
Chapter 3

Distributed object-based systems

Presented by: Dr. R. BENTRCIA

Department of Computer Science, M’sila University

Outline

• Objectives

• Distributed Objects

• Organization

• Types

• Communication

• Object Server

• Enterprise Javabeans EJB

• Definition

• Motivations

• Types

• References
1/3/2021 2

Objectives

• To realize the concept of distributed objects.

• To know the General architecture of an EJB server..

1/3/2021 3

Distributed Objects

• In distributed object based systems, the notion of an object plays a key role
in establishing distribution transparency.

• In principle, everything is treated as an object and clients are offered
services and resources in the form of objects that they can invoke.

• Distributed objects form an important paradigm because it is relatively easy
to hide distribution aspects behind an object's interface.

1/3/2021 4

Distributed Objects

• The key feature of an object is that it encapsulates data called the state, and the
operations on those data, called the methods. Methods are made available
through an interface.

• This separation between interfaces and the objects implementing these interfaces
is crucial for distributed systems. A strict separation allows us to place an interface
at one machine, while the object itself resides on another machine.

• A characteristic of most distributed objects is that their state is not distributed: it
resides at a single machine. Only the interfaces implemented by the object are
made available on other machines. Such objects are also referred to as remote
objects.

1/3/2021 5

Distributed Objects

• Common organization of a remote object with client-side proxy:

1/3/2021 6

Distributed Objects

• The Client: When a client binds to a distributed object, an implementation of the
object’s interface, called a proxy, is then loaded into the client's address space.

• The proxy marshals method invocations into messages and unmarshals reply
messages to return the result of the method invocation to the client. The actual
object resides at a server machine, where it offers the same interface as it does on
the client machine. Incoming invocation requests are first passed to a server stub,
which unmarshals them to make method invocations at the object's interface at
the server.

• The server stub is also responsible for marshaling replies and forwarding reply
messages to the client side proxy.

1/3/2021 7

Distributed Objects

• Two types of distributed objects are: Persistent and Transient Objects.

• Persistent objects will survive even if their server is shut down.

• A persistent object continues to exist even if it is currently not contained in the
address space of any server process. In other words, a persistent object is not
dependent on its current server.

• In practice, this means that the server that is currently managing the persistent
object, can store the object's state on secondary storage and then exit. Later, a
newly started server can read the object's state from storage into its own address
space, and handle invocation requests.

1/3/2021 8

Distributed Objects

• A transient object is an object that exists only as long as the server that is
hosting the object exists too.

• Transient objects die if their server is shut down.

• Most object-based distributed systems simply support both types.

1/3/2021 9

Distributed Objects

• Distributed systems generally offer the means for a remote client to invoke an
object.

• This mechanism is largely based on providing object references.

• Object references can be freely passed between processes (client and server) on
different machines, for example as parameters to method invocations.

• By hiding the actual implementation of an object reference, distribution
transparency is enhanced.

• When a process holds an object reference, it must first bind to the referenced
object before invoking any of its methods.

• Binding results in a proxy being placed in the process's address space,
implementing an interface containing the methods the process can invoke. 1/3/2021 10

Distributed Objects

• In many cases, binding is done automatically.

• When an object reference is given, it needs a way to locate the server that manages
the actual object, and place a proxy in the client's address space.

• With implicit binding, the client is offered a simple mechanism that allows it to
directly invoke methods using only a reference to an object.

• In contrast, with explicit binding, the client should first call a special function to bind
to the object before it can actually invoke its methods.

• Explicit binding generally returns a pointer to a proxy that is then become locally
available.

1/3/2021 11

Object Servers

• An object server is a server designed to host distributed objects.

• The important difference between a general object server and other servers is that
an object server by itself does not provide a specific service.

• Specific services are implemented by the objects that reside in the server.

• Essentially, the server provides only the means to invoke local objects, based on
requests from remote clients.

• It is relatively easy to change services by simply adding and removing objects. An
object server thus acts as a place where objects live.

1/3/2021 12

Enterprise JavaBeans EJB

• An EJB is essentially a Java object that is hosted by a special server offering
different ways for remote clients to invoke that object.

• EJB is embedded inside a container which effectively provides interfaces to
underlying services that are implemented by the application server.

• Typical services include those for remote method invocation (RMI), Java
Database Connectivity (JDBC), Java Naming Directory Interface (JNDI), and
Java Message Service (JMS).

1/3/2021 13

Enterprise JavaBeans EJB

• General architecture of an
EJB server:

1/3/2021 14

Motivations

• When to Use Enterprise Beans?

• The application must be scalable. To accommodate a growing number of users, you
may need to distribute an application’s components across multiple machines. Not
only can the enterprise beans of an application run on different machines, but also
their location will remain transparent to the clients.

• Transactions must ensure data integrity. Enterprise beans support transactions, the
mechanisms that manage the concurrent access of shared objects.

• The application will have a variety of clients. With only a few lines of code, remote
clients can easily locate enterprise beans. These clients can be thin, various, and
numerous.

1/3/2021 15

Types of Enterprise JavaBeans

• There are two basic types of Enterprise JavaBeans: session beans and entity beans.

• A session bean is an EJB instance associated with a single client. Session beans
typically are not persistent (although they can be), and may or may not participate
in transactions. In particular, session objects generally don't survive server crashes.

• One example of a session object might be an EJB living inside a Web server that
serves HTML pages to a user on a browser, and tracks that user's path through the
site. When the user leaves the site, or after a specified idle time, the session object
will be destroyed.

1/3/2021 16

Types of Enterprise JavaBeans

• Session beans can be stateless or stateful.

• Stateless session beans are transient objects that are invoked once, do their work,
after which they discard any information they maintain to perform the service they
offered to a client.

• e.g. an SQL query

• Stateful session beans maintain client-related state.

• Remember client data

• e.g. what a client clicks and writes on web forms when shopping on Internet.

1/3/2021 17

Types of Enterprise JavaBeans

• An entity bean represents information persistently stored in a database.
Entity beans are associated with database transactions, and may provide
data access to multiple users. Since the data that an entity bean represents
is persistent, entity beans survive server crashes (this is because when the
server comes back online, it can reconstruct the bean from the underlying
data).

• An example of an entity bean might be an Employee object for a particular
employee in a company's Human Resources database.

1/3/2021 18

Types of Enterprise JavaBeans

• Message-driven beans are used to program objects that should react to
incoming messages and be able to send messages.

• They cannot be invoked directly by a client, but rather fit into a publish-
subscribe way of communication.

1/3/2021 19

References

• Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms,
2nd edition, 2007, Prentice-Hall, Inc.

1/3/2021 20

