
1 Tringular norms and triangular conorms

2 Résumé

Les normes triangulaires sont des outils indispensables pour l’interprétation
des conjonctions et disjonctions dans la logique floue. Par la suite, pour
l’intersection des ensembles flous. Ce sont cependant des objets mathéma-
tiques intéressants pour eux-mêmes. Les normes triangulaires, telles que nous
les utilisons aujourd’hui, jouent également un rôle important dans la prise de
décision.
Dans cet aperçu on étudie quelques aspects algébriques, analytiques et

logiques des normes triangulaires.

3 Tringular norms

3.1 Basic definitions and properties

Definition 1 A triangular norm (t-norm for short) is a binary operation T
on the unit interval [0, 1], i.e., it is a function T : [0, 1]2 → [0, 1] such that
for all x, y, z ∈ [0, 1] : the following four axioms are satisfied:

(T1) T (x, y) = T (y, x). ( commutativity)

(T2) T (x, T (y, z)) = T (T (x, y), z). ( associativity)

(T3) T (x, y) ≤ T (x, z) whenever y ≤ z (monotonicity)

(T4) T (x, 1) = x. ( boundary condition)

Example 2
The following are the four basic t-norms TM , TP , TL, and TD given by,

respectively:
TM (x, y) = min (x, y) (Minimum)
TP (x, y) = x · y (Product)
TL (x, y) = max(x+ y − 1, 0) ( Łukasiewicz t-norm )

T
D
(x, y) =

{
0 if (x, y) ∈ [0, 1[2

min(x, y) otherwise
(Drastic product )
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Example 3

T (x, y) =
xy

(2− x− y + xy)
Einstein

T (x, y) =
xy

(x+ y − xy) Hamacher

T (x, y) =
xy

max (x, y, α)
Dubois and Parade (1986) α ∈ [0, 1]

Proposition 4
Any t-conorm T satisfies T (0, x) = T (x, 0) = 0, for all x ∈ [0, 1].

Proof.
We know that T (x, 0) ∈ [0, 1] , so T (x, 0) ≥ 0, and we use the axiom

(S3)(monotonicity), we obtient T (x, 0) ≤ T (1, 0) = 0.

Proposition 5
Let A be a set with ]0, 1[⊆ A ⊆ [0, 1], and assume that F : A2 → A is a

binary operation on A such that for all x, y, z ∈ A the properties (T1) - (T3)
and

F (x, y) ≤ min(x, y) (*)
are satisfied. Then the function T : [0, 1]2 → [0, 1] defined by

T (x, y) =

{
F (x, y) if (x, y) ∈ (A\{1})2,
min(x, y) otherwise.

is a t-norm.

Proof.
The commutativity (T1) and the boundary condition (T4) are satisfied

by definition. Concerning the associativity (T2), observe that for x, y, z ∈
A\{0, 1} we have T (T (x, y), z) = T (x, T (y, z)) as aÂ· consequence of the as-
sociativity of F, If 0 ∈ {x, y, z} then we get T (x, T (y, z)) = 0 = T (T (x, y), z),
and if 1 ∈ {x, y, z}then T(T(x,y), z ) = T(x,T(y ,z)) follows from (T4). Con-
cerning the monotonicity (T3), suppose y ≤ z. In the cases x, y, z ∈ A\{1}
or x ∈ {0, 1} or y = 0, the inequality T (x, y) ≤ T (x, z) is inherited from the
monotonicity of F and min. The only non-trivial case is when x, y ∈ A\{1}
and z = 1, in which case T (x, y) ≤ T (x, z) follows from (*).

Definition 6 A function f : [0, 1]2 → [0, 1] which satisfies, for all x, y, z ∈
[0, 1], the properties (T1)- (T3) and f(x, y) ≤ min(x, y) is called a t-subnorm.
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Example 7

1- f(x, y) = 0.

2- f(x, y) =
x.y

3
.

3- f(x, y) = x.y.

Remark 8
Clearly, each t-norm is a t-subnorm, but not vice versa: for example, the

function f : [0, 1]2 → [0, 1] given by f(x, y) = 0, is a t-subnorm but not a
t-norm because (T4) not satisfies (f(x, 1) = 0 6= x).

