Université Mohamed Boudiaf de Msila

Faculté de Technologie

Département de Génie Mécanique

Niveau: 2ième Année CM

Série de TD N° 1 (Matériaux composites)

Exercice 1

Exprimer la fraction volumique V_f de fibres d'un composite en fonction de la fraction massique P_f en faisant intervenir le rapport f/m des masses volumiques et le rapport $(1 - P_f)/P_f$ des fractions massiques de la matrice et des fibres.

Exercice 2

Tracer la courbe fraction volumique de fibres en fonction de la fraction massique de fibres pour des composites à fibres de verre ($\rho_f = 2500 \text{ kg/m}^3$), à fibres de carbone ($\rho_f = 1900 \text{ kg/m}^3$), de Kevlar ($\rho_f = 1500 \text{ kg/m}^3$), pour une même matrice ($\rho_m = 1200 \text{ kg/m}^3$).

Exercice 3

Une structure en composite doit être réalisée en un composite contenant une proportion \mathbf{V}_f en volume de fibres. La structure à réaliser possède un volume \mathbf{v}_c .

a- Calculer les masses de fibres et de matrice nécessaires.

Application : $V_f = 50\%$, $v_c = 0.01$ m³. Calculer les masses dans le cas des composites considérés dans *l'exercice 2*.