
C H 0 3 : R E V I E W O F DATA
S T R U C T U R E S A N D

A LG O R I T H M I C
T E C H N I Q U E S
By Dr. LOUNNAS Bilal

contents
1 Introduction 3

2 Data structures 3

2.1 Data definition . 3

2.2 Basic operations . 5

2.3 Classification of data structure 5

2.4 Pointer . 6

2.5 Array . 7

2.6 LinkedList . 10

2.7 Stack . 14

2.8 Queue . 18

2.9 Hash table . 22

3 Algorithmic techniques 26

3.1 Naïve algorithms . 26

3.2 Brute-Force algorithms . 28

3.3 Recursion . 30

3.4 Greedy Algorithms - "take what you can get now" strategy 32

3.5 Divide and conquer approach 33

3.6 Conclusion . 34

list of figures
Figure 1 Example of Data type 4

Figure 2 Type of data structure 5

Figure 3 Pointer . 6

Figure 4 Pointer . 7

Figure 5 Array representation 7

Figure 6 Array representation 7

Figure 7 LinkedList representation 10

Figure 8 Stack Example . 14

Figure 9 Stack representation 15

1

List of Tables 2

Figure 10 Stack push operation 17

Figure 11 Stack pop operation 18

Figure 12 Queue Example . 19

Figure 13 Queue representation 19

Figure 14 Enqueue operation 21

Figure 15 Dequeue operation 22

Figure 16 Hash function . 23

Figure 17 Hash function with separate chaining 24

Figure 18 Hash function with open addressing 25

Figure 19 Comparison with Naïve algorithm and KFY al-
gorithm for shuffling cards 28

Figure 20 brute force algorithm for string matching 29

list of tables
Table 1 Characteristics of classification of data structure . 6

introduction 3

1 introduction
In computer science, a data structure is a particular way of organizing
data in a computer so that it can be used efficiently.

Data structures can implement one or more particular abstract data
types (ADT), which specify the operations that can be performed on a
data structure and the computational complexity of those operations.
In comparison, a data structure is a concrete implementation of the
specification provided by an ADT.

Different kinds of data structures are suited to different kinds of
applications, and some are highly specialized to specific tasks. For
example, relational databases commonly use B-tree indexes for data
retrieval, while compiler implementations usually use hash tables to
look up identifiers.

Data structures provide a means to manage large amounts of data
efficiently for uses such as large databases and internet indexing ser-
vices. Usually, efficient data structures are key to designing efficient al-
gorithms. Some formal design methods and programming languages
emphasize data structures, rather than algorithms, as the key organiz-
ing factor in software design. Data structures can be used to organize
the storage and retrieval of information stored in both main memory
and secondary memory.

The algorithmic techniques include: divide and conquer, backtrack-
ing, dynamic programming, greedy algorithms, hill-climbing ... ext.

Any solvable problem generally has at least one algorithm of each
of the following types:

1. the obvious way.

2. the methodical way.

3. the clever way.

4. the miraculous way.

2 data structures
2.1 Data definition

Data Definition defines a particular data with the following character-
istics.

1. Atomic: Definition should define a single concept.

2. Traceable: Definition should be able to be mapped to some data
element.

3. Accurate: Definition should be unambiguous.

data structures 4

4. Clear and Concise: Definition should be understandable.

Data Object represents an object having a data.
Data Type is a way to classify various types of data such as integer,
string, etc. which determines the values that can be used with the cor-
responding type of data, the type of operations that can be performed
on the corresponding type of data. There are two data types:

1. Built-in Data Type

2. Derived Data Type

2.1.1 Built-in data type

Those data types for which a language has built-in support are known
as Built-in Data types. For example, most of the languages provide the
following built-in data types.

1. Integers

2. Boolean (true, false)

3. Floating (Decimal numbers)

4. Character and Strings

2.1.2 Derived data type

Those data types which are implementation independent as they can
be implemented in one or the other way are known as derived data
types. These data types are normally built by the combination of pri-
mary or built-in data types and associated operations on them. For
example:

1. List

2. Array

3. Stack

4. Queue

Figure 1: Example of Data type

data structures 5

2.2 Basic operations

The data in the data structures are processed by certain operations.
The particular data structure chosen largely depends on the frequency
of the operation that needs to be performed on the data structure.

