UNIVERSITE MOHAMED BOUDIAF DE M'SILA

DEPARTEMENT D'INFORMATIQUE

Les Fondements de la théorie des graphes

Chapitre 3: Problème de coloriage dans les graphes

Dr. SAID KADRI

Maître de Conférence

Department d'informatique, Faculté des Mathematiques et de l'Informatique, Université

Mohamed Boudiaf de M'sila

E-mail: kadri.said28@gmail.com

Website: https://kadrisaid28.wixsite.com/sgadri

Problème de coloriage dans les graphes

Exposition du problème

Soit G(X, U) un graphe non orienté.

On distingue deux types de coloriage dans G.

- 1. Le coloriage des sommets.
- 2. Le coloriage des arêtes.

Définition

- Le coloriage des sommets/des arêtes d'un graphe G consiste à affecter une couleur à chacun(e) des sommets (des arêtes) de sorte que deux sommets (arêtes) adjacents (es) ne soient pas de la même couleur.
- Un graphe est dit *p*-chromatique si ses sommets admettent une coloration en *p* couleurs.
- On appellee nombre chromatique γ(G) (indice chromatique q(G) pour le coloriage des arêtes) le nombre minimum de couleurs différentes nécessaires pour effectuer un coloriage de sommets (des arêtes) de G.

Coloriage des sommets

G(X, U) un graphe non orienté

- Soit I un sous-ensemble de sommets I

 ensemble stable s'il ne comprend que des sommets non adjacents deux à deux (deux sommets quelconques de I ne sont pas adjacents).
- Les sommets portant la même couleur dans un coloriage des sommets forment un ensemble stable.
- Donc, un coloriage de sommets de G ce n'est qu'une partition de G en ensembles stables.
- On définit α (G) le nombre de stabilité qui est la cardinalité maximale d'un ensemble stable. Alors si γ (G) est le nombre chromatique, et puisque chaque ensemble de sommets de même couleur a une cardinalité inférieure ou égale à α (G) donc on a:

$$\alpha(G)$$
. $\gamma(G) \ge N(G)$

Avec:

N(G) = |X| est le nombre des sommet du graphe On peut déduire:

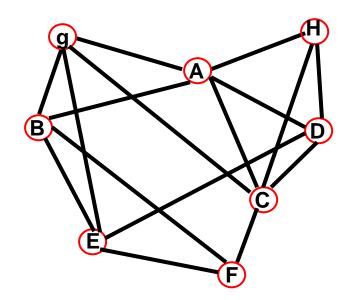
- $\gamma(G) \geq [N(G)/\alpha(G)]$
- Notons que la determination du nombre chromatique γ(G),
 ainsi que l'obtention d'un coloriage minimal des sommets

de G est un problème complexe et nécessite l'utilisation des algorithmes de coloriage heuristiques.

- Signalons aussi que γ (G) pour un graphe à n sommets et m arêtes est défini dans les conditions suivantes :
 - $\checkmark \gamma(G) \ge (n d_{min})$, avec : d_{min} le degré minimum des sommets dans G.
 - \checkmark γ (G) ≥ le cardinal de la plus grande clique dans G
 - $\checkmark \gamma$ (G) ≥ n²/(n² 2m)
 - \checkmark γ (G) ≤ (n+1- α (G)) avec α (G) le nombre de stabilité de G.
 - $\checkmark \gamma(G) \ge d_{max} + 1$ avec d_{max} le degré maximum des sommets dans G.

OBS : Les propriétés précédentes sont démontrées dans les ouvrages de la littérature.

Algorithme de coloriage (Welsh et Pawell)



1. Mettre les sommets du graphe G en ordre décroissant de degré x_1, x_2, \ldots, x_n avec $d(x_i) \ge d(x_j)$ pour $1 \le j \le n$

Sommet	Degré
А	5
С	5
В	4
D	4
E	4
G	4
F	3
Н	3

2. Attribuer la couleur c₁ à x₁ et au sommet suivant de la liste qui n'est pas adjacent à x₁ et qui n'est pas déjà colorié, ainsi de suite avec les sommets de la liste qui ne sont pas adjacents aux sommets déjà coloriés avec la couleur c₁.

- 3. Attribuer la couleur c₂ au premier sommet non encore colorié, ainsi qu'aux sommets suivants qui ne sont pas adjacents aux sommets déjà coloriés par la couleur c₂
- 4. Continuer le processus de Coloriage en utilisant de Nouvelles couleurs c₃, c₄, ..., c_k jusqu'à ce qu'on termine le coloriage de tous les sommets de la liste.

