Table des matières

1	Dua	Dualité	
	1.1	Topologie faible	1
	1.2	Convergence faible	2
	1.3	Topologie faible étoile	3
	1.4	Espaces réflexifs	4
	1.5	Quelques exercices corrigés	5

Chapitre 1

Dualité

1.1 Topologie faible

Dans tout ce qui suit E sera un espace de Banach. On rappelle que E^* désigne le dual topologique de E; c'est- a-dire l'ensemble des formes linéaires continues sur E.

Définition 1.1.1 La topologie faible de E est la topologie la moins fine pour laquelle toutes les formes linéaires continues $\varphi \in E^*$ restent continues. On la note $\sigma(E, E^*)$, ou plus rapidement w.

Par définition, la topologie faible $\sigma(E,E^*)$ est moins fine que la topologie de la norme, c'est-à-dire que l'application identité

$$Id: (E, \|\cdot\|) \to (E, w)$$

est continue.

Les ouverts pour la topologie faible sont les réunions quelconques d'intersections finies d'ensembles du type $\varphi^{-1}(\mathcal{O})$ avec \mathcal{O} ouvert de \mathbb{R} (ou de \mathbb{C} si E est un e.v. sur \mathbb{C}). Etant donné que les intervalles ouverts constituent une base de voisinages pour \mathbb{R} , on en déduit le résultat suivant.

Bases de voisinages pour la topologie faible:

Tout voisinage de $x_0 \in E$ pour la topologie $\sigma(E, E^*)$ contient un ouvert du type

$$\bigcap_{i=1}^{N} \left\{ x \in E : \left| \varphi_i \left(x \right) - \varphi_i \left(x_0 \right) \right| < \varepsilon_i \right\}$$

avec $\varepsilon_i > 0$ et $\varphi_i \in E^*$.

On peut donc munir E de deux topologies sépar ees differentes :

- 1- La **topologie forte** associée a la norme de E,
- 2- La topologie faible notée $\sigma(E, E^*)$.

Par construction, la topologie $\sigma(E, E^*)$ est moins fine que la topologie forte : tout ouvert pour la topologie faible est un ouvert pour la topologie forte.

Remarque 1.1.1 & La topologie faible est séparée.

 \clubsuit Si dim $E < +\infty$, ces deux topologie coïncident.

1.2 Convergence faible

Soit $(x_n)_{n\geq 1}$ une suite d'éléments de E, et $x\in E$. On note

- \clubsuit Convergence forte : $x_n \to x$.
- \clubsuit Convergence faible : $x_n \rightharpoonup x$.

Proposition 1.2.1 La suite $(x_n)_{n\geq 1}$ converge vers x pour la topologie faible si et seulement si:

$$\varphi(x_n) \underset{n \to +\infty}{\longrightarrow} \varphi(x), \ \forall \varphi \in E^* = \mathcal{L}(E, \mathbb{R}).$$

On notera:

$$x_n \xrightarrow[n \to +\infty]{w} x$$
 ou $x_n \xrightarrow[n \to +\infty]{\sigma(E,E^*)} x$ ou encore $w - \lim_{n \to +\infty} x_n = x$.

Remarque 1.2.1 1- La limite faible d'une suite $(x_n)_{n\geq 1}$ existe, elle est unique

- 2- On appelle convergence forte la convergence au sens de la norme qui l'on note $x_n \to x$ $(\lim_{n \to +\infty} ||x_n x|| = 0)$
- 3- La convergence forte $(x_n \to x)$ implique la convergence faible $(x_n \xrightarrow{w} x)$ car

$$|\varphi(x_n) - \varphi(x)| = |\varphi(x_n - x)|$$

 $\leq ||\varphi|| ||x_n - x|| \to 0$

Exemple 1.2.1 Les théorèmes de représentation du dual pour les espaces de Hilbert et pour les espaces L^p donnent :

1- Si E = H est un espace de Hilbert, alors $x_n \xrightarrow[n \to +\infty]{w} x$ si et seulement si :

$$\langle x_n, y \rangle \underset{n \to +\infty}{\longrightarrow} \langle x, y \rangle, \ \forall y \in H$$

2- Soit (S, \mathcal{T}, μ) un espace mesuré. Pour 1 et pour <math>p = 1 lorsque μ est σ -finie, $f_n \xrightarrow[n \to +\infty]{w} f$ dans $L^p(\mu)$ si et seulement si :

$$\int_{\Omega} f_n g d\mu \underset{n \to +\infty}{\longrightarrow} \int_{\Omega} f g d\mu, \ \forall g \in L^q(\mu)$$

 $où \frac{1}{p} + \frac{1}{q} = 1.$

Proposition 1.2.2 Toute suite $(x_n)_{n\geq 1}$ faiblement convergente dans un espace de Banach est bornée. De plus, si la limite est x, on a $||x|| \leq \liminf_n ||x_n||$.

