Série d'exercices (Mathématiques 01)

Exercice 01

Compléter les pointillés par le connecteur logique qui s'impose: \Leftrightarrow ; \Leftarrow ; \Rightarrow .

1.
$$x \in \mathbb{R}$$
, $x^2 = 4$ $x = 2$.

2.
$$z \in \mathbb{C}$$
, $\bar{z} = z \dots z \in \mathbb{R}$.

3.
$$x \in \mathbb{R}$$
, $x = \pi$ $e^{2ix} = 1$

Exercice 02

Soient E = [0,1] et $F = \left[\frac{1}{2},1\right]$ deux intervalles de \mathbb{R} . On considère l'application $U: E \to F$, définie par

$$U(x) = \frac{x^2 + 1}{2}$$

- 1. Déterminer $U\left(\left]0,\frac{1}{2}\right[\right),\,U^{-1}\left(\left]\frac{1}{2},\,\,\frac{5}{8}\right[\right)$ et $U^{-1}\left(\left\{1\right\}\right).$
- 2. Montrer que U est bijective et déterminer U^{-1} .

Exercice 03

Soit U l'application de \mathbb{R} , dans $]-2,+\infty[$ définie par

$$U(x)=e^x-2$$

- 1. Déterminer $U^{-1}\left(\left\{0\right\}\right)$ et $U\left(\left]0,\ln(2)\right]\right)$.
- 2. Montrer que U est bijective et déterminer U^{-1} .

Exercice 04

la fonction f	la fonction f'
$\arcsin(x)$	
arccos(x)	
arctan(x)	
$\arcsin(g(x))$	
arccos(g(x))	
arctan(g(x))	
ch(x)	
sh(x)	
th(x)	
argch(x)	
argsh(x)	
argth(x)	

Exercice 05

Soit la fonction f définie par

$$f(x) = \begin{cases} \frac{x+3}{2} & \text{si } 0 \le x \le 1\\ \alpha x - 2 & \text{si } 1 < x \le 2 \end{cases}$$

1. Déterminer la valeur α pour que f soit continue au point $x_0 = 1$.

Exercice 06

Soit f la fonction définie par

$$f(x) = \begin{cases} \frac{\sqrt{x^2 + 1} - 1}{x} & \text{si} \quad x \neq 0 \\ 0 & \text{si} \quad x = 0 \end{cases}$$

- 1. Etudier la continuité de f sur \mathbb{R} .
- 2. Etudier la dérivabilité de f sur \mathbb{R} .
- 3. Determiner l'ensemble E des points où la fonction g définie par $g(x) = \arctan\left(\frac{x-1}{x+1}\right)$ est dérivable, et pour tout x, exprimer g'(x).

Exercice 07

Calculer le développement limité à l'ordre 6 au voisinage de 0 de la fonction $f(x) = \sin(x^2)$, puis déduire la limite suivante: $\lim_{x\to 0} \frac{\sin(x^2)-x^2}{x^6}$. (Ind: $\sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...$).

Exercice 08

Soit la fonction f définie par $f(x) = \frac{2e^{\sin(x)} - 2}{\sin(2x)}$

- ① Calculer le développement limité à l'ordre 3 au voisinage de 0 de fonction: $e^{\sin(x)}$.
- ② Calculer les développement limité à l'ordre 3 au voisinage de 0 de fonction: $\sin(2x)$.
- $\ \, \ \,$ Calculer le développement limité à l'ordre 2 au voisinage de 0 de la fonction f(x)
- $\ \$ Étudier la position de la courbe de f par rapport à sa tangent au voisinage de 0.

Ind:
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$ $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$

Déterminer D_f puis calculer f'(x) dans les cas suivantes

1.
$$f(x) = arctan(x^2 + 1)$$

2.
$$f(x) = arcsin(3x - 4)$$

3.
$$f(x) = arccos(6x - 5)$$

$\mathcal{E}_{\mathbf{E}}$ Exercice 10 (examen 2016)

Soit la fonction f définie par

$$f(x) = \frac{\ln(\cos x) + \arctan x}{\sin 2x}$$

- 1. Calculer le développement limité à l'ordre 3 au voisinage de 0 de la fonction f(x).
- 2. Calculer la limite de la fonction f au point 0.
- 3. Étudier la position de la courbe de f par rapport à sa tangent au voisinage de 0.

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \qquad \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Ind:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \qquad \arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

$\mathcal{E}_{\mathcal{E}}$ Exercice 11 (examen 2018)

Soit la fonction f définie par

$$f(x) = \frac{e^{\cos(2x)} - e}{\ln(1 + x^2)}$$

- 1. Calculer le développement limité à l'ordre 2 au voisinage de 0 de la fonction f(x).
- 2. Déduire les valeurs $\lim_{x\to 0} f(x), f'(0), f''(0)$.
- 3. Étudier la position de la courbe de f par rapport à sa tangent au voisinage de 0.

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
 $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$

Ind:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

$lap{E}$ Exercice 12 (examen 2018 SM)

Soient les fonctions suivantes: $f_2(x) = \frac{\sin^2(x)}{x}$ et $f_3(x) = \sin(x^2)$. * Calculer les **D.L** d'ordre 3 au voisinage de point $x_0 = 0$ de f_2 et f_3 , Puis calculer en utilisant seulement les **D.L** la limite suivante: $\lim_{x\to 0} \frac{(f_2(x))^2 - f_3(x)}{x^2}$.

