Chapter 03

Real-Valued Functions of a Real
Variable

3.1 Generalities

Let D C R. A function f of a real variable is a rule which associates with each = € D one
and only one y € R.
Notation: f: D — R.

D is called the domain of the function.

Example

1) f:]0,00[ = R
x — In(7)

2) g:]1,00[ = R

.’,C’_>L
1—x

Graph of function
Graph of function f is a set of ordered pairs of real numbers (z, f(z)), where = € D(f).

We write

graph [ =A{(x, f(x)) / = € D(f)}.
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3.1. Generalities

Monotone functions
Function f(x) defined on the set D is called
increasing, if
Vo, 29 € D1y < 29 = f(x1) < f(22).

non-increasing, if

Vay, w9 € D,y < w9 = f(11) > f(22).
decreasing, if

Vay, 29 € D,y < 29 = f(21) > f(29).
non-decreasing, if

Vay,x9 € Dyxy < 9 = f(x1) < f(22).
The above functions are said to be monotone on D,

incresing and decresing functions are said to be strictly monotone.

Proposition: A sum of two increasing (decreasing) functions is an increasing (decreas-

ing) function.

Even and odd functions
Let function f(x) be defined on the set D, which contains with any number x also
number —z.
eFunction f(x) is said to be even on D, if
Ve e D= f(—x) = f(z)
eFunction f(x) is said to be odd on D, if
Vo € D= f(—z) = —f(x)

Graph of an even function is symmetric with respect to the y—axis, while graph of

an odd function is symmetric with respect to the origin O of the coordinate system.

Periodic function
Let function f(z) be defined on the set D and p be a positive real number.
Function f is called periodic with the period p, if

1. for any p € D also number z £ p € D.
2. for all z € D holds f(x £ p) = f(z).



3.2. Limits of function

Bounded function
Function f(z) defined on the set D(f) is called bounded (bounded above, bounded
below), iff there exists a real number K such that, for all x from D(f) holds:

[f(z)] < K

It means, that a function is bounded (bounded above, bounded below), if its range
R(f) is a bounded (bounded above, bounded below) set of real numbers.

Function that is not bounded is called unbounded function

Operations on functions
Let f,g: D —R

L (f£9)(x)=f(z)+g(z)

2. (f.9)(@) = f(x).g(z).

3.2 Limits of function

Définition 3.2.1

Let f : D — R be a function. Let g € D. Then, L € R is called the limite of f as x

approaches x, if for any € > 0, we can find § > 0 such that

Vo, |z — x| < = |f(x) — L| <e.

We will write

lim f(z)=1L

T—X0



3.2. Limits of function

3.2.1 Omne-sided Limits
Right-Hand Limit
The right-hand limit of f at xg is L, denoted by

lim f(x)= L,or( liin f(z)=1L)

LTy )

Left-Hand Limit
The left-hand limit of f at z( is L, denoted by

lim f(x)=L,or liin f(z) =1L

T—Tg =0

If The right-hand and left-hand limits coincide, we say the common value as the limit

of f(z) at xy and denote it by

lim+ f(z) = lim f(z)= lim f(z)=1L

T—xy T—x)) T—T0

Proposition

The limit of a function is unique if it exists.

Examples

1) f:R/{0} =R
v— f(zr) =1

The limit, lim,_, f(z) doesn’t exists, because lim,_o+ f(z) = lim, o+ £ = 400, and
lim, .o~ f(z) = lim,_.o- % = —00.

lim, Lo+ f(2z) # lim, o~ f(2).
2)g:R—R

v — g(x) = |z|



3.2. Limits of function

-Compute lim__, g(x).
lim, g+ g(z) = lim, o+ x = 0, and lim, ,o- g(x) = lim, - (—2) =0

Since lim, .o+ g(z) = lim, ,o- g(2) = 0. Then, ¢ has a limit at 0.

Properties

f,g: D —R,if lim, ., f(z) = Ly and lim,_,,, g(x) = Lo, then

o limgpy [af(2) + Bg(x)] = alimy_, f(2) + flimg .y g(2) = Ly + Lo, (Yo, 5 € R).
o lim, . [f(2)g(2)] = (limgzy f(2))(lime—z, g(2)) = Lo Lo.

oliml,_»xo( f(.l’) ): 1imm—>:v0 f(I‘) _ Ll ’1f L2 7&0

g($) limm—mco g(‘r> L2

Theorem(Squeeze Theorem)

Let f,g,h : R — R be functions. Suppose that
e g(z) < f(x) < h(x) for all z # xg
elim, .., g(x) =lim, ., h(x) =L

Then, lim, .., f(z) = L.

