
C H 0 1 : I N T R O D U C T I O N
TO A LG O R I T H M S

By Dr. LOUNNAS Bilal

contents
1 Contents of this course 1

2 Basics of algorithms 2

2.1 What is algorithms? . 2

2.2 Why should we care? . 3

2.3 History of algorithmic . 4

2.4 Definition of algorithmic 4

3 Moving forward with algorithmics 5

3.1 How to write an algorithm? 5

3.2 Become a good algorithmic designer 6

3.3 Characteristics of algorithms 8

4 Classification 8

4.1 By implementation . 8

4.2 By design paradigm . 10

4.3 Optimization problems . 11

4.4 By field of study . 12

4.5 By complexity . 12

list of figures
Figure 1 Rubik’s Cubes . 4

Figure 2 Flow chart of an algorithm (Euclid’s algorithm) . 5

Figure 3 Multiple solution for one problem 7

Figure 4 A model set of the Tower of Hanoi (with 8 disks) 8

list of tables

1 contents of this course
Advanced Algorithms

1

basics of algorithms 2

This course is a first-year of Master degree (SIGL). Emphasis is
placed on fundamental algorithms and advanced methods of algorith-
mic design, analysis, and implementation. Subjects to be covered in-
clude basices of algorithms, analysing algorithms which include how
to calculate complexity and classification of problems, data structures,
recursions methods, and other advanceds algorithms such as sorting,
graphs, hashage, text...etc.

The course will be divided into four (4) chapters

Ch 01 Introduction of algorithms: This chapter contains some defi-
nitions and basics of algorithms in computer science
- This chapter will take between 2 and 4 sessions.
Ch 02 Algorithms analysis: This chapter contains some definitions
and basics of algorithms analysis, it also talk about algorithm com-
plexity, and different class of problems... ext
- This chapter will take between 2 and 4 sessions.
Ch 03 Review of algorithmic techniques and data structures: This
chapter will recall some techniques such as recursion, and we will talk
about basic data structures such as pointer, table, list, ...ext
- This chapter will take between 2 and 4 sessions.
Ch 04 Advanced techniques in algorithms: This chapter will focus on
the advenced techniques of some well known algorithms in differents
areas such sorting, hashage, text, graphs
- This chapter will take between 2 and 4 sessions.

2 basics of algorithms
2.1 What is algorithms?

To make a computer do anything, you have to write a computer pro-
gram. To write a computer program, you have to tell the computer,
step by step, exactly what you want it to do. The computer then "ex-
ecutes" the program, following each step mechanically, to accomplish
the end goal.

When you are telling the computer what to do, you also get to
choose how it’s going to do it. That’s where computer algorithms
come in. The algorithm is the basic technique used to get the job done.

Let’s say that you have a friend arriving at the airport, and your
friend needs to get from the airport to your house. Here are four
different algorithms that you might give your friend for getting to your
home:
The taxi algorithm:

• Go to the taxi stand.

• Get in a taxi.

• Give the driver my address.

basics of algorithms 3

The call-me algorithm:

• When your plane arrives, call my cell phone.

• Meet me outside baggage claim.

The rent-a-car algorithm:

• Take the shuttle to the rental car place.

• Rent a car.

• Follow the directions to get to my house.

The bus algorithm:

• Outside baggage claim, catch bus number 70.

• Transfer to bus 14 on Main Street.

• Get off on Elm street.

• Walk two blocks north to my house.

All four of these algorithms accomplish exactly the same goal, but
each algorithm does it in completely different way. Each algorithm
also has a different cost and a different travel time. Taking a taxi, for
example, is probably the fastest way, but also the most expensive. Tak-
ing the bus is definitely less expensive, but a whole lot slower. You
choose the algorithm based on the circumstances.

In computer programming, there are often many different ways –
algorithms – to accomplish any given task. Each algorithm has advan-
tages and disadvantages in different situations.

2.2 Why should we care?

Imagine for a second you have two Rubik’s Cubes (Figure 1 on the fol-
lowing page) sitting out in front of you. One of them you are allowed
to use algorithms (like how many times or which direction to turn a
face), and the other you have to find your own way.

