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Lecture 1 (S1) :  Basic concetpts of  Discrete Mahematics (part 1) 
 

I- Mathematics can be broadly classified into two categories : 

 Continuous Mathematics : It is based upon continuous number line or the real numbers. It is 
characterized by the fact that between any two numbers, there are almost always an infinite set of 
numbers. For example, a function in continuous mathematics can be plotted in a smooth curve without 
breaks. 

 Discrete Mathematics : It involves distinct values; i.e. between any two points, there are a countable 
number of points. For example, if we have a finite set of objects, the function can be defined as a list of 
ordered pairs having these objects, and can be presented as a complete list of those pairs. 

 

II- Topics in Discrete Mathematics: 
Although there cannot be a definite number of topics of Discrete Mathematics, the following topics are almost 
always covered in any study regarding this matter : 

 Sets, Relations and Functions 
 Mathematical Logic 
 Group theory 
 Counting Theory 
 Probability 
 Mathematical Induction and Recurrence Relations 
 Graph Theory 
 Trees (Mathematical sense) 
 Boolean and Many valued Algebra; ….. 

 

III- Some basic concepts of  Discrete Mahematics: 
1- Set :  A set is an unordered collection of different elements. A set can be written explicitly by listing its 

elements using set bracket. If the order of the elements is changed or any element of a set is repeated, it 
does not make any changes in the set. 

Some Example of Sets 
 A set of all positive integers 
 A set of all the planets in the solar system 
 A set of all the states in India 
 A set of all the lowercase letters of the alphabet 

Specification of sets: 
There are four main ways to specify a set:  
(1) by listing all its members (list notation);  
(2) by stating a property of its elements (predicate notation);  
(3) by defining a set of rules which generates (defines) its members (recursive rules).  
(4) by stating a characteristic (or indexing) function of its elements (membership function);  

 
The cardinal or the cardinality of a set S, denoted by |S|, is the number of its elements. The number is also referred 
as the cardinal number. If a set has an infinite number of elements, its cardinality is ∞. 
Finite set: A set which contains a finite number of elements is called a finite set.  
Infinite set: A set which contains infinite number of elements is called an infinite set. 
Subset: A set X is a subset of set Y (Written as X⊆Y) if every element of X is an element of set Y. 

Universal Set (universe set): It is a collection of all elements in a particular context or application. All the sets in 
that context or application are essentially subsets of this universal set.  

Empty Set or Null Set: An empty set contains no elements. It is denoted by ∅. As the number of elements in an 
empty set is finite, empty set is a finite set. The cardinality of empty set or null set is zero. 

Singleton set: Singleton set or unit set contains only one element. A singleton set is denoted by {s}{s}. 
Power set: Power set of a set S is the set of all subsets of S including the empty set. The cardinality of a power set 
of a set S of cardinality n is 2n. Power set is denoted as P(S). 
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Operations on Sets: 

 Inclusion : If all the elements of a set 
of B, and we write: A ⊆ B 

 Two sets A and B are said to be 
case, we simply write: A = B

 The intersection of two sets 
 The union of two sets A and 
 The difference of two sets A

relative complement of B in 
B, or sometimes A \ B. 

 The Symmetric difference of sets 
member of exactly one of A
instance, for the sets {1, 2, 3}
difference of the union and the intersection, 

 The set of elements that are 
sometimes AC, or ). 

 Cartesian product  of A and 
possible ordered pairs (a, b)
product of {1, 2} and {red, white} 

2- Relation: Whenever sets are being discussed, the relationship between the elements of the sets is the next thing 
that comes up. Relations may exist between objects of the same set or between objects of 
A binary relation R from a set X to a set Y (written as
the ordered pair of R is reversed, the relation also changes.
Generally an n-ary relation R between sets
If X=Y , then R is called a binary relation on X. If 

 The domain of R, denoted by Dom(R)
 The range of R, denoted by Rang(R),

Some properties of the relations on 
transitivity, …… . 
Particular classes of relations: oreder relaion, preorder relation, pseudo
equivalence relation, … . 
 
