other terms which
Importances not interesting physically as follows:

Al oo S8 5 (YRS G S 5 Jadl Sl senaS Sl BB AU e J seanlly o Las
Jcnail) A5 ) )y LalS 8 Lgtaalie (5 ja0 250 5 4l

'+oo 400

K(qf'tf!qivti)z KO(Qf!tf’Qi’tii)__jdtquK (CIf' f’q t)‘/ qt q t, Qi |) ( )
R 16

1+oo
-7 [da,da,dt,de,K (00t GtV (0t K (0 Gt WV (8 DK (01,0 )+

It is possible to rewrite the expanded propagator as :
r eS| sinall 3l AU sale | eyl

K(qfvtf’qivti): (qffflqu )+K(Qf' f’qt}J qt qtq,,,)
+K0(qf’ f’ql’tl)‘J qu 1 o(chl 1,q2,t2)J(q2, 2) O(qZ’tZ’qi!ti)+ -----

With U = —%v , we rewrite Eq. (17) as follows:
LU (17) Adbadl) elim asai U = — Ly
: 5
K(a,,te,00.t )= Kola, 00t )+ KU (K +UKQU +.....) (18)

We replace (K, +UK,U +.....) by K, allows us to gets the following results:

Al daill alagls e 138 K UL (K +UK U +....) (a2

Klae b oit)=Kolar ot gt )+ Kolag .t gt (g DK (a.t, g, ;) (19)

This is known by the Bethe-Salpeter equation. The integral form of the Bethe-Salpeter
equation is given by :
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:JSAIL sy Bethe-Salpeter dabeal alsill JSi Bethe-Salpeter Aatae Aabaal) aila s s

] to 4o

K(agt .0t )= Koyt ,qi,tn)—% Jdt fdaK, (g, t,,atM (@K@t a.t)  (20)

By using the ondulation equation which we have seen in the first chapter :
1Y) Jaadll 3l ) ) A sl Adolaal) Jlasiady

wla, )= K@t q,.t (.t )do (21)

The Bethe-Salpeter equation also can be rewritten in the following equivalent form :
A Alalsil) drpall e L3S Sy Bethe-Salpeter 4labe

1 +0 4o

(o, )= [ Kol 00t (0t Mg~ Jdtfdak, (ot gt @@y (22)

—00 —00

The ground state to ground state amplitude :

We have seen that in the first chapter, in Eq. (34), in the quadratic case, the propagator
K(a.t,q,.t,) was written as follows :

f S S 5 K (g,t, 0,1 ) S o (34) Aaleadl 8 U5 deadll Lyl 28 LS

dt

K(at.6.t)=[D,[D, exp{%jdt'{p(t')dq—(f')— H (p(t'),q(t'))}} (Ch_1:34)

N N
Here D, =] ]dq, and D, EH%. If an external source term, or deriving force, - J(tq),
k=1 I=1

is added to the Hamiltonian function H(p,q) in (Ch_1:34) the transition amplitude (q;,t[q,t)’
in the presence of deriving force is given by :

Jaia¥) dnus eanay (Ch_1:34) alaal) 3 Gl shaalel) (il — J(tg), 558 Ase sl aA ae Cinal 13)
(e Al il ) sas (gt ]g,t)

(antat) =NJD,[D, exp{%idt(pz—?— H(p,q)+qu} (23)

The ground state to ground state amplitude W[J] is defined as :
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sbbaS Cajad WJ ] Al sl G

Wi1= Lim(at o)’ (24)

tj—>—o
t—+o0

Thus, the ground state to ground state amplitude W[J] is given by :

e bbeS WI ] Ll ) dass sl die
w(J NJD ID exp{ jdt(p—— (p,q)+qu} (25)

2
In the quadratic case H(p,q)= Zp—+v(q), the ground state to ground state amplitude w[J] in
m

Eq . (25) reduced to the following form :

2

1 ) JSEN W3] ) NS s i H(p,q)zzp_w(q) JSEN (e (i silualel i Al 3
m

W[J NID exp{ Idt(pd—q— (p,q)+qu} (26)

The time ordering operation T is defined as :

feaS Capm T L) O yiall cagi 5 i

A A [0u )04 (t,) for t, -t
T(Q”(“)QH(“))‘{@H<Q>©H<t1> for 41, )

The object (gt [T(G, (t, ). (t.)) a.t) is given by :
S (0,6 T(Qn ()00 ()] ) S
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(0,470 (¢, )0, () at) = N[ D, [ D,alt, Jatt,) W%ih{n—— @ﬂﬂ} (23)

With
Q. (t)a.t) =q(t)a.t) (24)

When we make the two simultaneously limits t —-o and t—+x of the object,
(g;.t, |T( 2, (t,)Q, (tl))q,t> we obtain the expectation value in the ground state of the time-ordered
product of two operators <0|T(AH (t,)Q, (tl))0> as follows :

el o s <qi'ti |T(AH(t2)(jH (t1))qat> Gt 400 5t — —o0 (il yiall iledl jati ladie
S (0T (G ()00 (1)) 0) &1 b A

Lim(a,t 70, t.)3, t))a.t) = (0T (0, t,)3, t.))0) (25)

t;—>—o0
t—>+o0

The connection between the ground state of the time-ordered product of two operators
<0|T(AH (t,)Q, (tl))0> and the ground state to ground state amplitude w[J] is :

A8 G5k 0o (OT(G, (1), (1)) 0) Al sial Aaily W3] Jlia¥) A a5
(O (G ()04 1,))0) = (i} S W) (26)

The result obtained in Eq. (23) is easily generalized to a time-ordered product of any
number n of operators as follows :

(IS0 G Sisall (e n2ae 5V Lgarend el (e (23) Aaleall 8 Lple Jianiiall daiil)

(0,476, t,).0, ()3, ()] at) = N[ D, | qu<t2>q<tn>...q<t1>exp{%jd (pd—Q— <p,q>j} (27)

dt
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2
In the quadratic case H(p,q):zp—+v(q), the time-ordered product of any number n of
m

operators (q;,t, |T(QH (t.)..Q,(t, )0, (tl))q,t> in Eq . (27) reduced to the following form :

2

Uslaall G Jisall e n el i ) Sisa, H(p,q)zzp—m+v(q) JSE e Gl silialel) i dlls 8
Sl JSEL uay (27)

dt

(0,470 ¢, )0 (1,)3, (1)) 0. t) = N Jquaz)q(tn>...q<t1>exp{%jdt(pd—q—H(p,q)j} (28)

Now, (O[T (QH (t, )..Q, (t, )Q, (tl)) 0) is the expectation value in the ground state of the time-
ordered product of noperators can be obtained by generalizing the formula (26) :

1(26) Uslaal) maanty Lgile Jomni 35l o 0 (O[T (G (1, )G (8, )0, (1)) 0) A8 siall Al )

(0T (G (6,9 ()4 () 0) = (~ i)’ aa(tfavlvf ))aJ (t)] “

The amplitude W/[J] is used to generate the Green functions.

Wait for the second chapter soon
Lo B ALY Juadll g i)
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