Which way will be faster?

Almost certainly the the first way. There are already hundreds of
well-established algorithms to solve a Rubik’s cube, and trying to in-
vent your own method to solve it will take much longer than utilizing
the current ones. Worse than that, it is most likely that the method you
choose will be less efficient and slower than the methods that already
exist. But imagine that there are no well-established algorithms to
solve Rubik’s cube problem yet, however, your algorithm with its bad
performance will be counted as the first well-established algorithm for
solving cube problem no matter how good this algorithm is.

basics of algorithms 4

Figure 1: Rubik’s Cubes

2.3 History of algorithmic

Etymologically, the word “algorithm” is a combination of the Latin
word algorismus, named after Al-Khwarizmi, a 9th-century Persian
mathematician, and the Greek word arithmos, meaning "number". In
English, it was first used in about 1230 and then by Chaucer in 1391.
English adopted the French term, but it wasn’t until the late 19th cen-
tury that "algorithm" took on the meaning that it has in modern En-
glish.

Another early use of the word is from 1240, in a manual titled Car-
men de Algorismo composed by Alexandre de Villedieu.

2.4 Definition of algorithmic

An informal definition could be "a set of rules that precisely defines a
sequence of operations." which would include all computer programs,
including programs that do not perform numeric calculations. Gener-
ally, a program is only an algorithm if it stops eventually.

An algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set
of values, as output. An algorithm is thus a sequence of computational
steps that transform the input into the output.

Algorithm is a step-by-step procedure, which defines a set of instruc-
tions to be executed in a certain order to get the desired output. Al-
gorithms are generally created independent of underlying languages,
i.e. an algorithm can be implemented in more than one programming

moving forward with algorithmics 5

language.

A prototypical example of an algorithm is the Euclidean algorithm
to determine the maximum common divisor of two integers; an exam-
ple (there are others) is described by the flow chart (Figure 2)

Figure 2: Flow chart of an algorithm (Euclid’s algorithm)

3 moving forward with algorithmics
3.1 How to write an algorithm?

There are no well-defined standards for writing algorithms. Rather, it
is problem and resource dependent. Algorithms are never written to
support a particular programming code.

As we know that all programming languages share basic code con-
structs like loops (do, for, while), flow-control (if-else), etc. These com-

moving forward with algorithmics 6

mon constructs can be used to write an algorithm.

We write algorithms in a step-by-step manner, but it is not always
the case. Algorithm writing is a process and is executed after the prob-
lem domain is well-defined. That is, we should know the problem
domain, for which we are designing a solution.

Example
Let’s try to learn algorithm-writing by using an example. Problem -
Design an algorithm to add two numbers and display the result.

Algorithms tell the programmers how to code the program. Alterna-
tively, the algorithm can be written as :

In design and analysis of algorithms, usually the second method is
used to describe an algorithm. It makes it easy for the analyst to ana-
lyze the algorithm ignoring all unwanted definitions. He can observe
what operations are being used and how the process is flowing.

Writing step numbers, is optional.

We design an algorithm to get a solution of a given problem. A prob-
lem can be solved in more than one ways (Figure ?? on the following
page) .

3.2 Become a good algorithmic designer

Algorithms are not a special type of operation, necessarily. They are
conceptual, a set of steps that you take in code to reach a specific goal.

moving forward with algorithmics 7

Figure 3: Multiple solution for one problem

For that : There is no better way to become a better al-
gorithm designer than to have a deep understanding and
appreciation for algorithms..

So, how can you become a good algorithmic design?

1. Know your input: One of the main principles of algorithmic
design is to, if possible, build your algorithm in such a way that
the input itself does some of the work for you. For instance, if
you know that your input is always going to be numbers, you do
not need to have exceptions/checks for strings.

