

Récapitulation (Vision artificielle)

Filtrage Fréquentiel (dans le domaine de la transformée de Fourier)

Catégorie	Filtre passe-bas	Filtre passe-haut	Filtre passe-bande
Forme	$H(u,\nu) = \begin{cases} 1 & D(u,\nu) \leq D_0 \\ 0 & D(u,\nu) > D_0 \end{cases}$ $D(u,\nu) = \sqrt{u^2 + \nu^2}$ $D_0 : \text{Fréquence de Coupure}$ $H(u,v)$	$H(u,\nu) = \begin{cases} 1 & D(u,\nu) \geq D_0 \\ 0 & D(u,\nu) < D_0 \end{cases}$ $D(u,\nu) = \sqrt{u^2 + \nu^2}$ $D_0 : \text{Fréquence de Coupure}$ $H(u,v)$ $H(u,v)$ $0 \qquad D_0 \qquad D(u,v)$	$H(u, \nu) = \begin{cases} 0 & D(u, \nu) \leq D_0 - \frac{w}{2} \\ 1 & D_0 - \frac{w}{2} < D(u, \nu) < D_0 + \frac{w}{2} \\ 0 & D(u, \nu) \geq D_0 + \frac{w}{2} \end{cases}$ $D(u, \nu) = \sqrt{u^2 + \nu^2}$ $D_0 : \text{Fréquence de Coupure}$ $w : \text{Largeur de Bande}$ $H(u, \nu)$ $H(u, \nu)$ $0 & D_0 \cdot \frac{w}{2} D_0 D_0 \cdot \frac{w}{2}$
Objectif	Garder les basses fréquences	Garder les hautes fréquences	Garder un intervalle de fréquences
Effet	 Obtenir des régions homogènes (détails) -Lissage de l'image - Image devient floue 	-Présenter les contours - Sensible au bruit	- Présenter l'information qui se trouve seulement dans cet intervalle.

Récapitulation

Filtre passe-bas (Lissage)

Catégorie	Linéaire		Non- Linéaire	
Туре	Moyenneur	Gaussien	Médian	
Forme	$ \frac{1}{5} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} $ $ \frac{1}{5} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} $	$H_{G1} = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ $H_{G2} = \frac{1}{2025} \begin{bmatrix} 1 & 10 & 22 & 10 & 1 \\ 10 & 106 & 231 & 106 & 10 \\ 22 & 231 & 504 & 231 & 22 \\ 10 & 106 & 231 & 106 & 10 \\ 1 & 10 & 22 & 10 & 1 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Avantage	Élimination de bruit additionnel et surtout de type poisson	Élimination de bruit additionnel et surtout de type gaussien	Filtre mieux le bruit impulsionnel (poivre et sel)	
Inconvénient	 Forte atténuation des contours Forte influence des pixels isolés 		- Supprime le détail qui n'est pas bruit - Détruit les coins - Couteux en temps de calcul	

Récapitulation

Filtre passe-haut (Détection de Contours)						
Catégorie	Gradient					
Туре	Approximation de base	Roberts	Prewitt	Sobel		
Forme	$\frac{\partial f}{\partial x}: \boxed{-1} \boxed{0} +1 \frac{\partial f}{\partial y}: \boxed{0} +1$	0 1 -1 0 0 1 Gradient Gradient diagonal	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Avantage	Rapide et efficace avec les images propres		 Absorbe considérablement le bruit Facile et rapide de leur traitement Plus robustes 			
Inconvénient	Forte sensibilité au bruitProblème de seuillage		 Ils ne peuvent pas éliminer tout le bruit Les contours obtenus sont souvent assez larges Moins précis + Problème de seuillage 			

Récapitulation

Filtre passe-haut (Détection de Contours) Par deuxième dérivée

Type	Laplacian	Opérateur LoG (Laplacian of Gaussian)	
Forme	0 +1 0 +1 -4 +1 0 +1 0 +1 0 +1 0 +1 0 +1 +1 +1 +1 0 -4 0 +1 +1 -8 +1 +1 0 +1 +1 +1 +1 +1 +2 +1 +1 +4 +1 +2 -12 +2 +1 +4 -20 +4 +1 +2 +1	Gaussian derivative of Gaussian $h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{2\sigma^2}} \qquad \frac{\partial}{\partial x}h_{\sigma}(u,v) \qquad \nabla^2 h_{\sigma}(u,v)$ $\nabla^2 h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{2\sigma^2}} \qquad \frac{\partial}{\partial x}h_{\sigma}(u,v) \qquad \nabla^2 h_{\sigma}(u,v)$ $\nabla^2 h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{2\sigma^2}} \qquad \frac{\partial}{\partial x}h_{\sigma}(u,v) \qquad \nabla^2 h_{\sigma}(u,v)$	
Avantage	- Aux points de contour, la deuxième dérivée est nulle: Contour précis	- Lisser l'image avec un noyau Gaussian puis détecter le changement de signe de la deuxième dérivée	
Inconvénient	- Sensible au bruit - Problème de seuillage	- Problème de seuillage	