1. Traversing

2. Searching

3. Insertion

4. Deletion

5. Sorting

6. Merging

2.3 Classification of data structure

Data structures are generally based on the effectiveness ability of a
computer to fetch and store data at any place in its memory. There-
fore, for an algorithm to be usable and efficient, it must retrieve data
rapidlly and efficiently. The need for efficiency has led designers to
use complex data structures to represent data.

There are numerous classification of data structures such as:

Figure 2: Type of data structure

The data structures can also be classified on the basis of the follow-
ing characteristics: [See Table 1]

data structures 6

Characterstic Description

Linear
In Linear data structures,the data items are ar-
ranged in a linear sequence. Example: Array

Non-Linear
In Non-Linear data structures,the data items are
not in sequence. Example: Tree, Graph

Homogeneous
In homogeneous data structures,all the elements
are of same type. Example: Array

Non-Homogeneous
In Non-Homogeneous data structure, the elements
may or may not be of the same type. Example:
Structures

Static
Static data structures are those whose sizes and
structures associated memory locations are fixed, at
compile time. Example: Array

Dynamic

Dynamic structures are those which expands or
shrinks depending upon the,program need and its
execution. Also, their associated memory loca-
tions,changes.,Example: Linked List created using
pointers

Table 1: Characteristics of classification of data structure

2.4 Pointer

In computer science, a pointer is an object, whose value refers to (or
"points to") another value stored elsewhere in the computer memory
using its memory address. In other means it’s a variable which con-
tains the address in memory of another variable. We can have a pointer
to any variable type.

Example of pointer that point to a normal variable [See Figure 3]

Figure 3: Pointer

When you use pointers, you are able to access the variable that they
point to, and you are able to change the pointer so that it points to a
different variable. This simple mechanism has hundreds of uses and
is one of the most powerful features of the C programming language.

A pointer allows us to indirectly access a variable.

data structures 7

Figure 4: Pointer

2.5 Array

Array is a container which can hold a fix number of items and these
items should be of the same type. Most of the data structures make use
of arrays to implement their algorithms. Following are the important
terms to understand the concept of Array.

1. Element: Each item stored in an array is called an element.

2. Index: Each location of an element in an array has a numerical
index, which is used to identify the element.

2.5.1 Array representation

Arrays can be declared in various ways in different languages. For
illustration, let’s take C array declaration.

Figure 5: Array representation

Figure 6: Array representation

As per the above illustration, following are the important points to
be considered.

1. Index starts with 0.

2. Array length is 10 which means it can store 10 elements.

3. Each element can be accessed via its index. For example, we can
fetch an element at index 6 or 9.

data structures 8

2.5.2 Basic operations

Following are the basic operations supported by an array.

1. Traverse: print all the array elements one by one.

2. Insertion: Adds an element at the given index.

3. Deletion: Deletes an element at the given index.

4. Search: Searches an element using the given index or by the
value.

5. Update: Updates an element at the given index.

2.5.3 Insertion operation

Insert operation is to insert one or more data elements into an array.
Based on the requirement, a new element can be added at the begin-
ning, end, or any given index of array.

Algorithm
Let Array be a linear unordered array of MAX elements.
Let LA be a Linear Array (unordered) with N elements and K is a
positive integer such that K<=N. Following is the algorithm where
ITEM is inserted into the Kth position of LA.

2.5.4 Deletion operation

Deletion refers to removing an existing element from the array and
re-organizing all elements of an array.

Algorithm
Consider LA is a linear array with N elements and K is a positive in-
teger such that K<=N. Following is the algorithm to delete an element
available at the Kth position of LA.

data structures 9

2.5.5 Search operation

You can perform a search for an array element based on its value or its
index.

Algorithm
Consider LA is a linear array with N elements and K is a positive
integer such that K<=N. Following is the algorithm to find an element
with a value of ITEM using sequential search.

2.5.6 Update operation

Update operation refers to updating an existing element from the ar-
ray at a given index..

Algorithm
Consider LA is a linear array with N elements and K is a positive inte-
ger such that K<=N. Following is the algorithm to update an element
available at the Kth position of LA.

data structures 10

2.6 LinkedList

A linked list is a sequence of data structures, which are connected
together via links.

Linked List is a sequence of links which contains items. Each link
contains a connection to another link. Linked list is the second most-
used data structure after array. Following are the important terms to
understand the concept of Linked List.

• Link: Each link of a linked list can store a data called an element.

• Next: Each link of a linked list contains a link to the next link
called Next.

