Montrer que les opérateurs énumérés sont linéaires bornés. Chercher leurs normes

a)
$$A: C[0, 1] \to C[0, 1], \qquad Ax(t) = \int_{0}^{t} x(\tau) d\tau;$$

b)
$$A: C[-1, 1] \to C[0, 1], Ax(t) = x(t);$$

c)
$$A: C[0, 1] \to C[0, 1],$$
 $Ax(t) = t^2x(0);$
d) $A: C[0, 1] \to C[0, 1],$ $Ax(t) = x(t^2);$

d)
$$A: C[0, 1] \to C[0, 1], \qquad Ax(t) = x(t^2)$$

e)
$$A: C^{1}[a, b] \to C[a, b], \qquad Ax(t) = x(t);$$

f)
$$A: C^{1}[a, b] \to C[a, b], \qquad Ax(t) = \frac{dx}{dt};$$

g)
$$A: L_2[0, 1] \to L_2[0, 1], \quad Ax(t) = t \int_0^1 x(\tau) d\tau;$$

Exercise 2

Montrer que les fonctionnelles suivantes sont linéaires continues et chercher leurs normes:

a)
$$\langle f, x \rangle = \int_{-1}^{1} tx (t) dt, \quad x \in C[-1, 1];$$

b)
$$\langle f, x \rangle = \int_{0}^{1} ix(t) dt, \quad x \in C^{1}[-1, 1];$$

c)
$$\langle f, x \rangle = \int_{-1}^{1} tx (t) dt, \quad x \in L_{1}[-1, 1];$$

d)
$$\langle f, x \rangle = \int_{1}^{1} tx(t) dt, \quad x \in L^{2}[-1, 1];$$

e)
$$\langle f, x \rangle = \int_{0}^{1} t^{-1/3} x(t) dt, \quad x \in L^{2}[0, 1];$$

Exercise 3

Pour
$$x(t) \in L^2[-1, 1]$$
, posons

$$\langle f_n, x_n \rangle = \int_{-1}^{1} x(t) \cos n\pi t dt.$$

a) Montrer que f_n est une fonctionnelle linéaire bornée. Chercher $||f_n||$.

b) Montrer que $f_n \to 0 \ (n \to \infty)$ *-faiblement.

c) Est-ce que $f_n \to 0 \ (n \to \infty)$?

RÉPONSES ET INDICATIONS

Exercice 1

a) à f)
$$||A|| = 1$$
. g) $||A|| = 1\sqrt{3}$.

Exercice 2

a)
$$|| f || = 1$$
.

b)
$$||f|| = 1/2$$
.

c)
$$||f|| = 1$$
.

a)
$$||f|| = 1$$
. b) $||f|| = 1/2$. c) $||f|| = 1$. d) $||f|| = \sqrt{2/3}$.

e)
$$||f|| = \sqrt{3}$$
.

Exercice 3

- a) La norme de fn est constante =1
- b)utiliser l'intégration par parties.
- c) Non, à cause de a).