Example
Show lim,_o 2 sin(1) = 0
We have
—1 <sin(2) < 1= —2? < 2?sin(2) < 22, for all z # 0.
lim, o(—2?%) = lim, .o 2*> =0

Therefore, by Squeeze Theorem, we conclude that lim,_o2?sin() = 0.

8 =

Indeterminate Forms (L.F):

0 00 0
—; —: 0.00; 00 — 00; 0%°; c0”; 1°°.
0 0

Now let us discuss these forms one by one:

Inditerminate From 2 and 2 (Hospital).

Inditerminate From 0.00; transformation to g. Then it becomes,



3.2. Limits of function

g(z
or transformation to 2.Then it becomes, lim, ., f(z)g(x) = lim,_4, 9(2)

f(z)

Inditerminate From 1°°; (lim,_,, f(z) = 1,lim,_.,, g(x) = 00). Transformation to 3.

Then it becomes, lim, .., (f(2))9® = exp(lim,_,, 24).
g(x)

Inditerminate From 0°(lim,_,, f(z) = 07, lim,_,, g(x) = 0). Transformation to 3.

Then it becomes, lim, ., (f(2))9® = exp(lim,_.,, <&-).
/@)

Inditerminate From oo®, (lim,_.,, f(z) = 00, lim,_.,, g(z) = 0). Transformation to 3.

Then it becomes, lim, ., (f(2))9®) = exp(lim, 5, 2.
EyIe)

Inditerminate From oo — oo, (lim, .., f(x) = oo, lim, ., g(z) = 00). Transformation
0
to 0"
(oo~ )
Then it becomes, lim, .., (f(z) — g(x)) = lim,_,, (~22127).
F@)9(@)
Theorem (L’Hopital’s Rule)
For a lim,_,, % of the Indeterminate Form % or %,
tim L) _ iy £0)
o g(@) o g (@)
Examples
1) L’Hopital’s Rule and Indeterminate Form %
Compute lim,_, fi;f.
Solution: we use L’Hopital’s Rule. Since the numerator and denomirator both approach
Zero.

2= 0wy. 2
lim — = — = lim
r—T  SInx 0 a—mcosx

= 2.

2) L’Hopital’s Rule and Indeterminate Form <2
z%
Inz”

Compute lim,_,o+

Solution: lim, g+ #= = = = lim,_,¢+

Il

8 \,_-Ii*w‘ll\)
8 \»_-Ii‘w‘ll\)

1
22 .
Inz o hmx_>0+

|
“*‘c:

|z~z

= limx_>0+ =

|

= lim,_,o+ ;—26 = —o0.

8
|

oo



3.2. Limits of function

3) Inditerminate From 0.cc, ( transformation to 22)

Compute lim,_,¢+ z1Inx.

Solution: lim,_,o+ xlnx = lim,_,o+ 1%2 =

x

813

2 lim, or 2 = lim, .o+ (—z) = 0.

gw‘)‘_j&é =

4) Inditerminate From 1%, (transformation to 3)

. 1
Compute lim,_,;+ z71

1

Solution: L = lim,_;+(z71) = In L = lim,_+ In(z77) = lim,_+ 22 =

Therefore, we can apply L’Hopital’s Rule:

Thus, InL =1 = L = lim, .+ 271 = e.

5) Inditerminate From oo — oo, (transformation to 3)

. 1 1
Compute lim, o+ (5= — 1)
ion: li 1 _ 1y _ z—sinz _ 0
Solution: lim, .o+ (57 — 2) = Sans = 0
H . l—coszx _ 0
- llmx_’0+ sinz+xcosz = 0

I

sinx _ 0 _ 0
2cosx—xsinx 2 :

Remark: some of the forms which are not indeterminate are:
0 . 1 h 1. .

—: —have limite as 0.

o o

00.00 has limite as co.

0% and co® have the limites as 0 and co respectively.

