
C H 0 2 : A LG O R I T H M S
A N A LY S I S

By Dr. LOUNNAS Bilal

contents
1 Introduction 1

2 What is analysis? 2

3 The purpose of analysis of algorithms 3

4 Algorithm Complexity 4

4.1 Space Complexity . 4

4.2 Time Complexity . 4

5 Asymptotic Analysis 5

5.1 Asymptotic notations . 5

5.2 Big Oh Notation, O . 5

5.3 Omega Notation, Ω . 6

5.4 Theta Notation, Θ . 6

6 Common asymptotic notations 7

list of figures
Figure 1 Big O Notation . 6

Figure 2 Big Ω Notation . 6

Figure 3 Big Ω Notation . 7

Figure 4 Big-O Complexity Chart 7

list of tables
Table 1 List of some common asymptotic notations 7

1 introduction
Efficiency of an algorithm can be analyzed at two different stages, be-
fore implementation and after implementation. They are the following:

1. A Priori Analysis: This is a theoretical analysis of an algorithm.
Efficiency of an algorithm is measured by assuming that all other

1

what is analysis? 2

factors, for example, processor speed, are constant and have no
effect on the implementation.

2. A Posteriori Analysis: This is an empirical analysis of an algo-
rithm. The selected algorithm is implemented using program-
ming language. This is then executed on target computer ma-
chine. In this analysis, actual statistics like running time and
space required, are collected.

We shall learn about a priori algorithm analysis. Algorithm anal-
ysis deals with the execution or running time of various operations
involved. The running time of an operation can be defined as the
number of computer instructions executed per operation.

2 what is analysis?
The analysis of an algorithm provides background information that
gives us a general idea of how long an algorithm will take for a given
problem set. For each algorithm considered, we will come up with an
estimate of how long it will take to solve a problem that has a set of N
input values. So, for example, we might determine how many compar-
isons a sorting algorithm does to put a list of N values into ascending
order, or we might determine how many arithmetic operations it takes
to multiply two matrices of size N x N.

There are a number of algorithms that will solve a problem. Study-
ing the analysis of algorithms gives us the tools to choose between
algorithms. For example, consider the following two algorithms 1 and
2 to find the largest of four values:

Algorithm 1

1: procedure GetLargeNumber1

2: largest← a
3: if b > largest then largest = b
4: if c > largest then largest = c
5: if d > largest then largest = d

return largest

If you examine these two algorithms, you will see that each one will
do exactly three comparisons to find the answer. Even though the first
is easier for us to read and understand, they are both of the same level
of complexity for a computer to execute. In terms of time, these two
algorithms are the same, but in terms of space, the first needs more
because of the temporary variable called largest. This extra space is
not significant if we are comparing numbers or characters, but it may
be with other types of data. In many modern programming languages,
we can define comparison operators for large and complex objects or
records. For those cases, the amount of space needed for the tempo-
rary variable could be quite significant. When we are interested in the
efficiency of algorithms, we will primarily be concerned with time is-

the purpose of analysis of algorithms 3

Algorithm 2

1: procedure GetLargeNumber2

2: if a > b then
3: if a > c then
4: if a > d then return a
5: elsereturn b
6: else if c > d then return c
7: elsereturn d
8: else if b > c then
9: if b > d then return b

10: elsereturn d
11: else if c > d then return c
12: elsereturn d

sues, but when space may be an issue, it will also be discussed.

The purpose of determining these values is to then use them to com-
pare how efficiently two different algorithms solve a problem. For this
reason, we will never compare a sorting algorithm with a matrix mul-
tiplication algorithm, but rather we will compare two different sorting
algorithms to each other.

3 the purpose of analysis of algorithms
The purpose of analysis of algorithms is not to give a formula that will
tell us exactly how many seconds or computer cycles a particular algo-
rithm will take. This is not useful information because we would then
need to talk about the type of computer, whether it has one or many
users at a time, what processor it has, how fast its clock is, whether it
has a complex or reduced instruction set processor chip, and how well
the compiler optimizes the executable code. All of those will have an
impact on how fast a program for an algorithm will run. To talk about
analysis in those terms would mean that by moving a program to a
faster computer, the algorithm would become better because it now
completes its job faster. Thats not true, so, we do our analysis without
regard to any specific computers.

In the case of a small or simple routine it might be possible to count
the exact number of operations performed as a function of N. Most
of the time, however, this will not be useful. In fact, we will see later
that the difference between an algorithm that does N + 5 operations
and one that does N + 2500 operations becomes meaningless as N gets
very large.

algorithm complexity 4

4 algorithm complexity
Suppose X is an algorithm and n is the size of input data, the time and
space used by the algorithm X are the two main factors, which decide
the efficiency of X.