Corollary 9
If f is a t-subnorm then the function T : [0, 1]2 → [0, 1] defined by

T (x, y) =

{
f(x, y) if (x, y) ∈ [0, 1[2,
min(x, y) otherwise,

is a triangular norm.

3.1.1 Comparison of t-norms

Definition 10

(i) If, for two t-norms T1 and T2, the inequality T1(x, y) ≤ T2(x, y) holds
for all (x, y) ∈ [0, 1]2, then we say that T1 is weaker than T2 or, equiv-
alently, that T2 is stronger than T1, and we write in this case T1 ≤ T2.

(ii) We shall write T1 < T2 whenever T1 ≤ T2 and T1 6= T2, i.e., if T1 ≤ T2
and for some (x0, y0) ∈ [0, 1]2 we have T1(x0, y0) < T2(x0, y0)

Lemma 11

(i) The minimum TM is the strongest t-norm (TM ≥ T ).

(ii) The drastic product TD is the weakest t-norm (TD ≤ T ).

Proof.

(i) For each t-norm T and for each (x, y) ∈ [0, 1]2 we have both T (x, y) ≤
T (x, 1) = x and T (x, y) ≤ T (1, y) = y, so T (x, y) ≤ min(x, y) =
TM(x, y).

3



(ii) All t-norms coincide on the boundary of [0, 1]2 and for all (x, y) ∈]0, 1[2
we trivially have T (x, y) ≥ 0 = TD(x, y).

Example 12

- T0 (x, y) =
{
0 if (x, y) ∈ [0, 1[2,
min(x, y) otherwise.

(Drastic product of weber).

- T1(x, y) = max(x+ y − 1, 0) (Łukasiewicz).

- T1.5(x, y) =
xy

2− x− y + xy
(Einstein).

- T2(x, y) = xy (Algebraic or probaliste).

- T2.5(x, y) =
xy

x+ y − xy (Hamacher).

- T3(x, y) = min(x, y) (Zadeh).

We have: T0 ≤ T1 ≤ T1.5 ≤ T2 ≤ T2.5 ≤ T3.

Definition 13 ( Domination of t-norm)
Let T1 and T2 be two t-norms. Then we say that T1 dominates T2 (in symbols
T1 � T2) if for all x, y, u, v ∈ [0, 1]

T1(T2(x, y), T2(u, v)) ≥ T2(T1(x, u), T1(y, v)). ((Equ 1))

Lemma 14

(i) For each t-norm T we have TM � T and T � TD.

(ii) If for two t-norms T1 and T2 we have T1 dominates T2 ( T1 � T2 )
then, T1 ,is stronger than T2 ( T1 ≥ T2 ).

(iii) The relation� on the set of all t-norms is reflexive and antisymmetric.

Proof.

(i) Trivially, (par separation des cas)
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(ii) If for two t-norms T1 and T2 we have T1 � T2 then, putting y = u = 1
in (Equ 1), we immediately see that also T1 ≥ T2 holds.

(iii) from the commutativity (T1) and the associativity (T2) we obtain for
each t-norm T and all x, y, u, v ∈ [0, 1] the equality
T (T (x, y), T (u, v)) = T (T (x, u), T (y, v)),
( T (T (x, y), T (u, v)) = T (x, T (y, T (u, v)) = T (x, T (T (y, u), v)) = T (x, T (T (u, y), v) =
T (x, T (u, T (y, v)) = T (T (x, u), T (y, v))). i.e., T � T , and the assump-
tions T1 � T2 and T2 � T1 imply, as a consequence of (ii), T1 = T2
.