3- Function : A function or a mapping (defined as
elements of another set Y (X and Y are non
‘f’. Function ‘f’ is a relation on X and Y such that for each
is called pre-image and ‘Y’ is called image of function f.
one to many. 
A function f:A→B is surjective (onto) if the image of f equals its range. Equivalently, for every
some a∈A such that f(a)=b. This means that for any y in B, there exists some x in A such that
A function f:A→B is injective or one
that f(a)=b. This means a function f is injective if
A function f:A→B is bijective or one-

The inverse of a one-to-one corresponding function

property : f(x)=y⇔g(y)=x. The function f is called
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If all the elements of a set A are also elements of a set B, then we say that 

are said to be equal if and only if they have exactly the same elements. In this 
B 

of two sets A and B, written A ∩ B, is the set of elements that are in 
and B, written A ∪ B, is the set of elements that are in 

A and B (also known as the set-theoretic difference
in A) is the set of elements that are in A but not in

of sets A and B, denoted A △ B, is the set of all objects that are a 
A and B (elements which are in one of the sets, but not in both). For 

{1, 2, 3} and {2, 3, 4} , the symmetric difference set is 
difference of the union and the intersection, (A ∪ B) \ (A ∩ B) or (A \ B) ∪

set of elements that are not in a set A is called the complement 

and B, denoted A × B, is the set whose elements (or 
) where a is an element of A and b is an ele,ent

{1, 2} and {red, white} is {(1, red), (1, white), (2, red), (2, white)}.

Whenever sets are being discussed, the relationship between the elements of the sets is the next thing 
may exist between objects of the same set or between objects of 

from a set X to a set Y (written as xRy or R(x,y)) is a subset of the Cartesian product
is reversed, the relation also changes. 

R between sets A1,…, and An is a subset of the n-ary product
, then R is called a binary relation on X. If A1= A2…= An , then R is called an n-

Dom(R), is the set {x  | (x,y) ∈	R for some y inB}
Rang(R), is the set {y  | (x,y) ∈	R for some x inA}. 

 a set X: reflexivity, irreflexivity, symmetry, asymmetry

Particular classes of relations: oreder relaion, preorder relation, pseudo order relation, tolerance relation, 

A function or a mapping (defined as f: X→Y) is a relationship from elements of one set 
are non-empty sets). X is called Domain and Y is called Codomain of function 

’. Function ‘f’ is a relation on X and Y such that for each x∈X, there exists a unique y
image and ‘Y’ is called image of function f. A function can be one to one or many to one but n

(onto) if the image of f equals its range. Equivalently, for every
. This means that for any y in B, there exists some x in A such that

or one-to-one function if for every b∈B, there exists at most one
is injective if a1≠a2 implies f(a1)≠f(a2). 

-to-one correspondent if and only if f is both injective and surjective.

one corresponding function f:A→B, is the function g:B→

The function f is called invertible, if its inverse function g exists.
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, then we say that A is a subset 

if and only if they have exactly the same elements. In this 

, is the set of elements that are in A and in B. 
, is the set of elements that are in A or in B (or both). 

theoretic difference of A and B, or the 
but not in B. This is written A - 

, is the set of all objects that are a 
(elements which are in one of the sets, but not in both). For 

, the symmetric difference set is {1, 4} . It is the set 
∪ (B \ A). 
 of A. It is written A′ (or 

elements (or members) are all 
ele,ent of B. The cartesian 

is {(1, red), (1, white), (2, red), (2, white)}. 

Whenever sets are being discussed, the relationship between the elements of the sets is the next thing 
may exist between objects of the same set or between objects of two or more sets. 

) is a subset of the Cartesian product X×Y. If 

ary product A1×⋯×An    
-ary relation on X. 
} ; 
 
asymmetry , anti-symmetry, 

order relation, tolerance relation, 

) is a relationship from elements of one set X to 
is called Codomain of function 

y∈Y such that (x,y)∈R. ‘X’ 
A function can be one to one or many to one but not 

(onto) if the image of f equals its range. Equivalently, for every b∈B, there exists 
. This means that for any y in B, there exists some x in A such that y=f(x). 

, there exists at most one a∈A such 

injective and surjective. 

→A, holding the following 

, if its inverse function g exists. 
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Lecture 2 (S1) :  Basic concetpts of  Discrete Mahematics (part 2) 
 

4- Graph:  The graph theory is the study of graphs, which are mathematical structures used to model pairwise 
relations between objects. A graph in this context is made up of vertices, nodes, or points which are connected 
by edges, arcs, or lines. A graph may be undirected, meaning that there is no distinction between the two vertices 
associated with each edge, or its edges may be directed from one vertex to another; see Graph (discrete 
mathematics) for more detailed definitions and for other variations in the types of graph that are commonly 
considered. Graphs are one of the prime objects of study in discrete mathematics. 