2. Understand your tools: Understanding your tools means that
you understand what each line of code does, both immediately
(the return value of a function or the effect of a method) and
implicitly (how much overhead is associated with running a li-
brary function, or which is the most efficient method for con-
catenating a string). To write great algorithms, it is important
to know the performance of lower-level functions or utilities, not
just the name and implementation of them. Understand the En-
vironment

3. Understand the environment: Designing efficient algorithms
is a full-engagement undertaking. Beyond understanding your
tools as a standalone piece, you must also understand the way
that they interact with the larger system at hand.

4. Reducing the workload: In general, the goal of algorithm de-
sign is to complete a job in fewer steps. When you write your
code, take into consideration all of the simple operations the com-
puter is taking to reach the goal.

5. Study Advanced Techniques: There is no better way to become
a better algorithm designer than to have a deep understanding
and appreciation for algorithms.

classification 8

3.3 Characteristics of algorithms

Not all procedures can be called an algorithm. An algorithm should
have the following characteristics :

1. Unambiguous: Algorithm should be clear and unambiguous.
Each of its steps (or phases), and their inputs/outputs should be
clear and must lead to only one meaning.

2. Input: An algorithm should have 0 or more well-defined inputs.

3. Output: An algorithm should have 1 or more well-defined out-
puts, and should match the desired output.

4. Finiteness: Algorithms must terminate after a finite number of
steps.

5. Feasibility: Should be feasible with the available resources.

6. Independent: An algorithm should have step-by-step directions,
which should be independent of any programming code.

4 classification
There are various ways to classify algorithms, each with its own merits.

4.1 By implementation

One way to classify algorithms is by implementation means.

4.1.1 Recursion

A recursive algorithm is one that invokes (makes reference to) itself
repeatedly until a certain condition (also known as termination con-
dition) matches, which is a method common to functional program-
ming. Iterative algorithms use repetitive constructs like loops and
sometimes additional data structures like stacks to solve the given
problems. Some problems are naturally suited for one implementa-
tion or the other. For example, towers of Hanoi (Figure ??) is well
understood using recursive implementation. Every recursive version
has an equivalent (but possibly more or less complex) iterative version,
and vice versa.

Figure 4: A model set of the Tower of Hanoi (with 8 disks)

classification 9

4.1.2 Logical

An algorithm may be viewed as controlled logical deduction. This
notion may be expressed as: Algorithm = logic + control. The logic
component expresses the axioms that may be used in the computation
and the control component determines the way in which deduction
is applied to the axioms. This is the basis for the logic programming
paradigm. In pure logic programming languages the control compo-
nent is fixed and algorithms are specified by supplying only the logic
component. The appeal of this approach is the elegant semantics: a
change in the axioms has a well-defined change in the algorithm.

4.1.3 Serial, parallel or distributed

Algorithms are usually discussed with the assumption that computers
execute one instruction of an algorithm at a time. Those computers are
sometimes called serial computers. An algorithm designed for such an
environment is called a serial algorithm, as opposed to parallel algo-
rithms or distributed algorithms. Parallel algorithms take advantage of
computer architectures where several processors can work on a prob-
lem at the same time, whereas distributed algorithms utilize multiple
machines connected with a network. Parallel or distributed algorithms
divide the problem into more symmetrical or asymmetrical subprob-
lems and collect the results back together. The resource consumption
in such algorithms is not only processor cycles on each processor but
also the communication overhead between the processors. Some sort-
ing algorithms can be parallelized efficiently, but their communication
overhead is expensive. Iterative algorithms are generally parallelizable.
Some problems have no parallel algorithms, and are called inherently
serial problems.

4.1.4 Deterministic or non-deterministic

Deterministic algorithms solve the problem with exact decision at ev-
ery step of the algorithm whereas non-deterministic algorithms solve
problems via guessing although typical guesses are made more accu-
rate through the use of heuristics.