Remark 15
The converse is false: T1 ≥ T2 does not imply T1 � T2.

consider the t-norm TP and the t norm T given by:

T (x, y) =

{ xy

2
if (x, y) ∈ [0, 1[2,

min(x, y) otherwise,
we have TP ≥ T but TP � T is false.

let (x, y) ∈ [0, 1]2 if (x, y) ∈ [0, 1[2 hence TP = xy >
xy

2
= T (x, y)

if max(x, y) = 1 TP (x, y) = min(x, y) = T (x, y).
So ∀(x, y) ∈ [0, 1]2 we have TP (x, y) ≥ T (x, y) i,e,. TP ≥ T
but TP (T (x, y), T (u, v)) � T (TP (x, u), TP (y, v)),
because if (x, y) ∈ [0, 1[2 and (u, v) ∈ [0, 1[2 we get TP (Tx, y), T (u, v)) =
xyuv

4
and T (TP (x, u), TP (y, v)) =

xyuv

2
.

Proposition 16

(i) The only t-norm T satisfying T (x, x) = x for all x ∈ [0, 1] is the mini-
mum TM .

(ii) The only t-norm T satisfying T (x, x) = 0 for all x ∈ [0, 1[ is the drastic
product TD.

Proof.

(i) If for a t-norm T we have T (x, x) = x for each x ∈ [0, 1], then for all
(x, y) ∈ [0, 1]2 with y ≤ x the monotonicity (T3) implies y = T (y, y) ≤
T (x, y) ≤ TM(x, y) = y,
which, together with (T1), means T = TM .
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(ii) Assume T (x, x) = 0 for each x ∈ [0, 1[. Then for all (x, y) ∈ [0, 1[2 with
y ≤ x we have 0 ≤ T (x, y) ≤ T (x, x) = 0, hence, together with (T1)
and (T4), yielding T = TD.

4 Triangular conorms

............................

4.1 Basic definitions and properties

Definition 17 A triangular conorm (t-conorm for short) is a binary opera-
tion S on the unit interval [0, 1], i.e., it is a function S : [0, 1]2 → [0, 1] such
that for all x, y, z ∈ [0, 1] : the following four axioms are satisfied:
(S1) S(x, y) = S(y, x). ( commutativity)

(S2) S(x, S(y, z)) = S(S(x, y), z). ( associativity)

(S3) S(x, y) ≤ S(x, z) whenever y ≤ z (monotonicity)

(S4) S(x, 0) = x. ( boundary condition)

Example 18

The following are the four basic t-norms SM , SP , SL, and SD given by,
respectively:

SM (x, y) = max (x, y) (maximum)
SP (x, y) = x+ y − x · y (probabilistic sum)
SL (x, y) = min(x+ y, 1) ( Lukasiewicz t-conorm, bounded sum )

S
D
(x, y) =

{
1 if (x, y) ∈ ]0, 1]2

max(x, y) otherwise
(drastic sum )

Example 19

T (x, y) =
x+ y

(1 + xy)
Einstein

T (x, y) =
x+ y − 2xy
(1− xy) Hamacher

T (x, y) =
x+ y + xy −min(x, y, 1− α)

max (1− α, 1− y, α) Dubois and Parade (1986) α ∈ [0, 1]
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Proposition 20
Any t-conorm S satisfies S(1, x) = S(x, 1) = 1, for all x ∈ [0, 1].

Proof.
We know that S(x, 1) ∈ [0, 1] , so S(x, 1) ≤ 1, and we use the axiom

(S3)(monotonicity), we obtient S(x, 1) ≥ S(0, 1) = 1.

Proposition 21

A function S : [0, 1]2 → [0, 1] is a t-conorm if and only if there exists a
t-norm T such that for all (x, y) ∈ [0, 1]2

S(x, y) = 1− T (1− x, 1− y). (*)

Proof.
If T is a t-norm then obviously the operation S defined by (*) satisfies

(S1)- (S3) and (S4)

(S1) S(x, y) = 1− T (1− x, 1− y) = 1− (1− y, 1− x) = S(y, x),

(S2) S(x, S(y, z)) = 1− T (1− x, 1− S(y, z)) = 1− T (1− x, 1− (1− T (1−
y, 1− z))) = 1− T (1− x, T (1− y, 1− z)),
S(S(x, y), z) == 1−T (1− s(x, y), 1− z) = 1−T (1− (1−T (1− x, 1−
y)), 1−z) = 1−T (T (1−x, 1−y), 1−z) = 1−T (1−x, T (1−y, 1−z)),

(S3) S(x, y) = 1− T (1− x, 1− y) ≤ 1− T (1− x, 1− z) = S(x, z) whenever
y ≤ z,

(S4) S(x, 0) = 1− T (1− x, 1) = 1− (1− x) = x,

and is, therefore, a t-conorm. On the other hand, if S is a t-conorm, then
define the function T : [0, 1]2 → [0, 1] by

T (x, y) = 1− S(1− x, 1− y), (**)

Again, it is trivial to T is a t-norm and that (*) holds.