• LinkedList: A Linked List contains the connection link to the first
link called First.

2.6.1 LinkedList representation

Linked list can be visualized as a chain of nodes, where every node
points to the next node.

Figure 7: LinkedList representation

As per the above illustration, following are the important points to
be considered.

• Linked List contains a link element called first.

• Each link carries a data field(s) and a link field called next.

• Each link is linked with its next link using its next link.

• Last link carries a link as null to mark the end of the list.

2.6.2 Types of LinkedList

Following are the various types of linked list.

1. Simple Linked List: Item navigation is forward only.

2. Doubly Linked List: Items can be navigated forward and back-
ward.

3. Circular Linked List: Last item contains link of the first element
as next and the first element has a link to the last element as
previous.

data structures 11

2.6.3 Basic operations

Following are the basic operations supported by a list.

1. Insertion: Adds an element at the beginning of the list.

2. Deletion: Deletes an element at the beginning of the list.

3. Display: Displays the complete list.

4. Search: Searches an element using the given key.

5. Reverse: Reverse the whole linked list by making the last node
pointing to the head node

2.6.4 Insertion operation

Adding a new node in linked list is a more than one step activity. We
shall learn this with diagrams here. First, create a node using the same
structure and find the location where it has to be inserted.

Imagine that we are inserting a node B (NewNode), between A (Left-
Node) and C (RightNode). Then point B.next to C. It should look like
this:

Now, the next node at the left should point to the new node.

This will put the new node in the middle of the two. The new list
should look like this:

data structures 12

Similar steps should be taken if the node is being inserted at the
beginning of the list. While inserting it at the end, the second last
node of the list should point to the new node and the new node will
point to NULL.

2.6.5 Deletion operation

Deletion is also a more than one step process. We shall learn with
pictorial representation. First, locate the target node to be removed, by
using searching algorithms.

The left (previous) node of the target node now should point to the
next node of the target node:

This will remove the link that was pointing to the target node. Now,
using the following code, we will remove what the target node is point-
ing at.

We need to use the deleted node. We can keep that in memory
otherwise we can simply deallocate memory and wipe off the target
node completely.

2.6.6 Doubly LinkedList

Doubly Linked List is a variation of Linked list in which navigation
is possible in both ways, either forward and backward easily as com-

data structures 13

pared to Single Linked List. Following are the important terms to
understand the concept of doubly linked list.

1. Link: Each link of a linked list can store a data called an element.

2. Next: Each link of a linked list contains a link to the next link
called Next.

3. Prev: Each link of a linked list contains a link to the previous
link called Prev.

4. LinkedList: A Linked List contains the connection link to the first
link called First and to the last link called Last.

Doubly LinkedList representation

As per the above illustration, following are the important points to
be considered.

1. Doubly Linked List contains a link element called first and last.

2. Each link carries a data field(s) and two link fields called next
and prev.

3. Each link is linked with its next link using its next link.

4. Each link is linked with its previous link using its previous link.

5. The last link carries a link as null to mark the end of the list.

Basic operations
Following are the basic operations supported by a list.

1. Insertion: Adds an element at the beginning of the list.

2. Deletion: Deletes an element at the beginning of the list.

3. Insert Last: Adds an element at the end of the list.

4. Delete Last: Deletes an element from the end of the list.

5. Insert After: Adds an element after an item of the list.

6. Delete: Deletes an element from the list using the key.

7. Display forward: Displays the complete list in a forward manner.

8. Display backward: Displays the complete list in a backward man-
ner.

data structures 14

2.6.7 Circular LinkedList

Circular Linked List is a variation of Linked list in which the first ele-
ment points to the last element and the last element points to the first
element. Both Singly Linked List and Doubly Linked List can be made
into a circular linked list.

Singly LinkedList as Circular
In singly linked list, the next pointer of the last node points to the

first node.

Doubly LinkedList as Circular
In doubly linked list, the next pointer of the last node points to the

first node and the previous pointer of the first node points to the last
node making the circular in both directions.

As per the above illustration, following are the important points to
be considered.

1. The last link’s next points to the first link of the list in both cases
of singly as well as doubly linked list.

2. The first link’s previous points to the last of the list in case of
doubly linked list.

2.7 Stack

A stack is an Abstract Data Type (ADT), commonly used in most pro-
gramming languages. It is named stack as it behaves like a real-world
stack, for example: a deck of cards or a pile of plates, etc.

