
C H 0 4 : A D VA N C E D
T E C H N I Q U E S I N

A LG O R I T H M S
Part 01 : Sorting algorithms

By Dr. LOUNNAS Bilal

contents
1 Introduction 2

2 Classification 2

3 Popular sorting algorithms 3

3.1 Simple sorts . 3

3.2 Efficient sorts . 4

3.3 Bubble sort and variants 5

3.4 Distribution sort . 7

list of figures

list of tables

1

introduction 2

1 introduction
In computer science, a sorting algorithm is an algorithm that puts el-
ements of a list in a certain order. The most-used orders are numeri-
cal order and lexicographical order. Efficient sorting is important for
optimizing the use of other algorithms (such as search and merge al-
gorithms) which require input data to be in sorted lists; it is also often
useful for canonicalizing data and for producing human-readable out-
put. More formally, the output must satisfy two conditions:

1. The output is in nondecreasing order (each element is no smaller
than the previous element according to the desired total order).

2. The output is a permutation (reordering but with all of the origi-
nal elements) of the input.

2 classification
Sorting algorithms are often classified by:

1. Computational complexity (worst, average and best behavior) in
terms of the size of the list (n). For typical serial sorting algo-
rithms good behavior is O(n log n), with parallel sort in O(log2

n), and bad behavior is O(n2). Ideal behavior for a serial sort is
O(n), but this is not possible in the average case. Optimal parallel
sorting is O(log n). Comparison-based sorting algorithms need
at least O(n log n) comparisons for most inputs.

2. Computational complexity of swaps (for "in-place" algorithms).

3. Memory usage (and use of other computer resources). In partic-
ular, some sorting algorithms are "in-place". Strictly, an in-place
sort needs only O(1) memory beyond the items being sorted;
sometimes O(log(n)) additional memory is considered "in-place".

4. Recursion. Some algorithms are either recursive or non-recursive,
while others may be both (e.g., merge sort).

5. Stability: stable sorting algorithms maintain the relative order of
records with equal keys (i.e., values).

6. Whether or not they are a comparison sort. A comparison sort
examines the data only by comparing two elements with a com-
parison operator.

7. General method: insertion, exchange, selection, merging, etc. Ex-
change sorts include bubble sort and quicksort. Selection sorts
include shaker sort and heapsort. Also whether the algorithm
is serial or parallel. The remainder of this discussion almost ex-
clusively concentrates upon serial algorithms and assumes serial
operation.

8. Adaptability: Whether or not the presortedness of the input af-
fects the running time. Algorithms that take this into account are
known to be adaptive.

popular sorting algorithms 3

3 popular sorting algorithms
While there are a large number of sorting algorithms, in practical im-
plementations a few algorithms predominate. Insertion sort is widely
used for small data sets, while for large data sets an asymptotically
efficient sort is used, primarily heap sort, merge sort, or quicksort. Ef-
ficient implementations generally use a hybrid algorithm, combining
an asymptotically efficient algorithm for the overall sort with insertion
sort for small lists at the bottom of a recursion. Highly tuned imple-
mentations use more sophisticated variants, such as Timsort (merge
sort, insertion sort, and additional logic), used in Android, Java, and
Python, and introsort (quicksort and heap sort), used (in variant forms)
in some C++ sort implementations and in .NET.

For more restricted data, such as numbers in a fixed interval, dis-
tribution sorts such as counting sort or radix sort are widely used.
Bubble sort and variants are rarely used in practice, but are commonly
found in teaching and theoretical discussions.

When physically sorting objects, such as alphabetizing papers (such
as tests or books), people intuitively generally use insertion sorts for
small sets. For larger sets, people often first bucket, such as by initial
letter, and multiple bucketing allows practical sorting of very large sets.
Often space is relatively cheap, such as by spreading objects out on the
floor or over a large area, but operations are expensive, particularly
moving an object a large distance locality of reference is important.
Merge sorts are also practical for physical objects, particularly as two
hands can be used, one for each list to merge, while other algorithms,
such as heap sort or quick sort, are poorly suited for human use. Other
algorithms, such as library sort, a variant of insertion sort that leaves
spaces, are also practical for physical use.

3.1 Simple sorts

Two of the simplest sorts are insertion sort and selection sort, both of
which are efficient on small data, due to low overhead, but not efficient
on large data. Insertion sort is generally faster than selection sort in
practice, due to fewer comparisons and good performance on almost-
sorted data, and thus is preferred in practice, but selection sort uses
fewer writes, and thus is used when write performance is a limiting
factor.

3.1.1 Insertion sort

Insertion sort is a simple sorting algorithm that is relatively efficient
for small lists and mostly sorted lists, and is often used as part of
more sophisticated algorithms. It works by taking elements from the
list one by one and inserting them in their correct position into a new
sorted list. In arrays, the new list and the remaining elements can
share the array’s space, but insertion is expensive, requiring shifting
all following elements over by one. Shellsort (see below) is a variant of
insertion sort that is more efficient for larger lists.

popular sorting algorithms 4

3.1.2 Selection sort

Selection sort is an in-place comparison sort. It has O(n2) complexity,
making it inefficient on large lists, and generally performs worse than
the similar insertion sort. Selection sort is noted for its simplicity, and
also has performance advantages over more complicated algorithms in
certain situations.

