University Of M'sila Faculty Of Technology Electronic Department Année universitaire: 2020/2021 Microélectronique (semestre 3) TP : Simulation des composants à semi-conducteurs

TP N°.2.Simulation Pspice des circuits

(Diode - Bias point)

Nom	Prénom	Croupo	Note préparation	Note Finale
Nom	Trenom	Groupe	5/5	20/20
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-

I. Objectif

- Simulation électrique OrCAD schematic Capture en modes Bais point.

II. Analyse d'un circuit électrique en utilisant OrCAD Pspice.

- o Créez un nouveau projet.
- o Sauvegardez le projet dans votre répertoire de travail (à choisir)
- Saisissez sur la page 1 le schéma électrique à simuler à l'aide du
 Place menu/Place Part.

(Diode DC current and Voltage)

Circuit 1

Soit le circuit de la figure (1), trouvez le courant qui traverse la diode et la tension V_d avec le simulateur Pspice en utilisant le mode de simulation **Bais point** sachant que V₁=5 Volt, R₁= 1K Ω , D1 de type D1N4007.

Figure.1. Exemple d'un schéma électrique à base de diode.

Circuit 2

Soit le circuit de la figure (2). Trouvez le courant qui traverse la diode et la tension V_d avec le simulateur Pspice en utilisant le mode de simulation <u>Bais point</u> sachant que V₁=5 Volt, R₁= 1K Ω , D1 de type **Dbreak**. Utilisez (**Dbreak**) qui trouve dans la librairie (**BREAKOUT**) voir (figure.2) à droite.

Figure.2. Schéma électrique à base de diode (Dbreak).

Circuit 3

Soit le circuit de la figure (3). Répétez les même étapes suivis pour le circuit (2) afin de trouver le courant qui traverse la diode et la tension \mathbf{V}_{d} sachant que V₁=10 Volt, R₁= 1K Ω , R2= 1K Ω et R₃= 500 Ω . Donnez vos remarques.

Figure.3. Schéma électrique (circuit 3).

(Diode DC current and Voltage in different temperature)

Pspice offre une simulation à la température de 25°C par défaut. Dans cette partie on va essayer de faire la simulation en bais point dans des différents températures.

Circuit 4

Soit le circuit de la figure (2). Trouvez le courant qui traverse la diode et la tension \mathbf{V}_d à la température 100°C avec le simulateur Pspice en utilisant le mode de simulation **Bais point** sachant que V₁=5 Volt, R₁= 1K Ω , D1 de type **Dbreak**.

Trouvez le courant qui traverse la diode et la tension \boldsymbol{v}_d à avec le simulateur Pspice pour différentes températures suivant le tableau audessous.

T (°C)	25	50	75	100	125	150	175	200	225
I (mA)									
V (Volt)									

Tracez la variation des courants et des tensions en fonction de la température. Que remarquez-vous ?

Profil de simulation

Tout d'abord, il faut créer un profil de simulation à partir de Capture.

- Accédez au menu Pspice/New Simulation Profile.
- Spécifier un nom à votre analyse, par exemple 'DC voltages' dans Name,
- Cliquez sur Create. Ensuite, la fenêtre Simulation Settings apparaît.

To Output variable:

Figure.4. La fenêtre Simulation Settings.

- o Choisissez et cliquez sur Bais point dans le champ Analysis type.
- o Lancez la simulation à l'aide de la commande **Pspice/Run**.
- o Cliquez sur **Enable Bais voltage display** pour voir les tensions simulées et sur **Enable Bais current** display pour les courants.

Dr. BENNACER Hamza