Série d'exercices N°03(Math1), (Les fonctions réelles d'une variable réelle)

Exercice 01

Calculer les limites suivantes:
$$\lim_{x \to 0} \left(\frac{\sin px}{\sin qx} \right); \quad \lim_{x \to 0} \left(\frac{x \cos (x) - \sin (x)}{x^3} \right); \quad \lim_{x \to \pi} \left(\frac{\sin (x)}{x - \pi} \right); \quad \lim_{x \to 0} \left(x \left[\frac{1}{x} \right] \right)$$

Exercic 02

Etudier la continuité et la dérivabilité des fonctions suivantes:
$$f\left(x\right) = \left\{ \begin{array}{ll} x^3 \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{array} \right., \ g\left(x\right) = \left\{ \begin{array}{ll} x+1 & \text{si } x \leq 0 \\ \cos^2\left(\frac{\pi x}{2}\right) & \text{si } x > 0 \end{array} \right.,$$

$$h\left(x\right) = \left\{ \begin{array}{ll} 1-\left(\frac{1}{x}+1\right)e^{-\frac{1}{x}} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{array} \right.$$

Exercice 03

Soit la fonction f définie par $f(x) = \begin{cases} \frac{x+1}{2} & \text{si } 0 \le x \le 1 \\ \alpha x + 2 & \text{si } 1 < x < 2 \end{cases}$

- 1. Déterminer la valeur α pour que f soit continue au point $x_0 = 1$.
- 2. Etudier la dérivabilité de f sur son domaine de définition (pour la valeur de α trouvée)

Exercice04

- 1. Montrer que:
- a) $\operatorname{arg} \cosh(x) = \ln\left(x + \sqrt{x^2 1}\right)$, pour tout $x \ge 1$,
- b) $\operatorname{arg} \tanh (x) = \frac{1}{2} \ln \frac{1+x}{1-x}$, pour tout $x \in]-1, 1[$.
- c) $\forall x \in]-1, 1[: \cos(\arcsin(x)) = \sin(\arccos(x)) = \sqrt{1-x^2}$.
- 2 Déterminer le domaine de définition de la fonction réelle $f(x) = \arcsin(2x^2)$, puis trouver f'(x).

Exercice06

1. Appliquer la règle de l'Hospital pour calculer les limites suivantes (quand $x \to 0$):

$$\frac{x}{(1+x^n)-1}, \qquad \frac{\ln(x+1)}{\sqrt{x}}, \qquad \frac{1-\cos x}{\tan x}.$$

2. Calculer les limites suivantes en utilisant le développement limité

$$\lim_{x \to 0} \frac{x - \arcsin x}{\sin^3 x}, \qquad \lim_{x \to 0} \left(\frac{\sin x}{\sinh x}\right)^{\frac{1}{x^2}}.$$

Exercice07

Calculer le développement limité en 0 des fonctions suivantes

1.
$$(1 + \arctan x)(e^x + 2\sin x)$$
 (ordre 3)

2.
$$(1+2\cos(2x))(x-\ln(1+x))$$
 (ordre 5)

$$3. \frac{1 + \arctan x}{\cos x} \qquad \text{(ordre 4)}$$

3.
$$\frac{x^{\cos x}}{4 \cdot \frac{x^{\cos x}}{e^x - 1}}$$
 (ordre 4)
5. $\frac{\ln(1 + x^3)}{x - \sin x}$ (ordre 3)
6. $\sqrt{1 + 2\cos x}$ (ordre 2)

5.
$$\frac{\ln(1+x^3)}{x-\sin x}$$
 (ordre 3)

$$6. \sqrt{1 + 2\cos x} \qquad \text{(ordre 2)}$$

7.
$$e^{\sqrt{1+2\cos x}}$$
 (ordre 2)

8.
$$(1+x)^{\frac{1}{x}}$$
 (ordre 2)

9.
$$\ln \frac{\sin x}{x}$$
 (ordre 4)
10. $\sqrt[3]{1 + \ln(1+x)}$ (ordre 3)

10.
$$\sqrt[3]{\frac{x}{1 + \ln(1 + x)}}$$
 (ordre 3)

11.
$$\cos(e^{\frac{x}{\cos x}})$$
 (ordre 4)

Exercice08

Calculer le développement limité en 0 à l'ordre 3 de la fonction f définie par

$$f(x) = (1+x)\frac{1}{\sin x}$$

Exercice09

Calculer le développement limité en 0 à l'ordre 2 de la fonction f définie par

$$f(x) = \frac{e^{e^x} - e^{e^{-x}}}{\ln(1+x)}$$

Exercice10

Calculer le développement limité en 0 à l'ordre 2 de la fonction f définie par

$$f(x) = \frac{e^{(\frac{1}{\cos x} + \frac{x^2}{\sin x})} - e}{\ln(1+x)}$$

Exercice11

Calculer le développement limité à l'ordre 3 en $\frac{\pi}{4}$ de la fonction $f(x) = (\tan x)^{\tan(2x)}$