 A graph is an ordered pair G = (V, E) comprising a  set  V  of  vertices  or  nodes  or  points  together with a 
set E of edges or arcs or lines, which are 2-element subsets of V (i.e. an edge is associated with two vertices, 
and that association takes the form of the unordered pair comprising those two vertices). To avoid 
ambiguity, this type of graph may be described precisely as undirected and simple. 

 The vertices belonging to an edge are called the ends or end vertices of the edge. A vertex may exist in a graph and 
not belong to an edge.  

V and E are usually taken to be finite, and many of the well-known results are not true (or are rather different) for 
infinite graphs because many of the arguments fail in the infinite case. The order of a graph is |V|, its number of 
vertices. The size of a graph is |E|, its number of edges. The degree or valency of a vertex is the number of edges 
that connect to it, where an edge that connects a vertex to itself (a loop) is counted twice. 

 

5- Number Theory: number theory, or in older term “arithmetic”, is a branch of pure 
mathematics devoted primarily to the study of the integers. It is sometimes called "The Queen of 
Mathematics" because of its foundational place in the discipline. Prime numbers ( A prime number is a 
number p whose only factors are 1 and p)  and prime factorization are especially important in number 
theory, as well as the properties of objects made by the integers (e.g., rational numbers) or defined as 
generalizations of the integers, e.g., algebraic integers (algebraic numbers). 

Here are some familiar and not-so-familiar examples:  

odd 1, 3, 5, 7, 9, 11, . . .     even 2, 4, 6, 8, 10, . . .    square 1, 4, 9, 16, 25, 36, . . .  cube 1, 8, 27, 64, 125, . 
. .   prime 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .    composite 4, 6, 8, 9, 10, 12, 14, 15,  . . .   1 (modulo 
4) 1, 5, 9, 13, 17, 21, 25, . . .    3 (modulo 4) 3, 7, 11, 15, 19, 23,  . . .    triangular 1, 3, 6, 10, 15, 21, . . .   
perfect 6, 28, 496, . . .  Fibonacci 1, 1, 2, 3, 5, 8, 13, 21, . . . 

Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). 
Questions in number theory are often best understood through the study of analytical objects (e.g., 
the Riemann zeta function) that encode properties of the integers, primes or other number-theoretic 
objects in some fashion (analytic number theory). One may also study real numbers in relation to rational 
numbers, e.g., as approximated by the latter (Diophantine approximation). 

An algebraic number is any complex number that is a solution to some polynomial equation f(x)=0  with 
rational coefficients; for example, every solution x of x3 +(11/5)x2 +9=0  is an algebraic number. Fields 
of algebraic numbers are also called algebraic number fields, or shortly number fields. Algebraic number 
theory studies algebraic number fields.  Thus, analytic and algebraic number theory can and do overlap: 
the former is defined by its methods, the latter by its objects of study. 
 

6- Algebraic curve:  an algebraic curve over a field K is an equation of the form f(x,y) = 0 , where f(x,y) 
is a polynomial in x and y with coefficients in K. In other words: is the set of points on the Euclidean 
plane whose coordinates are zeros of some polynomial of two variables. A nonsingular algebraic curve is 
an algebraic curve over K which has no singular points over K. A point on an algebraic curve is simply a 
solution of the equation of the curve. A K-rational point is a point (x,y) on the curve, where x and y are in 
the field K. 
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Above we have considered curves defined over a field K. If the coefficients of the defining equation of 
the curve are in R, we shall call real (algebraic) curves. When the coefficients of the defining equation are 
in C we speak of a complex (algebraic) curve.  
 

7- Combinatorics: is the mathematics of counting and arranging. Of course, most people know how to 
count, but combinatorics is often concerned with how things are arranged. In this context, 
an arrangement is a way of objects could be grouped. 
 

8- Permutation: a permutation is an arrangement of objects with regard to order. For a given finite set S. 
A permutation of S is a one-to-one mapping of S onto itself.   
To specify a particular permutation we list the elements of A and, under them, show where each element 
is sent by the one-to-one mapping. For example, if A = {a, b, c} a possible permutation σ would be σ 

=�
�		�		�
�		�		�

�. By the permutation σ,  a is sent to b,   b is sent to c, and c is sent to a. The condition that the 

mapping be one-to-one means that no two elements of A are sent  by the mapping  into the same element 
of A. 
 