Sommet	Degré	Couleur		
Α	5	C ₁		
С	5	C ₂		
В	4	C ₂		
D	4	C ₃		
E	4	C ₁		
G	4	C ₃		
F	3	C ₃		
Н	3	C ₄		

Le résultat de coloriage de l'exemple précédent est comme suit:

- La couleur c₁ est attribuée aux sommets {A, E}
- La couleur c₂ est attribuée aux sommets {C, B}
- La couleur c₃ est attribuée aux sommets {D, F, G}
- La couleur c₄ est attribuée au sommet {H}

On dit que G est 4-coloriable

Remarque: un graphe biparti est un graphe 2-coloriable

Algorithme de Welsh et Powell (une variante basée sur l'utilisation de la matrice d'adjacence).

Etape 0: Initialisation

- ✓ M: Matrice d'adjacence du graphe dont les sommets sont rangés par ordre décroissant du degré.
- √ K=1 (indice de la couleur utilisée)

Etape 1:

√ N=M (N: Indice de la ligne; M: indice de la colonne)

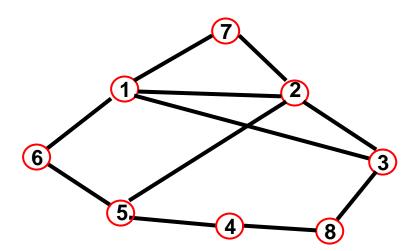
Etape 2:

- √ Trouver l'ensemble N des lignes non encore coloriées ayant un zéro dans les colonnes de couleur c_k
- ✓ Colorier par la couleur c_k la première ligne non encore coloriée de l'ensemble N, ainsi que la colonne correspondante (il ne faut pas que deux sommets adjacents portent la même couleur c_k sinon on le saute)
- ✓ Si N≠ aller à l'étape 2, sinon aller à l'étape 3

Etape 3:

- ✓ Si toutes les lignes sont coloriées alors STOP (et on a une k-coloration)
- √ k=k+1 (changer la couleur)
- ✓ Aller à l'étape 1.

Exemple:



Etape 0:

1. On dessine la matrice d'adjacence de G

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	1	1	0
2	1	0	1	0	1	0	1	0
3	1	1	0	0	0	0	0	1
4	0	0	0	0	1	0	0	1
5	0	1	0	1	0	1	0	0
6	1	0	0	0	1	0	0	0
7	1	1	0	0	0	0	0	0
8	0	0	1	1	0	0	0	0

2. K=1 choisir la couleur c₁

Etape 1:

N=M=1 (Ligne 1, Colonne 1)

Etape 2:

✓ Trouver l'ensemble N_k (k indice de la couleur) des lignes non encore coloriées ayant un zéro dans les colonnes de couleur c₁

$$N_k = \{N_1, N_4, N_5, N_8\}$$

✓ Colorier par la couleur c₁ la première ligne non encore coloriée de l'ensemble N_k, ainsi que la colonne correspondante (il ne faut pas que deux sommets adjacents portent la même couleur c_k sinon on le saute)



On colore les lignes 1, 4 ainsi que les colonnes correspondantes (mais non 5 et 8 car ils sont adjacents au sommet 4 déjà colorié)

✓ Si N≠ aller à l'étape 2, sinon aller à l'étape 3

Aller à l'étape 3

Etape 3:

- √ Si toutes les lignes sont coloriées alors STOP (et on a une k-coloration)
- √ k=k+1 (changer la couleur k=2)

Aller à l'étape 1.

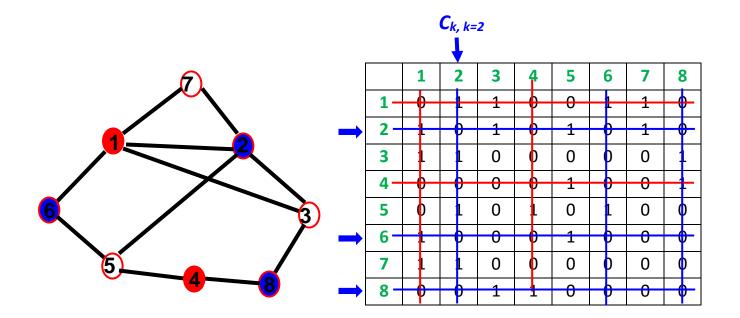
N=M=2 (Ligne 2, Colonne 2)

Etape 2:

√ Trouver l'ensemble N_k des lignes non encore coloriées ayant un zero dans les colonnes de couleur c₂

 $N_k = \{N_2, N_6, N_8\}$

✓ Colorier par la couleur c₂ la première ligne non encore coloriée de l'ensemble N_k, ainsi que la colonne correspondante (il ne faut pas que deux sommets adjacents portent la même couleur c_k sinon on le saute)



On colore les lignes 2, 6, 8 ainsi que les colonnes correspondantes.