Inz
z—1

olo



3.3. Continuity and IVT

3.3 Continuity and IVT

3.3.1 Continuity of Function

Définition 3.3.1 continuous at a point

Let f: D — R be a function, f is continuous at a point a if

lim f(z) = f(a).

On the other hand, if f is defined on an open interval containing a, except perhaps at

a, we can say that f is discontinuous at a if f is not continuous at a.

1
d
i
i
o
| o
(]
1
)
—
o

Figure 3.3. (a) A continuous function, (b) A function with a discontinuity at x = 1.

Graphically, you can think of continuity as being able to draw your function without
having to lift your pencil off the paper. If your pencil has to jump off the page to continue
drawing the function, then the function is not continuous at that point. This is illustrated
in (figure 3.3-b) where if we tried to draw the function (from left to right) we need to lift our
pencil off the page once we reach the point = 1 in order to be able to continue drawing

the function.

Définition 3.3.2 continuous on an open interval

A function f is continuous on an open interval |a, b| if it is continuous at every point in

the interval.

10



3.3. Continuity and IVT

Furthermore, a function is everywhere continuous if it is continuous on the entire real

number line |—o0, +00].

Ml

\ I."'f. "'.

f ' B!

| I| 3 2

| * 4

|

III a o

N

The function f is discontinuities at x = =5,z = -2,z = —1, and x = 4.

Définition 3.3.3 continuous from the Right and from the Left

A function f is right continuous at a point a if

lim f(z) = f(a)

r—a™t

and left continuous at a point a if

lim f(x) = f(a)

r—a

If a function f is continuous at a then it is both left and right continuous at a.

11



3.3. Continuity and IVT

lim, ..+ f(x) = f(a)( right continuous at a point a )

Example 01
T — 2, <0
f(z) =
2, x>0
Away from z = 0, we see that f is continuous. Therefore, we look at z = 0.

limm_>0+ f(l’) = hmm_>0+ 2=2

lim, - f(z) =lim, - x —2= -2

lim,_ does not exist. We conclude that f is discontinuous at x = 0.Therefore the

function f is continuous on R — {0} .

Example 02
The floor function f(x) = [z] is continuous in every open interval between integers,

|n,n + 1] for any integer n. However, it is not continuous at any integer n.

¥
i
2 0 y={x]
*—0
——— —t—t—t=x
-4 -2 2 4
—aj

12



3.3. Continuity and IVT

Remark

The following functions are all continuous at all points of there domains:

(i) Polynomials;(ii) Rational Functions;(iii) Root Functions;(iv) Trigonometric Functions
(v) Inverse Trigonometric Functions; (vi) Exponential Functions; (vii) Logarithmic Func-

tions

Exercise 01

Determine the values of z for which each function is continuous.

1) fl@) = #5

Soltion: Since 22 +1 = 0 has no real solutions, we see that f is continuous for all z € R.

Soltion

limg_y 28 = Tim, g S5 = lim, 2+ 1 = 2.Since lim,_y f(2) = 2 = f(1), f is
continuous at x = 1. Additionally, we see that f is continuous everywhere else. (because
it is elementary function).

Hence, f is continuous on R.
Exercise 02

Consider the function
2 -3, ifzx<1
0, ifx>1
Show that it is continuous at the point x = 1. Is g a continuous function?.

g(z) =

Solution

lim, 1+ g(z) = lim,_,1+(0) =0,

and

lim, ;- g(z) =lim, ;- (22 — 3) = —1.

Since lim,_,1+ g(x) # lim,_,;- g(z). Hence ¢ is not continuous at z = 1 and is not a

continuous function.

13



3.3. Continuity and IVT

Exercise 03

Find the values of o that make the function f(x) continuous for all real numbers.

4x + 5, ifx > -2
flx) =

2’ +a, if x <=2

Solution

First, we note that, for z > —2, f(z) = 4x +5 is continuous. For z < -2, f(z) = 2* + «
will be continuous for all choices of a. We now look at = = 2.

lim, , o+ f(x) =lim, . o+ (42 4+ 5) = =3.

lim, , o f(z) =lim,. o (2> +a) =4+«

In order for the limit to exist, we therefore require 4 + « = —3 = « has to be —7.