The algorithm finds the minimum value, swaps it with the value in
the first position, and repeats these steps for the remainder of the list.
It does no more than n swaps, and thus is useful where swapping is
very expensive.

3.2 Efficient sorts

Practical general sorting algorithms are almost always based on an al-
gorithm with average time complexity (and generally worst-case com-
plexity) O(n log n), of which the most common are heap sort, merge
sort, and quicksort. Each has advantages and drawbacks, with the
most significant being that simple implementation of merge sort uses
O(n) additional space, and simple implementation of quicksort has
O(n2) worst-case complexity. These problems can be solved or amelio-
rated at the cost of a more complex algorithm.

While these algorithms are asymptotically efficient on random data,
for practical efficiency on real-world data various modifications are
used. First, the overhead of these algorithms becomes significant on
smaller data, so often a hybrid algorithm is used, commonly switching
to insertion sort once the data is small enough. Second, the algorithms
often perform poorly on already sorted data or almost sorted data
these are common in real-world data, and can be sorted in O(n) time
by appropriate algorithms. Finally, they may also be unstable, and
stability is often a desirable property in a sort. Thus more sophisticated
algorithms are often employed, such as Timsort (based on merge sort)
or introsort (based on quicksort, falling back to heap sort).

3.2.1 Merge sort

Merge sort takes advantage of the ease of merging already sorted lists
into a new sorted list. It starts by comparing every two elements (i.e.,
1 with 2, then 3 with 4...) and swapping them if the first should come
after the second. It then merges each of the resulting lists of two into
lists of four, then merges those lists of four, and so on; until at last two
lists are merged into the final sorted list. Of the algorithms described
here, this is the first that scales well to very large lists, because its worst-
case running time is O(n log n). It is also easily applied to lists, not
only arrays, as it only requires sequential access, not random access.
However, it has additional O(n) space complexity, and involves a large
number of copies in simple implementations.

Merge sort has seen a relatively recent surge in popularity for prac-
tical implementations, due to its use in the sophisticated algorithm
Timsort, which is used for the standard sort routine in the program-
ming languages Python and Java (as of JDK7). Merge sort itself is the

popular sorting algorithms 5

standard routine in Perl, among others, and has been used in Java at
least since 2000 in JDK1.3.

3.2.2 Heapsort

Heapsort is a much more efficient version of selection sort. It also
works by determining the largest (or smallest) element of the list, plac-
ing that at the end (or beginning) of the list, then continuing with the
rest of the list, but accomplishes this task efficiently by using a data
structure called a heap, a special type of binary tree. Once the data
list has been made into a heap, the root node is guaranteed to be the
largest (or smallest) element. When it is removed and placed at the
end of the list, the heap is rearranged so the largest element remaining
moves to the root. Using the heap, finding the next largest element
takes O(log n) time, instead of O(n) for a linear scan as in simple selec-
tion sort. This allows Heapsort to run in O(n log n) time, and this is
also the worst case complexity.

3.2.3 Quicksort

Quicksort is a divide and conquer algorithm which relies on a partition
operation: to partition an array an element called a pivot is selected.
All elements smaller than the pivot are moved before it and all greater
elements are moved after it. This can be done efficiently in linear time
and in-place. The lesser and greater sublists are then recursively sorted.
This yields average time complexity of O(n log n), with low overhead,
and thus this is a popular algorithm. Efficient implementations of
quicksort (with in-place partitioning) are typically unstable sorts and
somewhat complex, but are among the fastest sorting algorithms in
practice. Together with its modest O(log n) space usage, quicksort is
one of the most popular sorting algorithms and is available in many
standard programming libraries.

The important caveat about quicksort is that its worst-case perfor-
mance is O(n2); while this is rare, in naive implementations (choosing
the first or last element as pivot) this occurs for sorted data, which is
a common case. The most complex issue in quicksort is thus choosing
a good pivot element, as consistently poor choices of pivots can re-
sult in drastically slower O(n2) performance, but good choice of pivots
yields O(n log n) performance, which is asymptotically optimal. For
example, if at each step the median is chosen as the pivot then the
algorithm works in O(n log n). Finding the median, such as by the me-
dian of medians selection algorithm is however an O(n) operation on
unsorted lists and therefore exacts significant overhead with sorting.
In practice choosing a random pivot almost certainly yields O(n log n)
performance.

3.3 Bubble sort and variants

Bubble sort, and variants such as the cocktail sort, are simple but
highly inefficient sorts. They are thus frequently seen in introductory
texts, and are of some theoretical interest due to ease of analysis, but
they are rarely used in practice, and primarily of recreational interest.

popular sorting algorithms 6

Some variants, such as the Shell sort, have open questions about their
behavior.