Figure 8: Stack Example

A real-world stack allows operations at one end only. For example,
we can place or remove a card or plate from the top of the stack only.
Likewise, Stack ADT allows all data operations at one end only. At
any given time, we can only access the top element of a stack.

data structures 15

This feature makes it LIFO data structure. LIFO stands for Last-in-
first-out. Here, the element which is placed (inserted or added) last, is
accessed first. In stack terminology, insertion operation is called PUSH
operation and removal operation is called POP operation.

2.7.1 Stack representation

The following diagram depicts a stack and its operations:

Figure 9: Stack representation

A stack can be implemented by means of Array, Structure, Pointer,
and Linked List. Stack can either be a fixed size one or it may have
a sense of dynamic resizing. Here, we are going to implement stack
using arrays, which makes it a fixed size stack implementation.

2.7.2 Basic operations

Stack operations may involve initializing the stack, using it and then
de-initializing it. Apart from these basic stuffs, a stack is used for the
following two primary operations:

1. push(): Pushing (storing) an element on the stack.

2. pop(): Removing (accessing) an element from the stack.

When data is PUSHed onto stack.
To use a stack efficiently, we need to check the status of stack as well.

For the same purpose, the following functionality is added to stacks:

1. peek(): get the top data element of the stack, without removing
it.

2. isFull(): check if stack is full.

3. isEmpty(): check if stack is empty.

data structures 16

At all times, we maintain a pointer to the last PUSHed data on the
stack. As this pointer always represents the top of the stack, hence
named top. The top pointer provides top value of the stack without
actually removing it.

First we should learn about procedures to support stack functions:

Peek()

isfull()

isempty()

Push operation
The process of putting a new data element onto stack is known as a

Push Operation. Push operation involves a series of steps:

1. Step 1: Checks if the stack is full.

2. Step 2: If the stack is full, produces an error and exit.

3. Step 3: If the stack is not full, increments top to point next empty
space.

4. Step 4: Adds data element to the stack location, where top is
pointing.

5. Step 5: Returns success.

data structures 17

Figure 10: Stack push operation

If the linked list is used to implement the stack, then in step 3, we
need to allocate space dynamically.

Algorithm for PUSH operation
A simple algorithm for Push operation can be derived as follows

Pop operation
Accessing the content while removing it from the stack, is known as

a Pop Operation. In an array implementation of pop() operation, the
data element is not actually removed, instead top is decremented to a
lower position in the stack to point to the next value. But in linked-list
implementation, pop() actually removes data element and deallocates
memory space.

A Pop operation may involve the following steps:

1. Step 1: Checks if the stack is empty.

2. Step 2: If the stack is empty, produces an error and exit.

3. Step 3: If the stack is not empty, accesses the data element at
which top is pointing.

4. Step 4: Decreases the value of top by 1.

data structures 18

5. Step 5: Returns success.

Figure 11: Stack pop operation

Algorithm for Pop operation
A simple algorithm for Pop operation can be derived as follows:

2.8 Queue

Queue is an abstract data structure, somewhat similar to Stacks. Un-
like stacks, a queue is open at both its ends. One end is always used
to insert data (enqueue) and the other is used to remove data (de-
queue). Queue follows First-In-First-Out methodology, i.e., the data
item stored first will be accessed first.

data structures 19

Figure 12: Queue Example

A real-world example of queue can be a single-lane one-way road,
where the vehicle enters first, exits first. More real-world examples can
be seen as queues at the ticket windows and bus-stops.

2.8.1 Queue representation

As we now understand that in queue, we access both ends for different
reasons. The following diagram given below tries to explain queue
representation as data structure ?

Figure 13: Queue representation

As in stacks, a queue can also be implemented using Arrays, Linked-
lists, Pointers and Structures. For the sake of simplicity, we shall im-
plement queues using one-dimensional array.

2.8.2 Basic operations

Queue operations may involve initializing or defining the queue, uti-
lizing it, and then completely erasing it from the memory. Here we
shall try to understand the basic operations associated with queues:

1. enqueue(): add (store) an item to the queue.

2. dequeue(): remove (access) an item from the queue.

Few more functions are required to make the above-mentioned queue
operation efficient. These are:

1. peek(): Gets the element at the front of the queue without remov-
ing it.

2. isfull(): Checks if the queue is full.

3. isempty(): Checks if the queue is empty.