If S is a set of n distinct objects, then the number of permutations of those objects is �! (n factorial) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Université de  M'sila                                                        
Département de Mathématiques                                             
Matière : Anglais (Master 1 – S1) ,   Spécialité
 

 
Lecture 3 (S1)  :  Finite Fields

1- Finite Fields :  A finite field

that contains a finite number of elements
of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most 
common examples of finite fields are given by the 

     A finite field is a finite set on which the four operations multiplication, addition, subtraction and 

division (excluding division by zero) are defined, satisfying the rules of arithmetic known as the 

field axioms. The simplest examples of finite fields are the 

the field GF(p) (also denoted Z/p

integers modulo p.  

     The elements of a prime field may be represented by integers in the range 

the difference and the product are computed by taking the 

The multiplicative inverse of an element may be computed by using the extended Euclidean 

algorithm (see Extended Euclidean algorithm §

      The number of elements of a finite field is called its 

if the order q is a prime power pk
 (where 

given order are isomorphic. In a field of order 

that is, the characteristic of the field is 

     In a finite field of order q, the polynomial

non-zero elements of a finite field form a 

elements can be expressed as powers of a single element called a 

there will be several primitive elements for a given field.)

       A field has, by definition, a commutative multiplication operation. A

that satisfies all the other axioms of a field but isn't required to have a commutative multiplication is 

called a division ring (or sometimes 

little theorem. This result shows that the finiteness condition in the definition 

algebraic consequences. 
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Fields,  Polynomial. 

finite field or Galois field (so-named in honor of Évariste Galois

elements. As with any field, a finite field is a set
ication, addition, subtraction and division are defined and satisfy certain basic rules. The most 

common examples of finite fields are given by the integers mod p when p is a prime number.

A finite field is a finite set on which the four operations multiplication, addition, subtraction and 

division (excluding division by zero) are defined, satisfying the rules of arithmetic known as the 

. The simplest examples of finite fields are the prime fields: for each 

pZ, , or Fp) of order (that is, size) p is easily constructed as the 

The elements of a prime field may be represented by integers in the range 

the difference and the product are computed by taking the remainder by 

The multiplicative inverse of an element may be computed by using the extended Euclidean 

Extended Euclidean algorithm § Modular integers). 

The number of elements of a finite field is called its order. A finite field of order 

(where p is a prime number and k is a positive integer). All fields of a 

. In a field of order pk
, adding p copies of any element always results in zero; 

of the field is p. 

polynomial Xq − X has all q elements of the finite field as 

zero elements of a finite field form a multiplicative group. This group is 

elements can be expressed as powers of a single element called a primitive element

there will be several primitive elements for a given field.) 

A field has, by definition, a commutative multiplication operation. A more general algebraic structure 

that satisfies all the other axioms of a field but isn't required to have a commutative multiplication is 

(or sometimes skewfield). A finite division ring is a finite field by 

. This result shows that the finiteness condition in the definition of a finite field can have 

                     Prof. L. Zedam 

  

Évariste Galois) is a field  

set on which the operations 
ication, addition, subtraction and division are defined and satisfy certain basic rules. The most 

ime number. 

A finite field is a finite set on which the four operations multiplication, addition, subtraction and 

division (excluding division by zero) are defined, satisfying the rules of arithmetic known as the 

: for each prime number p, 

is easily constructed as the 

The elements of a prime field may be represented by integers in the range 0, ..., p − 1. The sum, 

by p of the integer result. 

The multiplicative inverse of an element may be computed by using the extended Euclidean 

eld of order q exists if and only 

ositive integer). All fields of a 

copies of any element always results in zero; 

elements of the finite field as roots. The 

. This group is cyclic, so all non-zero 

primitive element of the field (in general 

more general algebraic structure 

that satisfies all the other axioms of a field but isn't required to have a commutative multiplication is 

). A finite division ring is a finite field by Wedderburn's 

of a finite field can have 
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Finite fields are fundamental in a number of areas of mathematics and computer science, including 

Number theory, Algebraic geometry

2- Polynomial: In mathematics

coefficients which only employs the operations of 

integer exponents. An example of a polynomial of a single variable 

three variables is x3 + 2xyz2 − yz + 1

Defenition : A polynomial is an expression

indeterminates or variables by means of 

negative power. Two such expressions that may be transformed, one to the other, by applying the 

usual properties of commutativity

are considered as defining the same polynomial.

A polynomial in a single indeterminate 

where are constants and 

does not represent any value, although 

associates the result of this substitution to the substituted value is a 

function. 