Proposition 1.2.3 Soit H un espace de Hilbert. Si l'on a les deux conditions suivantes :

- 1) $x_n \xrightarrow[n \to +\infty]{w} x$,
- $2)\lim_{n\to+\infty}||x_n||=||x||$

alors $\lim_{n\to+\infty} ||x_n - x|| = 0$ (if y a convergence en norme).

Pour l'espace $\mathcal{C}(K)$ des fonctions continues sur un compact K, on a le résultat suivant.

Proposition 1.2.4 Soit K un espace compact. Alors la suite $(f_n)_{n\geq 1}$ converge faiblement vers f dans C(K) si et seulement si :

1) la suite $(f_n)_{n\geq 1}$ est bornée dans C(K):

$$\exists M > 0 \quad ||f_n||_{\infty} \le M \quad \forall n \ge 1$$

2) cette suite converge simplement: $f_n(x) \underset{n \to +\infty}{\longrightarrow} f(x), \forall x \in K$.

1.3 Topologie faible étoile

Soit E un Banach. On sait que E^* est aussi un espace de Banach. On note E^{**} l'ensemble des formes linéaires continues sur E^* . C'est aussi un espace de Banach appelé bidual de E. On munit E^* par deux topologies:

- 1- La topologie forte associée à la norme de E^* ,
- 2- La topologie faible sur E^* , notée $\sigma(E^*, E^{**})$:

La deuxième topologie est en général strictement plus faible que la première : elle a moins d'ouverts et de fermés. On va définir maintenant une troisième topologie sur E^* : la topologie *-faible que l'on note $\sigma(E^*, E)$ ou plus simplement w^* . On dit aussi que c'est la topologie préfaible sur E^* . Pour chaque $x \in E$, on associe une forme linéaire J_E sur E^* en posant

$$J_E: X^* \to \mathbb{R}$$

$$f \to \varphi_x(f) = f(x).$$

On a pour tout $(x, f) \in E \times E^*$

$$|J_E(f)| = |f(x)| \le ||f||_{E^*} ||x||_E$$

On obtient J_E est une forme linéaire continue sur E^* et

$$||J_E||_{E^{**}} \le ||x||_E$$
.

En fait, par tle théorème de Hahn-Banach assure que

$$||J_E||_{E^{**}} = ||x||_E.$$

Définition 1.3.1 On appelle topologie *-faible, ou topologie weak-star sur E^* la topologie la moins fine rendant continues toutes les formes linéaires issues de X:

$$\tilde{x}: E^* \to \mathbb{R}$$

$$\varphi \to \tilde{x}(\varphi) = \varphi(x)$$

pour $x \in X$.

1.4 Espaces réflexifs

La topologie préfaible w^* coïncide avec la topologie faible w sur X^* si et seulement si les formes linéaires \tilde{x} , pour $x \in X$, composent l'ensemble des formes linéaires continues (en norme, ou pour la topologie faible) sur X^* ; en d'autres termes, si et seulement si l'injection canonique :

$$i: X \rightarrow X^{**}$$
 où $i(x): X^{*} \rightarrow \mathbb{R}$ $x \rightarrow i(x)$ où $\varphi \rightarrow i(x)(\varphi) = \varphi(x)$

est surjective.

Définition 1.4.1 On dit que l'espace de Banach E est réflexif si l'injection canonique :

$$i: X \rightarrow X^{**}$$

$$x \rightarrow \tilde{x} = i(x)$$

est surjective.

Exemple 1.4.1 1- Tout un espace de Hilbert (en particulier $L^{2}(\Omega), \ell_{2}$) est réflexif

- 2- Pour $1 , <math>L^p(\Omega)$ et ℓ_p sont réflexifs.
- 3- $L^{1}(\Omega)$, $L^{\infty}(\Omega)$, ℓ_{1} , ℓ_{∞} ne sont pas réflexifs.

Théorème 1.4.1 (Théorème de Kakutani [1940]). Un espace de Banach E est réflexif si et seulement si sa boule unité est faiblement compacte.

D'après le théorème précédent, on a les résultas:

- \clubsuit Pour tout espace de Hilbert H, la boule-unité B_H est faiblement compacte.
- ♣ Pour $1 , et toute mesure <math>\mu$, la boule-unité de $L^p(\mu)$ est faiblement compacte.

Corollaire 1.4.1 Pour tout espace de Banach E, on a :

$$E$$
 est réflexif $\Leftrightarrow E^*$ est réflexif.

