Tutorials (TD) Series No2

Free oscillations of single degree of freedom systems

Exercise Nº1

Compare between the natural angular frequency of a k+m mechanical system and an LC electrical system. We give: $k = 100 \, N/m$, m = 250 g, L = 0.1 H, C = 100 pF.

<u>التمرين الأول</u>

academic year 2024/2025 field: ST

module: vibrations and waves

k+m قارن بين النبص الذاتي للنظام الميكانيكي k+m والنظام الكهربائي $k=100\,N/m$, $m=250\,g$, L=0.1H , $C=100\,pF$

Exercise Nº2

A vibratory system k+m (arranged horizontally), consisting of a mass m=0.010kg and a spring $k=36N.m^{-1}$. At time t=0, we observe that the mass is at 50mm from its equilibrium position in the right side and is still moving to the right with a speed of $1.7m.s^{-1}$. Calculate the frequency, amplitude, initial phase and energy of the system. A second system identical to the first one is vibrating with the same amplitude but with a phase advance of $\pi/2$, calculate the position and the speed at t=0. At what moment will it then pass through the equilibrium position?

التمرين الثاني

نظام k+m مهتز يتركب من كتلة m=0.010kg ونابض $k=36N.m^{-1}$. الجملة موضوعة بشـكل أفقي. عند اللحظة t=0 الزمنية t=0 نلاحظ أن الكتلة تتلقى إزاحة مقدارها t=0 إلى اليمين من وضع التوازن وتنتقل في نفس الإتجاه بسـرعة t=0. أحسـب التواتر والسعة والصفحة الابتدائية وكذا طاقة النظام. يؤدي نظام مماثل لسـابقه اهتزازا بنفس السعة ولكن بتقدم t=0 في الطور أحسـب الانتقال و السـرعة عند t=0. في أي لحظة سـيمر بعد ذلك بوضع التوازن؟

Exercise Nº3

- Simplify the system represented in Figure 1 by replacing the springs with an equivalent one k_e $(k_1 = k_2 = k_3 = k \text{ et } k_4 = 2k)$
- Deduce the nature of motion and its natural angular frequency ω_0 , which you have to calculate knowing that m = 1kg and k = 150N/m.

<u>التمرين الثالث</u>

- $(k_1=k_2=k_3=k$ و $k_4=2k$) . k_e بسط النظام المبين في الشكل1 وذلك بإيجاد النابضِ المكافئ -
- k=150N/m و m=1kg استنتج طبيعة الحركة و النبض الطبيعي ω_0 لها ثم أحسبه إذا علمت أن

Exercise Nº4

Find the simplified equivalent system of the system shown in fig.2, and then calculate its natural angular frequency. We assume that the mass moves only vertically.

التمرين الرابع

Exercise №5

A material point of mass m is suspended by two identical stretched springs of free length l_0 and stiffness constant k (fig.3). The set takes a horizontal position such that the two springs will have a length l_1 (the weight of m is neglected compared to the tension force in the two springs)

- a) Calculate F_0 the force exerted by each spring on m.
- b) If the mass m is shifted vertically by x from its equilibrium position so that each spring takes a length *l* corresponding to x, then find the tension force F as a function of x.
- c) Establish the equation of motion of the system in the case where $x/l_1 \ll 1$ et $l_0/l_1 \ll 1$.

التمرين الخامس

نشـد كتلة نقطية m مابين نابضين متماثلين (الطول الحر l_0 وثابت المرونة k) مع العلم أن النابضين مشـدودين عند النهاية الأخرى كما يوضحه الشـكل 1 . في هذه الحالة يأخذ كل نابض طولا مقداره 1 . إذا اعتبرنا أن ثقل الكتلة مهمل أمام قوة الشـد في النابضين فإن المجموعة تأخذ وضعا أفقيا عند التوازن.

أ- أحسب قوة الشد F_0 التي يطبقها كل نابض على الكتلة m.

ب- تتلقى الكتلة إزاحة شاقولية مقدارها x، فيأخذ النابضين عندها الطول l الذي يوافق مقدار الإزاحة x. جد قوة الشد F بدلالة x.

 $x/{
m l}_1\ll 1$ ت- جد المعادلة التفاضلية للحركة إذا اعتبرنا أن : 1 و ${
m l}_0/{
m l}_1\ll 1$

Exercise Nº6

A rod of length l and negligible mass is articulated at point O and carrying at its free end a point mass m. At a distance a from O on the rod we connect vertically a spring of stiffness k, its other end is connected to a point A of a fixed frame (fig.4). At static equilibrium, the rod takes a horizontal position $(\theta=0)$

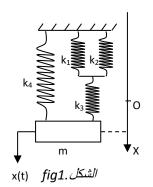
- 1- At this position the spring is it extended or not? Deduce the equilibrium condition.
- 2- Establish the differential equation of weak oscillations and then deduce their period.

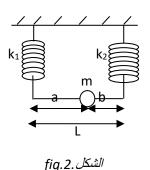
<u>التمرين السادس</u> :

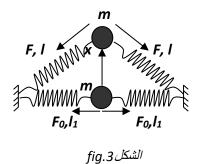
تتمفصل ساق معدنية طولها *ا وكتلتها مهملة عند النقطة O وتحمل في نهايتها الطليقة كتلة نقطية m . نربط الساق* عند النقطة التي تبعد بمقدار a عن O بنابض شاقولي ثابت مرونته k ومثبت بنهايته الأخرى بمسند ثابت fig.4) A. عند التوازن السكوني تأخذ الساق وضعا أفقيا(θ=0)

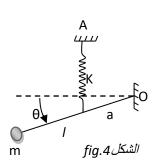
1- هل النابض في هذا الوضع مستطيلاً أو مرتخيا؟استنتج شرط التوازن.

2- جد المعادلة التفاضلية للاهتزازات صغيرة السعة ثم استنتج الدور.


Exercise Nº7


A U-shaped tube of section S contains a liquid of density ρ and length l in the tube (fig.5)


- 1- Establish the differential equation for free vibrations with weak amplitudes
- 2- Deduce their own natural angular frequency.


التمرين السابع:

l وطوله في الأنبوب (على سائل كتلته الحجمية وطوله في الأنبوب ρ وطوله في الأنبوب الشكل 5). أدرس الاهتزازات صغيرة السعة للسائل وذلك بإيجاد المعادلة التفاضلية والنبض الذاتي لها.

y=0

الشكل. Fig5