Remark 22

(i) The t-conorm given by (*) is called the dual t-conorm of T and, anal-
ogously, the t-norm given by (**) is said to be the dual t-norm of S.
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(ii) The proof of Proposition 21 makes it clear that also each t-norm is the
dual operation of some t-conorm. Note that (TM , SM), (TP , SP ), (TL, SL), and(TD, SD)
are pairs of t-norms and t-conorms which are mutually dual to each
other.

Definition 23 Let T be a t-norm and S be a t-conorm. Then we say that T
is distributive over S if for all x, y, z ∈ [0, 1]

T (x, S (y, z)) = S (T (x, y) , T (x, z)) .

and that S is distributive over T if for all x, y, z ∈ [0, 1]

S (x, T (y, z)) = T (S (x, y) , S (x, z)) .

Remark 24
If T is distributive over S and S is distributive over T, then (T,S) is called

a distributive pair (of t-norms and t-conorms).

Proposition 25
Let T be a t-norm and S a t-conorm. Then we have:

(i) S is distributive over T if and only if T = TM .

(ii) T is distributive over S if and only if S = SM .

(iii) (T, S) is a distributive pair if and only if T = TM and S = SM .

Proof.
Obviously, each t-conorm is distributive over TM because of the monotonic-

ity (S3) of the t-conorm.

(⊆) we have
S(x, TM(y, z)) ≤ S(x, y) (a)

S(x, TM(y, z)) ≤ S(x, z) (b)

(a)and(b) given that S(x, T (y, z)) ≤ TM(S(x, y), S(x, z)).

(⊇) ........
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Conversely, if S is distributive over T then for all x ∈ [0, 1] we have
x = S(x, T (0, 0)) = T (S(x, 0), S(x, 0)) = T (x, x), and from Proposition (..)
we obtain T = TM . An analogaus argument proves (ii), and (iii) is just the
combination of (i) and (ii).

Remark 26

(i) The duality changes the order: if, for some t-norms T1 and T2 we
have T1 ≤ T2, and if S1 and S2 are the dual t-conorms of T1 and T2,
respectively, then we get S1 ≥ S2 . Consequently, for each t-conorm S
we have

SM ≤ S ≤ SD (1)

i.e., the maximum SM is the weakest and the drastic sum SD is the
strongest t-conorm.

(ii) For the t-conorms in example 18 we get this ordering:

SM < SP < SL < SD. (2)

The continuity of t-conorm S is equivalente to the continuity of the t-norm
duale T .

Definition 27
A T-conorm S : [0, 1]2 → [0, 1] is continue if for all the sequences conver-

gentes (xn)n∈N , (yn)n∈N ∈ [0, 1]N we have :

S
(
lim
n→∞

xn, lim
n→∞

yn

)
= lim

n→∞
S (xn, yn) .

Example 28
• the t-conorms SM , SP , SL are continues, and the drastic sum SD is not

continue.

4.2 Elementary algebraic properties

Definition 29

(i) An element a ∈ [0, 1] is called an idempotent element of S if S(a, a) = a.
The numbers 0 and 1 (which are idempotent elements for each t-conorm
S) are called trivial idempotent elements of S, each idempotent element
in ]0, 1[ will be called a non-trivial idempotent element of S.
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(ii) An element a ∈]0, 1[ is called a nilpotent element of S if there exists
some n ∈ N such that a(n)S = 0.

(iii) An element a ∈]0, 1[ is called a zero divisor of S if there exists some
b ∈]0, 1[ such that S(a, b) = 0.
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