4.1.5 Exact or approximate

While many algorithms reach an exact solution, approximation algo-
rithms seek an approximation that is closer to the true solution. Ap-
proximation can be reached by either using a deterministic or a ran-
dom strategy. Such algorithms have practical value for many hard
problems. One of the examples of an approximate algorithm is the
Knapsack problem. The Knapsack problem is a problem where there
is a set of given items. The goal of the problem is to pack the knapsack
to get the maximum total value. Each item has some weight and some
value. Total weight that we can carry is no more than some fixed num-
ber X. So, we must consider weights of items as well as their value.

classification 10

4.1.6 Quantum algorithm

They run on a realistic model of quantum computation. The term is
usually used for those algorithms which seem inherently quantum, or
use some essential feature of quantum computation such as quantum
superposition or quantum entanglement.

4.2 By design paradigm

Another way of classifying algorithms is by their design methodology
or paradigm. There is a certain number of paradigms, each different
from the other. Furthermore, each of these categories include many
different types of algorithms. Some common paradigms are:

4.2.1 Brute-force or exhaustive search

This is the naive method of trying every possible solution to see which
is best.

4.2.2 Divide and conquer

A divide and conquer algorithm repeatedly reduces an instance of a
problem to one or more smaller instances of the same problem (usually
recursively) until the instances are small enough to solve easily. One
such example of divide and conquer is merge sorting. Sorting can be
done on each segment of data after dividing data into segments and
sorting of entire data can be obtained in the conquer phase by merging
the segments. A simpler variant of divide and conquer is called a
decrease and conquer algorithm, that solves an identical subproblem
and uses the solution of this subproblem to solve the bigger problem.
Divide and conquer divides the problem into multiple subproblems
and so the conquer stage is more complex than decrease and conquer
algorithms. An example of decrease and conquer algorithm is the
binary search algorithm.

4.2.3 Search and enumeration

Many problems (such as playing chess) can be modeled as problems
on graphs. A graph exploration algorithm specifies rules for moving
around a graph and is useful for such problems. This category also
includes search algorithms, branch and bound enumeration and back-
tracking.

4.2.4 Randomized algorithm

Such algorithms make some choices randomly (or pseudo-randomly).
They can be very useful in finding approximate solutions for problems
where finding exact solutions can be impractical (see heuristic method
below). For some of these problems, it is known that the fastest ap-
proximations must involve some randomness. Whether randomized
algorithms with polynomial time complexity can be the fastest algo-
rithms for some problems is an open question known as the P versus
NP problem. There are two large classes of such algorithms:

classification 11

4.2.5 Reduction of complexity

This technique involves solving a difficult problem by transforming it
into a better known problem for which we have (hopefully) asymptot-
ically optimal algorithms. The goal is to find a reducing algorithm
whose complexity is not dominated by the resulting reduced algo-
rithm’s. For example, one selection algorithm for finding the median
in an unsorted list involves first sorting the list (the expensive portion)
and then pulling out the middle element in the sorted list (the cheap
portion). This technique is also known as transform and conquer.

4.3 Optimization problems

For optimization problems there is a more specific classification of al-
gorithms; an algorithm for such problems may fall into one or more
of the general categories described above as well as into one of the
following:

4.3.1 Linear programming

When searching for optimal solutions to a linear function bound to
linear equality and inequality constraints, the constraints of the prob-
lem can be used directly in producing the optimal solutions. There
are algorithms that can solve any problem in this category, such as the
popular simplex algorithm. Problems that can be solved with linear
programming include the maximum flow problem for directed graphs.
If a problem additionally requires that one or more of the unknowns
must be an integer then it is classified in integer programming. A
linear programming algorithm can solve such a problem if it can be
proved that all restrictions for integer values are superficial, i.e., the
solutions satisfy these restrictions anyway. In the general case, a spe-
cialized algorithm or an algorithm that finds approximate solutions is
used, depending on the difficulty of the problem.

