
Chapter 2
Distributed Information Systems

Presented by: Dr. R. BENTRCIA

Department of Computer Science, M’sila University

Outline

• Distributed Architecture:

• Client-Server Architecture

• Multi-Tier Architecture (n-tier Architecture)

• Broker Architectural Style

• Broker implementation in CORBA

• Remote Method Invocation (RMI)

12/19/2020 2

Distributed Architecture

• In distributed architecture, components are presented on different
platforms and several components can cooperate with one another over a
communication network in order to achieve a specific objective or goal.

• In this architecture, information processing is not confined to a single
machine rather it is distributed over several independent computers.

• A distributed system can be demonstrated by the client-server architecture
which forms the base for multi-tier architectures; alternatives are the broker
architecture such as CORBA, and the Service-Oriented Architecture.

12/19/2020 3

Distributed Architecture

• There are several technology frameworks to support distributed
architectures, including J2EE and CORBA.

• Middleware is an infrastructure that appropriately supports the
development and execution of distributed applications. It provides a buffer
between the applications and the network. It sits in the middle of system
and manages or supports the different components of a distributed system.

12/19/2020 4

Client-Server Architecture

• The client-server architecture is the most common distributed system architecture
which decomposes the system into two major subsystems or logical processes:

• Client: This is the first process that issues a request to the second process i.e. the server.

• Server: This is the second process that receives the request, carries it out, and sends a reply
to the client.

• In this architecture, the application is modelled as a set of services that are
provided by servers and a set of clients that use these services.

12/19/2020 5

Client-Server Architecture

12/19/2020 6

Client-Server Architecture

• Client-server Architecture can be classified into two models based on the
functionality of the client:

• Thin-client model: In this model, all the application processing and data management is
carried by the server. The client is simply responsible for running the presentation
software.

• Used when legacy systems are migrated to client server architectures in which legacy
system acts as a server in its own right with a graphical interface implemented on a
client.

• A major disadvantage is that it places a heavy processing load on both the server and
the network. 12/19/2020 7

Client-Server Architecture

• In thick-client model, the server is only in charge for data management. The
software on the client implements the application logic and the interactions with the
system user.

• More complex than a thin client model especially for management. New versions
of the application have to be installed on all clients.

12/19/2020 8

Client-Server Architecture
• Advantages:

• Separation of responsibilities such as user interface presentation and business logic processing.

• Reusability of server components.

• Simplifies the design and the development of distributed applications.

• It makes it easy to migrate or integrate existing applications into a distributed environment.

• It also makes effective use of resources when a large number of clients are accessing a high-
performance server.

• Disadvantages:

• Security complications.

• Limited server availability and reliability.

• Limited testability and scalability.

• Fat clients with presentation and business logic together.
12/19/2020 9

Multi-Tier Architecture (n-tier Architecture)

• Multi-tier architecture is a client–server architecture in which the functions
such as presentation, application processing, and data management are
physically separated.

• By separating an application into tiers, developers obtain the option of
changing or adding a specific layer, instead of reworking the entire
application.

• It provides a model by which developers can create flexible and reusable
applications.

12/19/2020 10

Multi-Tier Architecture (n-tier Architecture)

• The most general use of multi-tier architecture is the three-tier architecture.

• A three-tier architecture is typically composed of a presentation tier, an application
tier, and a data storage (discussed in information system design):

• Presentation Tier: It translates the tasks and results to something that user can understand.

• Application Tier (Business Logic, Logic Tier, or Middle Tier): It coordinates the application,
processes the commands, makes logical decisions, evaluation, and performs calculations. It
controls an application’s functionality by performing detailed processing.

• Data Tier: It includes the data persistence mechanisms (database servers, file shares, etc.)
and provides API (Application Programming Interface) to the application tier which provides
methods of managing the stored data.

12/19/2020 11

Multi-Tier Architecture (n-tier Architecture)

12/19/2020 12

Multi-Tier Architecture (n-tier Architecture)

• Advantages:

• Better performance than a thin-client approach and is simpler to manage than a thick-client
approach.

• Enhances the reusability and scalability − as demands increase, extra servers can be added.

• Reduces network traffic.

• Provides maintainability and flexibility.

• Disadvantages:

• Unsatisfactory testability due to lack of testing tools.

• More critical server reliability and availability.

12/19/2020 13

Broker Architectural Style

• Broker Architectural Style is a middleware architecture used in distributed
computing to coordinate and enable the communication between registered
servers and clients.

• Here, object communication takes place through a middleware system called an
object request broker (software bus).

• Client and the server do not interact with each other directly. Client and server
have a direct connection to its proxy which communicates with the mediator-
broker.

• A server provides services by registering and publishing their interfaces with the
broker and clients can request the services from the broker by look-up.

• CORBA (Common Object Request Broker Architecture) is a good implementation
example of the broker architecture.

