0.1 Règle de d'Alembert

Theorem 1 Soit $\sum u_n$ une série numérique à termes positifs.

$$Si \lim_{n \infty} \frac{u_{n+1}}{u_n} = l \ alors \ on \left\{ \begin{array}{l} si \ l < 1 \ la \ s\'erie \ converge, \\ si \ l > 1 \ la \ s\'erie \ diverge, \\ si \ l = 1, \ rien \ \grave{a} \ conclure. \end{array} \right.$$

Example 2
$$\sum \frac{1}{n!}$$
, on $u_n = \frac{1}{n!}$ donc $u_{n+1} = \frac{1}{(n+1)!}$ comme $\lim_{n \infty} \frac{u_{n+1}}{u_n} = \lim_{n \infty} \frac{n!}{(n+1)!} = \lim_{n \infty} \frac{1}{n+1} = 0 < 1$, alors la série $\sum \frac{1}{n!}$ converge.

Example 3
$$\sum \frac{2^n}{n^n}$$
, on $u_n = \frac{2^n}{n^n}$ donc $u_{n+1} = \frac{2^{n+1}}{(n+1)^{n+1}}$ comme $\lim_{n \infty} \frac{u_{n+1}}{u_n} = \lim_{n \infty} \frac{2^{n+1}}{(n+1)^{n+1}} \frac{n^n}{2^n} = \lim_{n \infty} \frac{2}{n+1} \left(\frac{n}{n+1}\right)^n = 0 < 1$, alors la série $\sum \frac{2^n}{n^n}$ converge.

Example 4
$$\sum \frac{2^n}{n}$$
, on $u_n = \frac{2^n}{n}$ donc $u_{n+1} = \frac{2^{n+1}}{n+1}$ comme $\lim_{n \infty} \frac{u_{n+1}}{u_n} = \lim_{n \infty} \frac{2^{n+1}}{n+1} \frac{n}{2^n} = \lim_{n \infty} 2\left(\frac{n}{n+1}\right) = 2 > 1$, alors la série $\sum \frac{2^n}{n}$ diverge.

Example 5
$$\sum \frac{1}{n^2}$$
, on $u_n = \frac{1}{n^2}$ donc $u_{n+1} = \frac{1}{(n+1)^2}$ comme $\lim_{n \infty} \frac{u_{n+1}}{u_n} = \lim_{n \infty} \frac{n^2}{(n+1)^2} = 1$ rien à conclure, d'aprés Riemann la série converge.

Example 6 $\sum \frac{1}{n}$, on $u_n = \frac{1}{n}$ donc $u_{n+1} = \frac{1}{n+1}$ comme $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{n}{n+1}$

Règle de de Cauchy

Theorem 7 Soit
$$\sum u_n$$
 une série numérique à termes positifs.
Si $\lim_{n \infty} (u_n)^{\frac{1}{n}} = l$ alors on
$$\begin{cases} si \ l < 1 \ la \ série \ converge, \\ si \ l > 1 \ la \ série \ diverge, \\ si \ l = 1, \ rien \ à \ conclure. \end{cases}$$

Example 8
$$\sum \frac{2^n}{n^n}$$
, on $u_n = \frac{2^n}{n^n}$ donc $(u_n)^{\frac{1}{n}} = \frac{2}{n}$ alors $\lim_{n \infty} (u_n)^{\frac{1}{n}} = 0 < 1$ alors la série $\sum \frac{2^n}{n^n}$ converge.

Example 9 $\sum \frac{1}{n^2}$, on $(u_n)^{\frac{1}{n}} = \frac{1}{n^{\frac{2}{n}}}$ comme $\lim_{n \infty} (u_n)^{\frac{1}{n}} = \lim_{n \infty} \frac{1}{n^{\frac{2}{n}}} = 1$ rien à conclure, d'aprés Riemann la série converge.

Example 10 $\sum \frac{1}{n}$, on $(u_n)^{\frac{1}{n}} = \frac{1}{n^{\frac{1}{n}}}$ comme $\lim_{n \infty} (u_n)^{\frac{1}{n}} = \lim_{n \infty} \frac{1}{n^{\frac{1}{n}}} = 1$ rien à conclure, d'aprés Riemann la série diverge.

Exercise 11 Etudier la nature des séries suivantes: 1)
$$\sum \left(\frac{n}{n+1}\right)^{n^2}$$
, 2) $\sum \frac{e^n}{n!}$, 3) $\sum \frac{n}{2^n}$, 4) $\sum n!e^{-n}$