4.3.2 Dynamic programming

When a problem shows optimal substructures meaning the optimal
solution to a problem can be constructed from optimal solutions to
subproblems and overlapping subproblems, meaning the same sub-
problems are used to solve many different problem instances, a quicker
approach called dynamic programming avoids recomputing solutions
that have already been computed. For example, FloydWarshall algo-
rithm, the shortest path to a goal from a vertex in a weighted graph can
be found by using the shortest path to the goal from all adjacent ver-
tices. Dynamic programming and memoization go together. The main
difference between dynamic programming and divide and conquer is
that subproblems are more or less independent in divide and conquer,
whereas subproblems overlap in dynamic programming. The differ-
ence between dynamic programming and straightforward recursion is
in caching or memoization of recursive calls. When subproblems are
independent and there is no repetition, memoization does not help;
hence dynamic programming is not a solution for all complex prob-

classification 12

lems. By using memoization or maintaining a table of subproblems
already solved, dynamic programming reduces the exponential nature
of many problems to polynomial complexity.

4.3.3 The greedy method

A greedy algorithm is similar to a dynamic programming algorithm
in that it works by examining substructures, in this case not of the
problem but of a given solution. Such algorithms start with some
solution, which may be given or have been constructed in some way,
and improve it by making small modifications. For some problems
they can find the optimal solution while for others they stop at local
optima, that is, at solutions that cannot be improved by the algorithm
but are not optimum. The most popular use of greedy algorithms is for
finding the minimal spanning tree where finding the optimal solution
is possible with this method. Huffman Tree, Kruskal, Prim, Sollin are
greedy algorithms that can solve this optimization problem.

4.3.4 The heuristic method

In optimization problems, heuristic algorithms can be used to find a so-
lution close to the optimal solution in cases where finding the optimal
solution is impractical. These algorithms work by getting closer and
closer to the optimal solution as they progress. In principle, if run for
an infinite amount of time, they will find the optimal solution. Their
merit is that they can find a solution very close to the optimal solution
in a relatively short time. Such algorithms include local search, tabu
search, simulated annealing, and genetic algorithms. Some of them,
like simulated annealing, are non-deterministic algorithms while oth-
ers, like tabu search, are deterministic. When a bound on the error
of the non-optimal solution is known, the algorithm is further catego-
rized as an approximation algorithm.

4.4 By field of study

Every field of science has its own problems and needs efficient algo-
rithms. Related problems in one field are often studied together. Some
example classes are search algorithms, sorting algorithms, merge al-
gorithms, numerical algorithms, graph algorithms, string algorithms,
computational geometric algorithms, combinatorial algorithms, medi-
cal algorithms, machine learning, cryptography, data compression al-
gorithms and parsing techniques.

Fields tend to overlap with each other, and algorithm advances in
one field may improve those of other, sometimes completely unrelated,
fields. For example, dynamic programming was invented for optimiza-
tion of resource consumption in industry, but is now used in solving a
broad range of problems in many fields.

4.5 By complexity

Algorithms can be classified by the amount of time they need to com-
plete compared to their input size:

classification 13

1. Constant time: if the time needed by the algorithm is the same,
regardless of the input size. E.g. an access to an array element.

2. Linear time: if the time is proportional to the input size. E.g. the
traverse of a list.

3. Logarithmic time: if the time is a logarithmic function of the
input size. E.g. binary search algorithm.

4. Polynomial time: if the time is a power of the input size. E.g. the
bubble sort algorithm has quadratic time complexity.

5. Exponential time: if the time is an exponential function of the
input size. E.g. Brute-force search.

Some problems may have multiple algorithms of differing complex-
ity, while other problems might have no algorithms or no known ef-
ficient algorithms. There are also mappings from some problems to
other problems. Owing to this, it was found to be more suitable to
classify the problems themselves instead of the algorithms into equiv-
alence classes based on the complexity of the best possible algorithms
for them.

	1 Contents of this course
	2 Basics of algorithms
	2.1 What is algorithms?
	2.2 Why should we care?
	2.3 History of algorithmic
	2.4 Definition of algorithmic

	3 Moving forward with algorithmics
	3.1 How to write an algorithm?
	3.2 Become a good algorithmic designer
	3.3 Characteristics of algorithms

	4 Classification
	4.1 By implementation
	4.2 By design paradigm
	4.3 Optimization problems
	4.4 By field of study
	4.5 By complexity