12/19/2020 14

Broker Architectural Style

• Components of Broker Architectural Style:

• Broker (software bus):

• It is responsible for coordinating communication, such as forwarding and dispatching the results and
exceptions.

• It is responsible for brokering the service requests, locating a proper server, transmitting requests, and
sending responses back to clients.

• It retains the servers’ registration information including their functionality and services as well as
location information.

• It provides APIs for clients to request, servers to respond, registering or unregistering server
components, transferring messages, and locating servers.

• Stubs: Generated at the static compilation time and then deployed to the client side and
used as a proxy for the client. Client-side proxy acts as a mediator between the client and
the broker and provides additional transparency between them.

12/19/2020 15

Broker Architectural Style

• Skeleton: It is generated by the service interface compilation and then deployed to
the server side, which is used as a proxy for the server. Server-side proxy
encapsulates low-level system-specific networking functions and provides high-
level APIs to mediate between the server and the broker.

• It receives the requests, unpacks the requests, unmarshals the method arguments,
calls the suitable service, and also marshals the result before sending it back to the
client.

• Marshalling: process of taking a collection of data items and assembling them into
a form suitable for transmission in a message.

• Unmarshalling: process of disassembling a collection data items from a message at
the destination.

12/19/2020 16

Broker Architectural Style

• Bridge: It can connect two different networks based on different
communication protocols and it mediates different brokers.

• Bridges are optional component, which hides the implementation details when two
brokers interoperate and take requests and parameters in one format and translate
them to another format.

12/19/2020 17

Broker Implementation in CORBA

• CORBA is an international standard for an Object Request Broker.

• It is a middleware to manage communications among distributed objects defined
by OMG (Object Management Group).

12/19/2020 18

Remote Method Invocation (RMI)

• The RMI (Remote Method Invocation) is an API that provides a mechanism to
create distributed application in java. The RMI allows an object to invoke methods
on an object running in another Java Virtual Machine.

• The RMI provides remote communication between the applications using two
objects stub and skeleton.

• RMI uses stub and skeleton object for communication with the remote object.

• A remote object is an object whose method can be invoked from another JVM.

12/19/2020 19

Remote Method Invocation (RMI)

• Let's understand the stub and skeleton objects:

12/20/2020 20

Remote Method Invocation (RMI)

• The stub is an object, acts as a gateway for the client side. All the outgoing requests are
routed through it. It resides at the client side and represents the remote object. When the
caller invokes method on the stub object, it does the following tasks:

• It initiates a connection with remote Virtual Machine (JVM),

• It writes and transmits (marshals) the parameters to the remote Virtual Machine (JVM),

• It waits for the result,

• It reads (unmarshals) the return value or exception, and

• It finally, returns the value to the caller.

12/19/2020 21

Remote Method Invocation (RMI)

• The skeleton is an object, acts as a gateway for the server side object. All the
incoming requests are routed through it. When the skeleton receives the incoming
request, it does the following tasks:

• It reads the parameter for the remote method,

• It invokes the method on the actual remote object, and

• It writes and transmits (marshals) the result to the caller.

• In the Java 2 SDK, a stub protocol was introduced that eliminates the need for
skeletons.

12/19/2020 22

Remote Method Invocation (RMI)

• If any application performs these tasks, it can be a distributed application.

• The application needs to locate the remote method.

• It needs to provide the communication with the remote objects.

• The application needs to load the class definitions for the objects.

• The RMI application has all these features, so it is called a distributed
application.

12/19/2020 23

Remote Method Invocation (RMI)

• There are 6 steps to write java RMI program:

• Create the remote interface.

• Interfaces: definition of the signatures of a set of methods without their implementation.

• Remote interfaces: which of the object methods can be invoked remotely.

• Compile the implementation class and create the stub and skeleton objects
using rmic tool.

• rmic tool is the Java RMI compiler and it generates stubs, skeletons, and ties classes for
remote objects using specific protocols.

12/19/2020 24

Remote Method Invocation (RMI)

• Start the registry service using a binder.

• The binder is a separate service that maintains a table containing mappings from textual
names to remote object references.

• Remote object reference: identifier that can be used throughout a distributed system to
refer to a particular unique remote object.

• Remote object references may be passed as arguments and results of remote method
invocations.

• The binder is used by: servers to register their remote objects by name and by clients to
look them up.

• Create and start the remote application (Server).

• Create and start the client application.
12/19/2020 25

References

• Coulouris, G., Dollimore, J., Kindberg, T., and Blair, G. (2012). Distributed
Systems. Concepts and Design. Pearson, 5th edition.

• Tanenbaum, A. S. and van Steen, M. (2007). Distributed Systems. Principles
and Paradigms. Pearson Prentice Hall, Upper Saddle River, NJ, USA, 2nd
edition.

12/19/2020 26