In queue, we always dequeue (or access) data, pointed by front
pointer and while enqueing (or storing) data in the queue we take
help of rear pointer.

data structures 20

Let’s first learn about supportive functions of a queue:

Peek()
This function helps to see the data at the front of the queue. The

algorithm of peek() function is as follows:

isfull()
As we are using single dimension array to implement queue, we just

check for the rear pointer to reach at MAXSIZE to determine that the
queue is full. In case we maintain the queue in a circular linked-list,
the algorithm will differ.

isempty()

If the value of front is less than MIN or 0, it tells that the queue is
not yet initialized, hence empty.

Enqueue operation
Queues maintain two data pointers, front and rear. Therefore, its op-

erations are comparatively difficult to implement than that of stacks.

The following steps should be taken to enqueue (insert) data into a
queue:

data structures 21

1. Step 1: Check if the queue is full.

2. Step 2: If the queue is full, produce overflow error and exit.

3. Step 3: If the queue is not full, increment rear pointer to point
the next empty space.

4. Step 4: Add data element to the queue location, where the rear
is pointing.

5. Step 5: return success.

Figure 14: Enqueue operation

Sometimes, we also check to see if a queue is initialized or not, to
handle any unforeseen situations.

data structures 22

Dequeue operation
Accessing data from the queue is a process of two tasks ? access

the data where front is pointing and remove the data after access. The
following steps are taken to perform dequeue operation:

1. Step 1: Check if the queue is empty.

2. Step 2: If the queue is empty, produce underflow error and exit.

3. Step 3: If the queue is not empty, access the data where front is
pointing.

4. Step 4: Increment front pointer to point to the next available data
element.

5. Step 5: Return success.

Figure 15: Dequeue operation

Dequeue algorithm

2.9 Hash table

Hash Table is a data structure which stores data in an associative man-
ner. In a hash table, data is stored in an array format, where each data

data structures 23

value has its own unique index value. Access of data becomes very
fast if we know the index of the desired data.

Thus, it becomes a data structure in which insertion and search oper-
ations are very fast irrespective of the size of the data. Hash Table uses
an array as a storage medium and uses hash technique to generate an
index where an element is to be inserted or is to be located from.

2.9.1 Hashing

Hashing is a technique to convert a range of key values into a range of
indexes of an array. We’re going to use modulo operator to get a range
of key values. Consider an example of hash table of size 20, and the
following items are to be stored. Item are in the (key,value) format.

Figure 16: Hash function

Example:

As we can see, it may happen that the hashing technique is used to
create an already used index of the array. This called collision.

Hash collisions are practically unavoidable when hashing a random
subset of a large set of possible keys. For example, if 2,450 keys are

data structures 24

hashed into a million buckets, even with a perfectly uniform random
distribution, 95% chance of at least two of the keys being hashed to the
same slot.

Therefore, almost all hash table implementations have some collision
resolution strategy to handle such events.

Separate chaining (Open hashing)
In the method known as separate chaining, each bucket is indepen-

dent, and has some sort of list of entries with the same index. The
time for hash table operations is the time to find the bucket (which is
constant) plus the time for the list operation.

In a good hash table, each bucket has zero or one entries, and some-
times two or three, but rarely more than that. Therefore, structures
that are efficient in time and space for these cases are preferred. Struc-
tures that are efficient for a fairly large number of entries per bucket
are not needed or desirable. If these cases happen often, the hashing
function needs to be fixed.

Figure 17: Hash function with separate chaining

Open addressing (Close hashing)
In another strategy, called open addressing, all entry records are

stored in the bucket array itself. When a new entry has to be inserted,
the buckets are examined, starting with the hashed-to slot and pro-
ceeding in some probe sequence, until an unoccupied slot is found.
When searching for an entry, the buckets are scanned in the same se-
quence, until either the target record is found, or an unused array slot
is found, which indicates that there is no such key in the table.

Well-known probe sequences include:

data structures 25

1. Linear probing, in which the interval between probes is fixed
(usually 1).

2. Quadratic probing, in which the interval between probes is in-
creased by adding the successive outputs of a quadratic polyno-
mial to the starting value given by the original hash computation.

3. Double hashing, in which the interval between probes is com-
puted by a second hash function.

Figure 18: Hash function with open addressing

2.9.2 Basic operations

Following are the basic primary operations of a hash table.

1. Search: Searches an element in a hash table.

2. Insert: inserts an element in a hash table.

3. delete: Deletes an element from a hash table.