This can be expressed more concisely by using 

 

The word polynomial joins two diverse roots, the Greek 

nomen, or name. It was derived from the term 

Greek poly-. The word polynomial

      Polynomials appear in a wide variety of areas of mathematics and science. For example, they are used 

to form polynomial equations, which encode a wide range of problems, from elementary 

to complicated problems in the sciences; they are use

settings ranging from basic chemistry

calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials 

are used to construct polynomial rings

geometry. 
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Finite fields are fundamental in a number of areas of mathematics and computer science, including 

Algebraic geometry, Galois theory, Finite geometry, Cryptography

mathematics, a polynomial is an expression consisting of 

which only employs the operations of addition, subtraction, multiplication

. An example of a polynomial of a single variable x is x2 − 4

+ 1. 

expression that can be built from constants and symbols called 

indeterminates or variables by means of addition, multiplication and exponentiation

power. Two such expressions that may be transformed, one to the other, by applying the 

commutativity, associativity and distributivity of addition and multiplication 

idered as defining the same polynomial. 

A polynomial in a single indeterminate x can always be written (or rewritten) in the form

 

are constants and is the indeterminate. The word "indeterminate" means that 

does not represent any value, although any value may be substituted for it. The mapping that 

associates the result of this substitution to the substituted value is a function, called a 

This can be expressed more concisely by using summation notation: 

joins two diverse roots, the Greek poly, meaning "many," and the Latin 

, or name. It was derived from the term binomial by replacing the Latin root 

polynomial was first used in the 17th century. 

Polynomials appear in a wide variety of areas of mathematics and science. For example, they are used 

, which encode a wide range of problems, from elementary 

to complicated problems in the sciences; they are used to define polynomial functions

chemistry and physics to economics and social science

to approximate other functions. In advanced mathematics, polynomials 

polynomial rings and algebraic varieties, central concepts in 
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Finite fields are fundamental in a number of areas of mathematics and computer science, including 

Cryptography and Coding theory. 

consisting of variables and  

multiplication, and non-negative 

− 4x + 7. An example in 

and symbols called 

exponentiation to a non-

power. Two such expressions that may be transformed, one to the other, by applying the 

of addition and multiplication 

can always be written (or rewritten) in the form 

is the indeterminate. The word "indeterminate" means that 

any value may be substituted for it. The mapping that 

, called a polynomial 

, meaning "many," and the Latin 

by replacing the Latin root bi- with the 

Polynomials appear in a wide variety of areas of mathematics and science. For example, they are used 

, which encode a wide range of problems, from elementary word problems 

polynomial functions, which appear in 

social science; they are used in 

to approximate other functions. In advanced mathematics, polynomials 

, central concepts in algebra and algebraic 
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Lecture 4 (S1)  :  Groups and Rings. 
 

1- Groups: In mathematics, a group is an algebraic structure consisting of a set of elements equipped with an 

operation that combines any two elements to form a third element. The operation satisfies four conditions called the 

group axioms, namely closure, associativity, identity and invertibility. One of the most familiar examples of a 

group is the set of integers together with the addition operation, but the abstract formalization of the group axioms, 

detached as it is from the concrete nature of any particular group and its operation, applies much more widely. It 

allows entities with highly diverse mathematical origins in abstract algebra and beyond to be handled in a flexible 

way while retaining their essential structural aspects. The ubiquity of groups in numerous areas within and outside 

mathematics makes them a central organizing principle of contemporary mathematics. 

 

Definition. A group is a set, G, together with an operation • (called the group law of G) that combines any two 

elements a and b to form another element, denoted a • b or ab. To qualify as a group, the set and operation, (G, •), 

must satisfy four requirements known as the group axioms:[5] 

Closure: For all a, b in G, the result of the operation, a • b, is also in G.  

Associativity: For all a, b and c in G, (a • b) • c = a • (b • c). 

Identity element: There exists an element e in G, such that for every element a in G, the equation e • a = a • e = a 

holds. Such an element is unique (see below), and thus one speaks of the identity element. 

Inverse element: For each a in G, there exists an element b in G such that a • b = b • a = e, where e is the identity 

element. 

 

Elementary consequences of the group axioms: Basic facts about all groups that can be obtained directly from 
the group axioms are commonly subsumed under elementary group theory.[24] For example, repeated applications 
of the associativity axiom show that the unambiguity of a • b • c = (a • b) • c = a • (b • c) generalizes to more than 
three factors. Because this implies that parentheses can be inserted anywhere within such a series of terms, 
parentheses are usually omitted.  
 
