university year 2023/2024 field: ST

module: vibrations and waves

Tutorials (TD) Series No1 Mathematical recall and Lagrange formalism

Exercise №1

- Give the expression of the fundamental law of dynamics. The angular momentum theorem for a solid rotating around an axis Δ and define each term in it.
- Give the moment of inertia J with respect to the axis of symmetry Δ of a cylindrical or parallelepipedic solid.
- State the theorem of Hugens.
- Give the kinetic energy of a solid body in translational movement, in rotational movement.
- State the law of meshs and the law of nodes. Give the potential difference across a resistor R, a capacitor Cand a coil L
- Give the expression for electrostatic energy in a capacitor C, magnetic energy in a coil of self-inductance L and energy dissipated by Joule effect in a resistor R in unit of time.

- أعط عبارة قانون التحريك الأساسي. قانون العزم الحركي لجسم صلب في حالة دوران حول محور ∆ وعرف كل حد في العبارة
 - أعط عبارة عزم العطالة / لجسم صلب أسطواني الشكل ، متوازى المستطيلات بالنسبة لمحور تناظره.
 - أعط نص نظر ية هيو جنس
 - أعط عبارة الطاقة الحركية لجسم صلب في حالة حركة انسحابية، حركة دورا نية
 - L ووشيعة C ووشيعة C
- أعط عبارة الطاقة الكهر وستاتية في المكثفة والطاقة المغناطيسية في الوشيعة والطاقة المبددة بفعل جول في المقاومة الصرفة في وحدة

Exercise №2

Expand in Taylor series the functions: sinx, cosx and e^x around x_0 . Check the Euler identity for $x_0 = 0$ i.e. $e^{jx} = cosx + i sinx a vec i = \sqrt{-1}$

Exercise №3

We consider the following two sinusoidal functions (simple harmonic oscillation) (sho):

$$x_1(t) = A_1 cos(\omega t + \varphi_1)$$

$$x_2(t) = A_2 cos(\omega t + \varphi_2)$$

Show by the complex number method that $x = x_1 + x_2$ is also a sinusoidal function with the same pulsation ω . Deduce the amplitude and the initial phase A and ϕ respectively.

$$A.N: -x_1(t) = 3cos(t) et x_2(t) = 4sin(t)$$

* -
$$x_1(t) = 2\cos(t)$$
 et $x_2(t) = 3\sin(t)$

* Find the sum of n (sho) with the same pulsation ω , the same module a and a constant phase shift δ between two successive (sho), i.e.:

$$A\cos(\omega t + \varphi) = a\cos(\omega t) + a\cos(\omega t + \delta) + a\cos(\omega t + 2\delta) + \dots + a\cos(\omega t + (n-1)\delta)$$

التمرين الثالث للحيبيتين (إهتزاز توافقي بسيط) التاليتين: لدينا الدالتين الحيبيتين (إهتزاز ω_0)

$$x_1(t) = A_1 \cos(\omega t + \varphi_1)$$

$$x_2(t) = A_2 \cos(\omega t + \varphi_2)$$

 $x_2(t)=A_2\cos(\omega t+\phi_2)$ بين بطريقة الأعداد المركبة أن المجموع $x_2(t)=A_2\cos(\omega t+\phi_2)$ دالة جيبية أيضا لها نفس النبض ω . أستنتج الطويلة والصفحة الابتدائية $x=x_1+x_2$ على

$$x_2(t) = 4sin(t)$$
 و $x_1(t) = 3cos(t)$ - $x_2(t) = 3sin(t)$ و $x_1(t) = 2cos(t)$ - *

 α جد مجموع n إهتزاز توافقي بسيط لها نفس النبض α ونفس الطويلة α وفرق في الطور δ ثابت بين إهتزازين توفقيين متتاليين أي: $A\cos(\omega t + \varphi) = a\cos(\omega t) + a\cos(\omega t + \delta) + a\cos(\omega t + 2\delta) + \dots + a\cos(\omega t + (n-1)\delta)$

Exercise №4

Solve the following differential equation:

$$\ddot{y} + 5\dot{y} + 4y = f(t)$$
 whereas $y(0) = 1$ and $\dot{y}(0) = 0$

f(t) is a function defined as:

$$f(t) = \begin{cases} -\frac{2}{\pi}t - 1, & -\pi \le t \le 0\\ \frac{2}{\pi}t - 1, & 0 \le t \le \pi \end{cases}$$

note: Take into consideration only the first two terms of the Fourier series

رين الرابع حلى التفاضلية التالية:

$$\ddot{y} + 5\dot{y} + 4y = f(t)$$
 $y(0) = 1$ $\dot{y}(0) = 0$

الدالة
$$f(t)$$
 معرفة بالشكل:
$$f(t) = \begin{cases} -\frac{2}{\pi}t - 1, & -\pi \leq t \leq 0 \\ \frac{2}{\pi}t - 1, & 0 \leq t \leq \pi \end{cases}$$
 ملحظة: لا نأخذ بعين الاعتبار إلا الحدين الأولين في سلسلة فورييه لـ $f(t)$

Exercise №5

Show that the simple pendulum (point mass + inextensible wire) is a system with one freedom degree. Make the appropriate choice of the generalized coordinate (denoted θ). Show that the system admits two equilibrium positions, one stable and the other unstable, and specify the value of θ for each case. If we admit that the system move with small amplitudes around the stable equilibrium position, then give the quadratic form of the potential as a function of θ . Then write the Lagrange function of the system.

What is the number of freedom degrees of a pendulum composed of a spring (instead of the inextensible wire)? Choose the generalized coordinates, and then write the corresponding Lagrange equations without differentiation.

التمرين الخامس البسيط جملة ذات درجة واحدة من الحرية. إختر الإحداثي المعمم الملائم لهذا النظام والذي نرمز له بـ θ . بين أن النظام يقبل بين أن النواس البسيط جملة ذات درجة واحدة من الحرية. إختر الإحداثي المعمم الملائم لهذا النظام والذي نرمز له بـ θ . بين أن النظام يقبل المستقر ، جد إذن الشكل التربيعي للطاقة الكامنة بدلالة θ ثم أكتب دالة لاغرونج للنظام يؤدي حركة ذات سعات صغيرة حول وضع التوازن المستقر ، جد إذن الشكل التربيعي للطاقة الكامنة بدلالة θ ثم أكتب دالة لاغرونج للنظام.

ما هو عدد درجات حرية النواس الذي يتركب من نابض عوضا عن السلك غير القابل للإمتطاط وكتلة نقطية تتصل بنهايته الطليقة. إختر

الإحداثيات المعممة المناسبة ثم اكتب معادلات لاغرونج لهذا النظام دون إجراء الاشتقاقات.