Search operation
Whenever an element is to be searched, compute the hash code of

the key passed and locate the element using that hash code as index in
the array. Use linear probing to get the element ahead if the element is
not found at the computed hash code.

Insert operation

algorithmic techniques 26

Whenever an element is to be inserted, compute the hash code of
the key passed and locate the index using that hash code as an index
in the array. Use linear probing for empty location, if an element is
found at the computed hash code.

Delete operation
Whenever an element is to be deleted, compute the hash code of the

key passed and locate the index using that hash code as an index in
the array. Use linear probing to get the element ahead if an element is
not found at the computed hash code. When found, store a dummy
item there to keep the performance of the hash table intact.

3 algorithmic techniques
Any solvable problem generally has at least one algorithm of each of
the following types:

1. the obvious way.

2. the methodical way.

3. the clever way.

4. the miraculous way.

On the first and most basic level, the "obvious" solution might try to
exhaustively search for the answer. Intuitively, the obvious solution is
the one that comes easily if you’re familiar with a programming lan-
guage and the basic problem solving techniques.

The second level is the methodical level and is the heart of this book:
after understanding the material presented here you should be able
to methodically turn most obvious algorithms into better performing
algorithms.

The third level, the clever level, requires more understanding of the
elements involved in the problem and their properties or even a refor-
mulation of the algorithm (e.g., numerical algorithms exploit mathe-
matical properties that are not obvious). A clever algorithm may be
hard to understand by being non-obvious that it is correct, or it may
be hard to understand that it actually runs faster than what it would
seem to require.

The fourth and final level of an algorithmic solution is the mirac-
ulous level: this is reserved for the rare cases where a breakthrough
results in a highly non-intuitive solution.

3.1 Naïve algorithms

A naïve algorithm is a very simple solution to a problem. It is meant to
describe a suboptimal algorithm compared to a "clever" (but less sim-

algorithmic techniques 27

ple) algorithm. Naïve algorithms usually consume larger amounts of
resources (time, space, memory accesses, ...), but are simple to devise
and implement.

3.1.1 Examples of Naïve algorithm

Here’s an examples of some problems with a "naïve" algorithms:

1. An example of a na algorithm is bubble sort, which is only a
few lines long and easy to understand, but has a O(n2) time
complexity.

2. Trying to search for an element in a sorted array. A Naive algo-
rithm would be to use a Linear Search. A Not-So Naive Solution
would be to use the Binary Search.

3. Problem: You are in a (2-dimensional) maze. Find your way
out. (meaning: to a spot with an "EXIT" sign

Naïve algorithm 1: Start walking and choose the right one in ev-
ery intersection you meet (until you find "EXIT").

Naïve algorithm 2:: Start walking and choose a random one in
every intersection you meet (until you find "EXIT").

Algorithm 1 will not even get you out of some mazes!

Algorithm 2 will get you out of all mazes (although this is rather
hard to prove).

4. For instance, if one knows the definition of Fibonacci numbers is
Fib(n)=Fib(n-1)+Fib(n-2), then a "naïve" implementation would
be

3.1.2 Issues with a Naïve algorithms

Sometimes there are some problems with the naïve algorithms, a prob-
lems that most programmers won’t see, for example if we take example
(4) above:

What if we call, say, Fib(7), then we end up making many of the
same calls over and over, such as Fib(4) (because Fib(7) calls Fib(6) and
Fib(5), and Fib(6) calls Fib(5) and Fib(4), and both times we call Fib(5)

algorithmic techniques 28

it calls Fib(4) and Fib(3), and so on).

Usually, naïve algorithms are not wrong, just oversimplified and
inefficient. The danger, in this case, is rather they give a stabilized
solution naïve algorithms sometime give an unexpected results.

Figure 19: Comparison with Naïve algorithm and KFY algorithm for shuffling
cards

Naïve implementations are often preferred to complex ones. Sim-
plicity is a virtue. It’s better to be simple, slow, and understandable
than complex, fast, and difficult to grasp. Or at least it usually is.
Sometimes, the simplicity of the na implementation can mislead. It
is possible for the code to be both simple and wrong. We suppose
the real lesson lies in testing. No matter how simple your code may
be, there’s no substitute for testing it to make sure it’s actually doing
what you think it is.

3.2 Brute-Force algorithms

Brute force is a straightforward approach to solve a problem based on
the problems statement and definitions of the concepts involved. It is
considered as one of the easiest approach to apply and is useful for
solving smallsize instances of a problem.