Résultats importants

- 1- Si X est un espace de Banach séparable, alors de toute suite bornée $(\varphi_n)_n$ dans X^* , on peut extraire une sous-suite préfaiblement convergente.
- 2- Si X est un espace de Banach réflexif, alors de toute suite bornée $(x_n)_n$ dans X on peut extraire une sous-suite faiblement convergente.

1.5 Quelques exercices corrigés

Exercice 1.5.1 Soit X, Y deux espaces de Hilbert et $T \in \mathcal{L}(X, Y)$.

1) Par la définition de ||T||, montrer l'existence d'une suite normée $(x_n)_n$ (i.e. $||x_n|| = 1$ pour tout n) dans X telle que

$$||T|| = \lim_{n \to +\infty} ||T(x_n)||$$
 (1.5.1)

Dans la suite de l'exercice supposons que X et Y sont des espaces de Hilbert complexes.

2) Soit $(x_n)_n$ une suite normée de X faiblement convergente vers x. Établir l'égalité

$$\lim_{n \to +\infty} \|x_n - x\|^2 = 1 - \|x\|^2$$

- 3) Soit $T \in \mathcal{L}(X,Y)$ tel qu'aucun vecteur $x \in X$ normé ne vérifie ||T(x)|| = ||T|| (norme non atteinte).
- 3-a) Déduire l'existence d'une suite normée $(z_n)_n$ faiblement convergente et vérifier (1.5.1)
- 3-b) Montrer que toute telle suite converge faiblement vers zéro.

Solution 1.5.1 1)Par la définition de ||T||, on a

$$||T|| = \sup_{\|x\|=1} ||T(x)|| \Leftrightarrow \forall \varepsilon > 0, \exists x \in X \ tq \ ||x|| = 1 \ et \ ||T|| - \varepsilon < ||T(x_n)|| \le ||T||$$

Pour $\varepsilon = \frac{1}{n}$

$$||T|| = \sup_{\|x\|=1} ||T(x)|| \Leftrightarrow \forall n > 0, \exists x_n \in X \ tq \ ||x_n|| = 1 \ et \ ||T|| - \frac{1}{n} < ||T(x_n)|| \le ||T||$$

en passe a la limite

$$\lim_{n \to +\infty} \left(\|T\| - \frac{1}{n} \right) < \lim_{n \to +\infty} \|T(x_n)\| \le \lim_{n \to +\infty} \|T\| \Leftrightarrow \|T\| = \lim_{n \to +\infty} \|T(x_n)\|.$$

2) On a

$$||x_n - x||^2 = \langle x_n - x, x_n - x \rangle$$

$$= \langle x_n, x_n \rangle + \langle x, x \rangle - 2 \operatorname{Re} \langle x_n, x \rangle$$

$$= ||x_n||^2 + ||x||^2 - 2 \operatorname{Re} \langle x_n, x \rangle$$

Ce qui donne

$$\lim_{n \to +\infty} \|x_n - x\|^2 = \lim_{n \to +\infty} \|x_n\|^2 + \lim_{n \to +\infty} \|x\|^2 - 2\lim_{n \to +\infty} \operatorname{Re} \langle x_n, x \rangle = 1 - \|x\|^2$$

- 3) Comme $(x_n)_n$ une suite normée bornée, donc on peut extraire une sous suite normée $(z_n)_n$ soit faiblement convergente.
- 4) Supposons que $z_n \rightharpoonup z$, on a

$$||T(z_n) - T(z)||^2 = ||T(z_n - z)||^2 \le ||T||^2 ||z_n - z||^2$$

D'autre part

$$||T(z_n) - T(z)||^2 = \langle T(z_n) - T(z), T(z_n) - T(z) \rangle = ||T(z_n)||^2 + ||T(z)||^2 - 2\langle T(z_n), T(z) \rangle$$

donc

$$||T(z_n)||^2 + ||T(z)||^2 - 2\langle T(z_n), T(z)\rangle \le ||T||^2 ||z_n - z||^2$$

passant à la limite

$$\lim_{n \to +\infty} ||T(z_n)||^2 + \lim_{n \to +\infty} ||T(z)||^2 - 2\lim_{n \to +\infty} \langle T(z_n), T(z) \rangle \le ||T||^2 \lim_{n \to +\infty} ||z_n - z||^2$$

D'après (1.5.1) et la demande (2), on trouve

$$||T||^2 - ||T(z)||^2 \le ||T||^2 (1 - ||z||^2) \Leftrightarrow ||T(z)|| \ge ||T|| ||z||$$

d'où

$$||T(z)|| = ||T|| \, ||z||$$

 $si \ z \neq 0$, on pose $y = \frac{z}{\|z\|}$

$$||T(y||z||)|| = ||T|| ||z|| \Rightarrow ||T(y)|| = ||T||$$

contraduction car la norme est non atteinte.

forc'ement z = 0.