Uniqueness of identity element and inverses: Two important consequences of the group axioms are the 
uniqueness of the identity element and the uniqueness of inverse elements. There can be only one identity element 
in a group, and each element in a group has exactly one inverse element. Thus, it is customary to speak of the 
identity, and the inverse of an element.  
To prove the uniqueness of an inverse element of a, suppose that a has two inverses, denoted b and c, in a group 
(G, •). Then 

b = b • e      as e is the identity element 

 
= b • (a • c)      because c is an inverse of a, so e = a • c 

 
= (b • a) • c      by associativity, which allows to rearrange the parentheses 

 
= e • c      since b is an inverse of a, i.e. b • a = e 

 
= c      for e is the identity element 

The two extremal terms b and c are equal, since they are connected by a chain of equalities. In other words, there is 
only one inverse element of a. Similarly, to prove that the identity element of a group is unique, assume G is a 
group with two identity elements e and f. Then e = e • f = f, hence e and f are equal. 
 
Division: In groups, the invertibility of the group action means that division is possible: given elements a and b of 
the group G, there is exactly one solution x in G to the equation x • a = b. In fact, right multiplication of the 
equation by a−1 gives the solution x = x • a • a−1 = b • a−1. Similarly there is exactly one solution y in G to the 
equation a • y = b, namely y = a−1 • b. If the • operation is commutative, we get that x = y. If not, x may be different 
from y. 
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2- Rings: Rings are one of the fundamental algebraic structures used in abstract algebra. It consists of a set 

equipped with two binary operations that generalize the arithmetic operations of addition and multiplication. 

Through this generalization, theorems from arithmetic are extended to non-numerical objects such as polynomials, 

series, matrices and functions. 

Definition. A ring is a set R equipped with binary operations[1] + and · satisfying the following three sets of 

axioms, called the ring axioms. 

1. R is an abelian group under addition, meaning that 

 (a + b) + c = a + (b + c) for all a, b, c in R (+ is associative). 

 a + b = b + a for all a, b in R (+ is commutative). 

 There is an element 0 in R such that a + 0 = a for all a in R (0 is the additive identity). 

 For each a in R there exists −a in R such that a + (−a) = 0 (−a is the additive inverse of a). 

2. R is a monoid under multiplication, meaning that: 

 (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) for all a, b, c in R (⋅ is associative). 

 There is an element 1 in R such that a ⋅ 1 = a and 1 ⋅ a = a for all a in R (1 is the multiplicative 

identity).[5] 

3. Multiplication is distributive with respect to addition: 

 a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c) for all a, b, c in R (left distributivity). 

 (b + c) ⋅ a = (b ⋅ a) + (c ⋅ a) for all a, b, c in R (right distributivity). 

The conceptualization of rings started in the 1870s and completed in the 1920s. Key contributors include Dedekind, 

Hilbert, Fraenkel, and Noether. 

 

Dedekind: The study of rings originated from the theory of polynomial rings and the theory of algebraic integers.[7] 

In 1871, Richard Dedekind defined the concept of the ring of integers of a number field.[8] In this context, he 

introduced the terms "ideal" (inspired by Ernst Kummer's notion of ideal number) and "module" and studied their 

properties. But Dedekind did not use the term "ring" and did not define the concept of a ring in a general setting. 
 

Hilbert: The term "Zahlring" (number ring) was coined by David Hilbert in 1892 and published in 1897.[9] In 19th 

century German, the word "Ring" could mean "association", which is still used today in English in a limited sense 

(e.g., spy ring),[10] so if that were the etymology then it would be similar to the way "group" entered mathematics 

by being a non-technical word for "collection of related things". According to Harvey Cohn, Hilbert used the term 

for a ring that had the property of "circling directly back" to an element of itself.[11] Specifically, in a ring of 

algebraic integers, all high powers of an algebraic integer can be written as an integral combination of a fixed set of 

lower powers, and thus the powers "cycle back". For instance, if a3 − 4a + 1 = 0 then a3 = 4a − 1, a4 = 4a2 − a, a5 = 

−a2 + 16a − 4, a6 = 16a2 − 8a + 1, a7 = −8a2 + 65a − 16, and so on; in general, an is going to be an integral linear 

combination of 1, a, and a2. 
 

Fraenkel and Noether: The first axiomatic definition of a ring was given by Adolf Fraenkel in 1914,[12][13] but his 

axioms were stricter than those in the modern definition. For instance, he required every non-zero-divisor to have a 

multiplicative inverse.[14] In 1921, Emmy Noether gave the modern axiomatic definition of (commutative) ring and 

developed the foundations of commutative ring theory in her monumental paper Idealtheorie in Ringbereichen.[15] 

 

 