While a brute-force is simple to implement, and will always find
a solution if it exists, its cost is proportional to the number of candi-
date solutions - which in many practical problems tends to grow very
quickly as the size of the problem increases. Therefore, brute-force
is typically used when the problem size is limited, or when there are
problem-specific heuristics that can be used to reduce the set of can-
didate solutions to a manageable size. The method is also used when
the simplicity of implementation is more important than speed.

algorithmic techniques 29

3.2.1 Brute-Force String Matching

A brute force algorithm for string matching problem has two inputs to
be considered: pattern (a string of m characters to search for), and text
(a long string of n characters to search in). The algorithm starts with
aligning the pattern at the beginning of the text. Then each character of
the pattern is compared to the corresponding character, moving from
left to right, until all characters are found to match, or a mismatch is
detected.

While the pattern is not found and the text is not yet exhausted, the
pattern is realigned to one position to the right and again compared to
the corresponding character, moving from left to right.

Figure 20: brute force algorithm for string matching

Some examples of brute force algorithms are:

1. Computing an (a > 0, n a nonnegative integer) by multiplying
a*a**a

2. Computing n!

3. Selection sort

4. Bubble sort

5. Sequential search

6. Exhaustive search: Traveling Salesman Problem, Knapsack prob-
lem.

3.2.2 Advantages and disadvantages

The strengths of using a brute force approach are as follows:

1. It has wide applicability and is known for its simplicity.

2. It yields reasonable algorithms for some important problems such
as searching, string matching, and matrix multiplication.

3. It yields standard algorithms for simple computational tasks such
as sum and product of n numbers, and finding maximum or min-
imum in a list.

The weaknesses of the brute force approach are as follows:

1. It rarely yields efficient algorithms.

algorithmic techniques 30

2. Some brute force algorithms are unacceptably slow.

3. It is neither as constructive nor creative as some other design
techniques.

3.3 Recursion

Have you ever seen a set of Russian dolls? At first, you see just one
figurine, usually painted wood, that looks something like this:

You can remove the top half of the first doll, and what do you see
inside? Another, slightly smaller, Russian doll!, You can remove that
doll and separate its top and bottom halves. And you see yet another,
even smaller, doll. And once more, And another once more. And you
can keep going. Eventually you find the teeniest Russian doll. It is just
one piece, and so it does not open:

What do Russian dolls have to do with algorithms? Just as one
Russian doll has within it a smaller Russian doll, which has an even
smaller Russian doll within it, all the way down to a tiny Russian doll
that is too small to contain another, we’ll see how to design an algo-
rithm to solve a problem by solving a smaller instance of the same
problem, unless the problem is so small that we can just solve it di-
rectly. We call this technique recursion.

A recursive algorithm is an algorithm which calls itself with "smaller
(or simpler)" input values, and which obtains the result for the cur-
rent input by applying simple operations to the returned value for the

algorithmic techniques 31

smaller (or simpler) input. More generally if a problem can be solved
utilizing solutions to smaller versions of the same problem, and the
smaller versions reduce to easily solvable cases, then one can use a
recursive algorithm to solve that problem.

In general, recursive computer programs require more memory and
computation compared with iterative algorithms, but they are simpler
and for many cases a natural way of thinking about the problem.

Example 1: Algorithm for finding the k-th even natural number

Note here that this can be solved very easily by simply outputting
2*(k - 1) for a given k . The purpose here, however, is to illustrate the
basic idea of recursion rather than solving the problem.

Example 2: Algorithm for computing the k-th power of 2

3.3.1 Types of Recursion

1. Linear recursion : makes at most one recursive call each time it
is invoked.

2. Binary recursion : algorithm makes two recursive calls.

3. Multiple recursion : method may make (potentially more than
two) recursive calls.

algorithmic techniques 32

3.3.2 Properties of Recursion

A recursive function can go infinite like a loop. To avoid infinite run-
ning of recursive function, there are two properties that a recursive
function must have:

1. Base criteria: There must be at least one base criteria or condition,
such that, when this condition is met the function stops calling
itself recursively.

2. Progressive approach: The recursive calls should progress in
such a way that each time a recursive call is made it comes closer
to the base criteria.

3.4 Greedy Algorithms - "take what you can get now" strategy

An algorithm is designed to achieve optimum solution for a given
problem. In greedy algorithm approach, decisions are made from
the given solution domain. As being greedy, the closest solution that
seems to provide an optimum solution is chosen.

