TP N°.3.Simulation Pspice des circuits

(DC Sweep)

N	D (G	Note préparation	Note Finale
Nom	Prenom	Groupe	5/5	20/20
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-

I. Objectif

- Simulation électrique OrCAD schematic Capture en modes DC Sweep.

II. Analyse d'un circuit électrique en utilisant OrCAD Pspice.

- o Créez un nouveau projet.
- o Sauvegardez le projet dans votre répertoire de travail (à choisir)
- Saisissez sur la page 1 le schéma électrique à simuler à l'aide du
 Place menu/Place Part.

(DC Secondary Sweep- BJT characteristic Curves)

Circuit 1

Soit le circuit de la figure (1), utilisez Pspice/OrCAD pour tracer la caractéristique du collecteur (*Collector characteristic curves*) avec le simulateur Pspice en utilisant le mode de simulation <u>DC Sweep (Balayage DC)</u> sachant que notre Transistor bipolaire utilisé est de type **Q2N3904**.

Figure.1. Exemple d'un schéma électrique à base du transistor.

Nous devons configurer le balayage primaire (**Primary DC Sweep)** et le balayage secondaire (**Secondary Sweep**), Voir la figure (2).

Le balayage primaire (**Primary DC Sweep**) balaie le \mathbf{V}_{CE} de 0 à 15 volts avec 0.01 volt d'incrément. Ce balayage est de type Linéaire.

Ensuite, on doit sélectionner Le balayage secondaire (**Secondary Sweep**) afin de balayer le courant de la base I_B de 0 à 1 mA avec 100 µA d'incrément. Le balayage est toujours de type Linéaire.

Logiquement, la boucle de balayage primaire (**Primary Sweep**) est exécutée à l'intérieur de la boucle de balayage secondaire (**Secondary Sweep**). C'est-àdire pour chaque valeur du courant de base I_B , V_{CE} est balayé de 0 à 15 volts.

Figure.2. Simulation settings fenêtre pour accéder à la simulation en mode DC Sweep (Primary +Secondery).

Lancez la simulation (OK+ Run).

Figure.3. Résultat de la simulation.

Circuit 2

Figure.4. Exemple d'un schéma électrique à base du transistor JFET.

Soit le circuit de la figure (5), utilisez Pspice/OrCAD pour tracer la caractéristique de V_{DS} (V_{DS} balaie de 0 à 15 volts) pour chaque variation de V_{GS} avec le simulateur Pspice en utilisant le mode de simulation <u>DC Sweep</u> (Balayage DC) sachant que notre Transistor bipolaire utilisé est de type J2N5951.

Figure.5. Exemple d'un schéma électrique à base du transistor JFET.

Profil de simulation

Tout d'abord, il faut créer un profil de simulation à partir de Capture.

- Accédez au menu Pspice/New Simulation Profile.
- Spécifier un nom à votre analyse.
- Cliquez sur Create. Ensuite, la fenêtre Simulation Settings apparaît.

Analysis type: Bias Point Options: Ceneral Settings Ceneral Settings Save Bias Point Load Bias Point	Output File Options Include detailed bias point information for nonlinear controlled sources and semiconductors (.OP) Perform Sensitivity analysis (.SENS) Output variable(s): Calculate small-signal DC gain (.TF) From Input source name: To Output variable:

Figure.4. La fenêtre Simulation Settings.

- o Choisissez et cliquez sur DC Sweep dans le champ Analysis type.
 o Lancez la simulation à l'aide de la commande Pspice/Run.

Dr. BENNACER Hamza