3.3.1 Bubble sort

Bubble sort is a simple sorting algorithm. The algorithm starts at the
beginning of the data set. It compares the first two elements, and if the
first is greater than the second, it swaps them. It continues doing this
for each pair of adjacent elements to the end of the data set. It then
starts again with the first two elements, repeating until no swaps have
occurred on the last pass. This algorithm’s average time and worst-
case performance is O(n2), so it is rarely used to sort large, unordered
data sets. Bubble sort can be used to sort a small number of items
(where its asymptotic inefficiency is not a high penalty). Bubble sort
can also be used efficiently on a list of any length that is nearly sorted
(that is, the elements are not significantly out of place). For example,
if any number of elements are out of place by only one position (e.g.
0123546789 and 1032547698), bubble sort’s exchange will get them in
order on the first pass, the second pass will find all elements in order,
so the sort will take only 2n time.

3.3.2 Shell sort

Shellsort was invented by Donald Shell in 1959. It improves upon bub-
ble sort and insertion sort by moving out of order elements more than
one position at a time. The concept behind Shellsort is that both of
these algorithms perform in O(kn) time, where k is the greatest dis-
tance between two out-of-place elements. This means that generally,
they perform in O(n2), but for data that is mostly sorted, with only
a few elements out of place, they perform faster. So, by first sort-
ing elements far away, and progressively shrinking the gap between
the elements to sort, the final sort computes much faster. One imple-
mentation can be described as arranging the data sequence in a two-
dimensional array and then sorting the columns of the array using
insertion sort.

The worst-case time complexity of Shell sort largely depends on the
gap sequence used, and can range from O(n2) to O(n log2 n). Also,
unlike efficient sorting algorithms, Shellsort does not require use of
the call stack, making it useful in embedded systems where memory
is at a premium.

3.3.3 Comb sort

Comb sort is a relatively simple sorting algorithm originally designed
by Wlodzimierz Dobosiewicz in 1980. It was later rediscovered and
popularized by Stephen Lacey and Richard Box with a Byte Magazine
article published in April 1991. Comb sort improves on bubble sort.
The basic idea is to eliminate turtles, or small values near the end of the
list, since in a bubble sort these slow the sorting down tremendously.
(Rabbits, large values around the beginning of the list, do not pose a
problem in bubble sort)

popular sorting algorithms 7

3.4 Distribution sort

Distribution sort refers to any sorting algorithm where data are dis-
tributed from their input to multiple intermediate structures which
are then gathered and placed on the output. For example, both bucket
sort and flashsort are distribution based sorting algorithms. Distribu-
tion sorting algorithms can be used on a single processor, or they can
be a distributed algorithm, where individual subsets are separately
sorted on different processors, then combined. This allows external
sorting of data too large to fit into a single computer’s memory.

3.4.1 Counting sort

Counting sort is applicable when each input is known to belong to
a particular set, S, of possibilities. The algorithm runs in O(|S| +
n) time and O(|S|) memory where n is the length of the input. It
works by creating an integer array of size |S| and using the ith bin to
count the occurrences of the ith member of S in the input. Each input
is then counted by incrementing the value of its corresponding bin.
Afterward, the counting array is looped through to arrange all of the
inputs in order. This sorting algorithm often cannot be used because
S needs to be reasonably small for the algorithm to be efficient, but
it is extremely fast and demonstrates great asymptotic behavior as n
increases. It also can be modified to provide stable behavior.

3.4.2 Bucket sort

Bucket sort is a divide and conquer sorting algorithm that generalizes
counting sort by partitioning an array into a finite number of buckets.
Each bucket is then sorted individually, either using a different sorting
algorithm, or by recursively applying the bucket sorting algorithm.

A bucket sort works best when the elements of the data set are
evenly distributed across all buckets.

3.4.3 Radix sort

Radix sort is an algorithm that sorts numbers by processing individual
digits. n numbers consisting of k digits each are sorted in O(n * k) time.
Radix sort can process digits of each number either starting from the
least significant digit (LSD) or starting from the most significant digit
(MSD). The LSD algorithm first sorts the list by the least significant
digit while preserving their relative order using a stable sort. Then it
sorts them by the next digit, and so on from the least significant to the
most significant, ending up with a sorted list. While the LSD radix sort
requires the use of a stable sort, the MSD radix sort algorithm does not
(unless stable sorting is desired). In-place MSD radix sort is not stable.
It is common for the counting sort algorithm to be used internally by
the radix sort. A hybrid sorting approach, such as using insertion sort
for small bins improves performance of radix sort significantly.

	1 Introduction
	2 Classification
	3 Popular sorting algorithms
	3.1 Simple sorts
	3.2 Efficient sorts
	3.3 Bubble sort and variants
	3.4 Distribution sort