With this choice of we get that

lim f(z) = f(=2) = -3

r——2
and so would be continuous. For all other choices of a, f would be discontinuous at

r=—2.

Operations of Continuous Functions

If f and g are continous at a and A is a constant, then the following functions are also

continuous at a.

f£g M fg; Lg#0)

Continuity of Function Composition

If g is continuous at @ and f is continuous at g(a), then the composition function f o g is

continuous at a.

Example

2

g(x) = z* is continuous on R since it is a polynomial, and f(z) = cos(x) is also continuous

everywhere. Therefore (f o g)(z) is continuous on R.

14



3.3. Continuity and IVT

Proposition

If f(x) is continuous at b and lim,_., g(x) = b then,

lim f(g(z)) = f(lim g(z))

Tr—a Tr—a

Example Evaluate the following limit.

lim 6sin:r:
z—0
Since we know that exponentials are continuous everywhere we can use the proposition
above.
sin(z) __ elimw—>0 sinz

lim e = = =1.

z—0

3.3.2 Theorem Intermediate Value Theorem (IVT)

If f is continuous on the interval [a,b] and N is between f(a) and f(b), where f(a) #
f(b),then there is a number ¢ in |a, b[ such that f(c) = N.
f is continuous on [a,b] and f(a) < N < f(b) = 3c € |a,b[: f(c) =N

The Intermediate Value Theorem guarantees that if f(x) is continuous and

f(a) < N < f(b).The line y = N intersects the function at some point x = c¢. Such a
number is between a and b and has the property that f(c) = N.(See Figure 3.5 (a)). We can
also think of the theorem as saying if we draw the line y = N between the lines y = f(a)
and y = f(b), then the function cannot jump over the line y = N. On the other hand, if
f(z) is not continuous, then the theorem may not hold. (See Figure 3.5 (b)) where there is
no number c in |a, b[ such that f(c) = N.

Finally, we remark that there may be multiple choices for ¢ (i.e., lots of numbers betwee
a and b with y—coordinat N). (See Figure 3.5 (¢)) for such an example.

Figure 3.5. (a) A continuous function where IVT holds for a single value c. (b) A
discontinuous function where IVT fails to hold. (¢) A continuous function where IVT holds

for multiple values in ]a, 0.

15



3.3. Continuity and IVT

y f(zx)
f0) + T~ f(b)
Nof==mmmmmmmm =
fla) L .-/ fla)
——t—t——t—t—
a b X

Application of Intermediate Value Theorem

The important application of the intermediate value theorem is to verify the existence of
a root of an equation in a given interval. In particular, the IVT theorem is used to see
whether a given function has its zero ( f(z) = 0) within the given interval ]a,b[. To verify
this, we follow the steps below:

Step 1: Find f(a) and f(b).

Step 2: If f(a) <0 < f(b) ) (i.e., f(a) is negative and f(b) is positive).

Then f(z) has a zero (i.e., f(z) =0 ) in the interval |a, b|.

Let us examine the following example.

Example 01: Use the IVT to show that the function f(z) = 23 + 2z — 1 has a zero in
the interval [0, 1].

Solution

f(x) is continuous everywhere as it is a polynomial function; thus, f(z) is clearly con-
tinuous on [0, 1].

Further, f(0) = —1 and f(1) =2 and -1 <0 < 2.

By the Intermediate Value Theorem, there must exist a ¢ € [0, 1] such that f(c) = 0.

Example 02 Explain why the function f = 2% + 32% + 2 — 2 has a root between 0 and
Solution

by the IVT, f is continuous. Since f(0) = —2 and f(1) = 3, and —2 < 0 < 3, there is a
¢ €10,1] such that f(c) = 0.

16



3.3. Continuity and IVT

3.3.3 Continuous extension to a point

Example

y = = (radians)

N

=3 I 215 37 i

4 e

y
1‘{‘ __siné@

sinx

% = 1, it makes sense to define a

is defined and continuous for all z # 0. As lim, .
new function(
sin x

F(x) = , forxz#0
x

1, forz =0

\

Définition 3.3.4 Let f : D — {c} — R be a function

If lim, .. f(z) = L exists, but f(c) is not defined, we define a new function

f(z), forz#c

F(z) =
L, forx=c

which is continuous at c. It is called the continuous extension of f(x) to c.
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