1. Time Factor: Time is measured by counting the number of key
operations such as comparisons in the sorting algorithm.

2. Space Factor: Space is measured by counting the maximum mem-
ory space required by the algorithm.

The complexity of an algorithm f(n) gives the running time and/or
the storage space required by the algorithm in terms of n as the size of
input data.

4.1 Space Complexity

Space complexity of an algorithm represents the amount of memory
space required by the algorithm in its life cycle. The space required by
an algorithm is equal to the sum of the following two components:

1. A fixed part that is a space required to store certain data and
variables, that are independent of the size of the problem. For
example, simple variables and constants used, program size, etc.

2. A variable part is a space required by variables, whose size de-
pends on the size of the problem. For example, dynamic memory
allocation, recursion stack space, etc.

Space complexity S(P) of any algorithm P is S(P) = C + SP(I), where
C is the fixed part and S(I) is the variable part of the algorithm, which
depends on instance characteristic I. Following is a simple example
that tries to explain the concept:

Here we have three variables A, B, and C and one constant. Hence
S(P) = 1+3. Now, space depends on data types of given variables and
constant types and it will be multiplied accordingly.

4.2 Time Complexity

Time complexity of an algorithm represents the amount of time re-
quired by the algorithm to run to completion. Time requirements can

asymptotic analysis 5

be defined as a numerical function T(n), where T(n) can be measured
as the number of steps, provided each step consumes constant time.

For example, addition of two n-bit integers takes n steps. Conse-
quently, the total computational time is T(n) = c*n, where c is the time
taken for the addition of two bits. Here, we observe that T(n) grows
linearly as the input size increases.

5 asymptotic analysis
Asymptotic analysis of an algorithm refers to defining the mathemat-
ical boundation/framing of its run-time performance. Using asymp-
totic analysis, we can very well conclude the best case, average case,
and worst case scenario of an algorithm.

Asymptotic analysis is input bound i.e., if there’s no input to the
algorithm, it is concluded to work in a constant time. Other than the
“input” all other factors are considered constant.

Asymptotic analysis refers to computing the running time of any
operation in mathematical units of computation. For example, the run-
ning time of one operation is computed as f(n) and may be for another
operation it is computed as g(n2). This means the first operation run-
ning time will increase linearly with the increase in n and the running
time of the second operation will increase exponentially when n in-
creases. Similarly, the running time of both operations will be nearly
the same if n is significantly small.

Usually, the time required by an algorithm falls under three types:

1. Best Case: Minimum time required for program execution.

2. Average Case: Average time required for program execution.

3. Worst Case: Maximum time required for program execution.

5.1 Asymptotic notations

Following are the commonly used asymptotic notations to calculate
the running time complexity of an algorithm.

1. O Notation

2. Ω Notation

3. Θ Notation

5.2 Big Oh Notation, O

The notation O(n) is the formal way to express the upper bound of an
algorithm’s running time. It measures the worst case time complex-
ity or the longest amount of time an algorithm can possibly take to
complete.

asymptotic analysis 6

Figure 1: Big O Notation

For example, for a function f(n):

5.3 Omega Notation, Ω

The notation Ω(n) is the formal way to express the lower bound of an
algorithm’s running time. It measures the best case time complexity
or the best amount of time an algorithm can possibly take to complete.

Figure 2: Big Ω Notation

For example, for a function f(n):

5.4 Theta Notation, Θ

The notation Θ(n) is the formal way to express both the lower bound
and the upper bound of an algorithm’s running time. It is represented
as follows

For example, for a function f(n):

common asymptotic notations 7

Figure 3: Big Ω Notation

6 common asymptotic notations
Following is a list of some common asymptotic notations:

Complexity Nomination
O(1) Constant
O(logn) Logarithmic
O(n) Linear
O(nlogn) n log n
O(n2) Quadratic
O(n3) Cubic
O(nO(1)) Polynomial
O(2O(n)) Exponential

Table 1: list of some common asymptotic notations

Figure 4: Big-O Complexity Chart

	1 Introduction
	2 What is analysis?
	3 The purpose of analysis of algorithms
	4 Algorithm Complexity
	4.1 Space Complexity
	4.2 Time Complexity

	5 Asymptotic Analysis
	5.1 Asymptotic notations
	5.2 Big Oh Notation, O
	5.3 Omega Notation,
	5.4 Theta Notation,

	6 Common asymptotic notations