Greedy algorithms try to find a localized optimum solution, which
may eventually lead to globally optimized solutions. However, gener-
ally greedy algorithms do not provide globally optimized solutions.

3.4.1 Counting Coins

This problem is to count to a desired value by choosing the least pos-
sible coins and the greedy approach forces the algorithm to pick the
largest possible coin. If we are provided coins of e 1, 2, 5 and 10 and
we are asked to count e18 then the greedy procedure will be:

1. 1: Select one e 10 coin, the remaining count is 8

2. 2: Then select one e 5 coin, the remaining count is 3

3. 3: Then select one e 2 coin, the remaining count is 1

4. 3: And finally, the selection of one e 1 coins solves the problem.

Though, it seems to be working fine, for this count we need to pick
only 4 coins. But if we slightly change the problem then the same ap-
proach may not be able to produce the same optimum result.

For the currency system, where we have coins of 1, 7, 10 value, count-
ing coins for value 18 will be absolutely optimum but for count like
15, it may use more coins than necessary. For example, the greedy ap-
proach will use 10 + 1 + 1 + 1 + 1 + 1, total 6 coins. Whereas the same
problem could be solved by using only 3 coins (7 + 7 + 1) Hence, we
may conclude that the greedy approach picks an immediate optimized
solution and may fail where global optimization is a major concern.

algorithmic techniques 33

3.4.2 Examples

Most networking algorithms use the greedy approach. Here is a list of
few of them:

1. Travelling Salesman Problem

2. Prim’s Minimal Spanning Tree Algorithm

3. Kruskal’s Minimal Spanning Tree Algorithm

4. Dijkstra’s Minimal Spanning Tree Algorithm

5. Graph: Map Coloring

6. Graph: Vertex Cover

7. Knapsack Problem

8. Job Scheduling Problem

There are lots of similar problems that uses the greedy approach to
find an optimum solution.

3.5 Divide and conquer approach

In divide and conquer approach, the problem in hand, is divided into
smaller sub-problems and then each problem is solved independently.
When we keep on dividing the subproblems into even smaller sub-
problems, we may eventually reach a stage where no more division is
possible. Those "atomic" smallest possible sub-problem (fractions) are
solved. The solution of all sub-problems is finally merged in order to
obtain the solution of an original problem.

3.5.1 Divide/Break

This step involves breaking the problem into smaller sub-problems.
Sub-problems should represent a part of the original problem. This

algorithmic techniques 34

step generally takes a recursive approach to divide the problem un-
til no sub-problem is further divisible. At this stage, sub-problems
become atomic in nature but still represent some part of the actual
problem.

3.5.2 Conquer/Solve

This step receives a lot of smaller sub-problems to be solved. Generally,
at this level, the problems are considered ’solved’ on their own.

3.5.3 Merge/Combine

When the smaller sub-problems are solved, this stage recursively com-
bines them until they formulate a solution of the original problem.
This algorithmic approach works recursively and conquer merge steps
works so close that they appear as one.

3.5.4 Examples

The following computer algorithms are based on divide-and-conquer
programming approach:

1. Merge Sort

2. Quick Sort

3. Binary Search

4. Strassen’s Matrix Multiplication

5. Closest Pair (points)

There are various ways available to solve any computer problem, but
the mentioned are a good example of divide and conquer approach.

3.6 Conclusion

Selecting a proper designing technique for a algorithm is the most dif-
ficult and important task. Most of the programming problems may
have more than one solution, for that we presented some algorithm
techniques that are highly used in creating solution.

the following designing techniques are not mentioned in this text-
book

1. Dynamic Programming

2. Backtracking Algorithm

3. Branch and Bound

4. Linear Programming

5. Transform-and-Conquer

6. Decrease-and-Conquer

7. ...

	1 Introduction
	2 Data structures
	2.1 Data definition
	2.2 Basic operations
	2.3 Classification of data structure
	2.4 Pointer
	2.5 Array
	2.6 LinkedList
	2.7 Stack
	2.8 Queue
	2.9 Hash table

	3 Algorithmic techniques
	3.1 Naïve algorithms
	3.2 Brute-Force algorithms
	3.3 Recursion
	3.4 Greedy Algorithms - "take what you can get now" strategy
	3.5 Divide and conquer approach
	3.6 Conclusion