Exercice 13 (examen 2020)

Soit la fonction f définie par

$$f(x) = \frac{\ln(\cosh(x))}{x\ln(1+x)}$$

- 1. Calculer le développement limité à l'ordre 2 au voisinage de 0 de la fonction f(x).
- 2. Déduire les valeurs $\lim_{x\to 0} f(x), f'(0), f''(0)$.
- 3. Étudier la position de la courbe de f par rapport à sa tangent au voisinage de 0.

Ind: $\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots \quad \ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$

Exercice 14 (examen 2017)

Soit f la fonction définie par

$$\begin{cases} e^{\frac{1}{x}} & si \ x < 0 \\ 0 & si \ x = 0 \\ x \ln(x) - x & si \ x > 0 \end{cases}$$

- 1. Etudier la continuité de f sur \mathbb{R} .
- 2. Etudier la dérivabilité de f sur \mathbb{R} .

Exercice 15 (examen 2019 SM)

Soit k une fonction telle que $k : \mathbb{R} \to \mathbb{R}$ Définie comme suit:

$$x \longmapsto \begin{cases} \frac{\sin(x) - x}{x} & \text{si} & x \neq 0 \\ 0 & \text{si} & x = 0 \end{cases}.$$

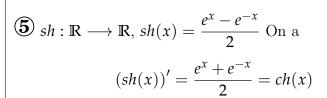
- 1. Etudier la continuité de k au point $x_0 = 0$.
- 2. Etudier la dérivabilité de k au point $x_0 = 0$

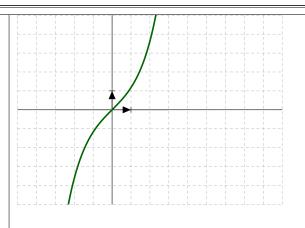
$\mathcal{E}_{\mathcal{E}}$ Exercice 16 (examen 2016)

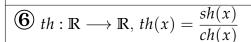
Soient $E = \left[\frac{1}{2}, +\infty\right[$ et $F = \left[-\frac{9}{4}, +\infty\right[$ deux intervalles de \mathbb{R} . On considère l'application $U: E \to F$, définie par

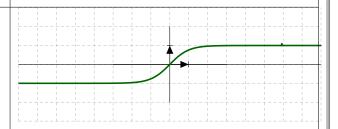
$$U(x) = x^2 - x - 2$$

- 1. Déterminer U([2;4]).
- 2. Résoudre dans $\mathbb R$ les deux inégalités suivantes: $x^2-x\geq 0$ et $x^2-x-6\leq 0$
- 3. Déterminer $U^{-1}([-2;4])$.
- 4. Montrer que U est bijective et déterminer U^{-1} .

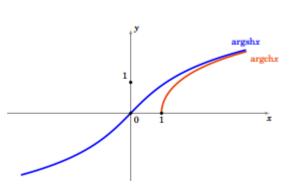








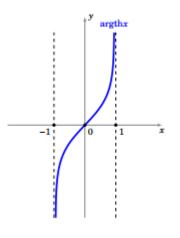
- $\widehat{\mathcal{T}}$ $Argsh: \mathbb{R} \longrightarrow \mathbb{R}, \ Argsh(x) = sh^{-1}(x) \ \text{On a}$ $(Argsh(x))' = \frac{1}{\sqrt{1+x^2}}, \forall x \in \mathbb{R}$
- **8** $Argch: [1; +\infty[\longrightarrow [0; +\infty[, Argch(x) = ch^{-1}(x) \text{ On }]$



a

$$(Argch(x))' = \frac{1}{\sqrt{x^2 - 1}}, \forall x > 1$$

9 $Argth:]-1;1[\longrightarrow \mathbb{R}, \ Argth(x)=th^{-1}(x) \ \text{On a}$ $(Argth(x))'=\frac{1}{1-x^2}, \forall x\in]-1;1[$

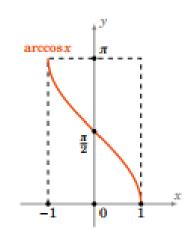


 $\underbrace{\mathbf{0}}_{\text{On a}} Arccos : [-1;1] \longrightarrow [0;\pi], \ Arccos(x) = cos^{-1}(x)$

$$\left(Arccos(x)\right)' = \frac{-1}{\sqrt{1-x^2}}, \forall x \in]-1;1[$$

et

$$(Arccos(g(x)))' = \frac{-g'(x)}{\sqrt{1 - g(x)^2}}$$

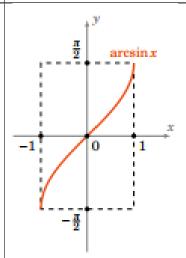


② $Arcsin: [-1;1] \longrightarrow \left[-\frac{\pi}{2}; \frac{\pi}{2}\right], Arcsin(x) = sin^{-1}(x)$

$$(Arcsin(x))' = \frac{1}{\sqrt{1-x^2}}, \forall x \in]-1;1[$$

et

$$(Arcsin(g(x)))' = \frac{g'(x)}{\sqrt{1 - g(x)^2}}$$

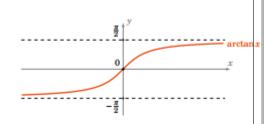


3 $Arctan : \mathbb{R} \longrightarrow \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[, Arctan(x) = tan^{-1}(x) \text{ On a} \right]$

$$(Arctan(x))' = \frac{1}{1+x^2}, \forall x \in \mathbb{R}$$

et

$$(Arctan(g(x)))' = \frac{g(x)'}{1 + g(x)^2}$$



4 $ch: \mathbb{R} \longrightarrow \mathbb{R}, \, ch(x) = \frac{e^x + e^{-x}}{2}$ On a $(ch(x))' = \frac{e^x - e^{-x}}{2} = sh(x)$