✓ Si N≠ aller à l'étape 2, sinon aller à l'étape 3 Aller à l'étape 3

Etape 3:

- √ Si toutes les lignes sont coloriées alors STOP (et on a une k-coloration)
- √ k=k+1 (changer la couleur k=3)

Aller à l'étape 1.

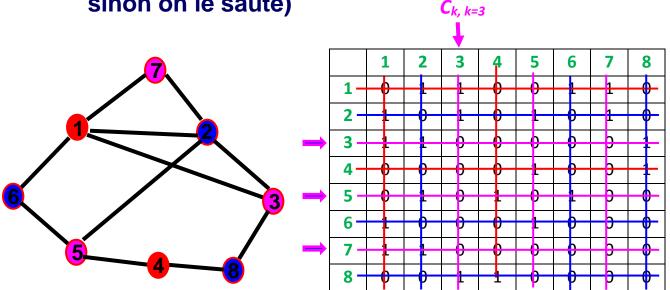
N=M=3 (Ligne 3, Colonne 3)

Etape 2:

✓ Trouver l'ensemble N_k des lignes non encore coloriées ayant un zero dans les colonnes de couleur c₃

 $N_k = \{N_3, N_5, N_7\}$

✓ Colorier par la couleur c₂ la première ligne non encore coloriée de l'ensemble N_k, ainsi que la colonne correspondante (il ne faut pas que deux sommets adjacents portent la même couleur c_k sinon on le saute)



On colore les lignes 3, 5, 7 ainsi que les colonnes correspondantes.

✓ Si N≠ aller à l'étape 2, sinon aller à l'étape 3 Aller à l'étape 3

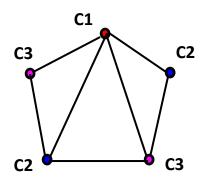
Etape 3:

✓ Si toutes les lignes sont coloriées alors STOP (et on a une k-coloration k=3)

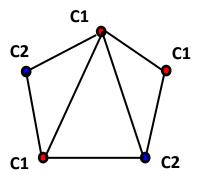
Exemples de coloriage



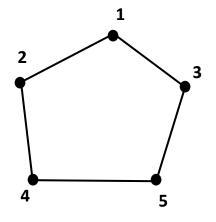
5 couleurs



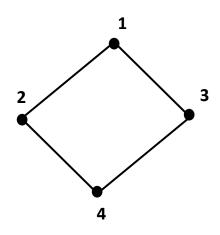
3 couleurs suffisantes $\gamma(G) = 3$



Coloration incorrecte



Nb.sommets = 5 (impair) $\Rightarrow \gamma(G) = 3$ (3 coleurs nécessaires)



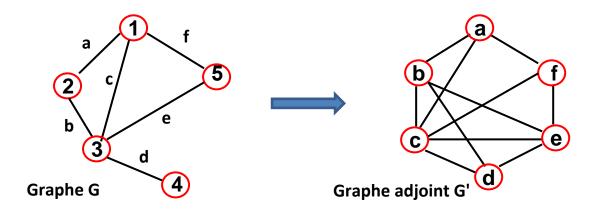
Nb.sommets = 4 (pair) $\Rightarrow \gamma(G) = 2$ (2 coleurs nécessaires)

Remarque: tout graphe planaire est coloriable en 04 couleurs.

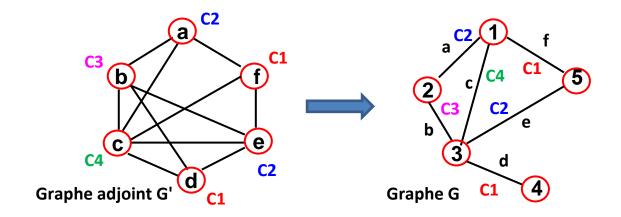
Coloriage des arêtes

- De la même manière que la coloration des sommets, la coloration des arêtes d'un graphe consiste à affecter à toute arête du graphe une couleur de façon que deux arêtes adjacentes ne portent pas la même couleur.
- On définit l'indice chromatique du graphe G (similaire au nombre chromatique pour la coloration des sommets) comme étant le plus petit k pour lequel il existe un coloriage des arêtes, il est noté χ(G).
- Le coloriage des arêtes d'un graphe peut se ramener au coloriage des sommets en travaillant non pas sur le graphe lui-même, mais sur le graphe adjoint G' que l'on définit comme suit:
- 1. A chaque arête de G(X, U) on associe un sommet de G'(X', U').
- 2. Deux sommets de G' sont reliés par une arête, si les deux arêtes correspondantes de G sont adjacentes.

Exemple:



Par la suite, on applique l'algorithme de WELSH POWELL sur le graphe G' pour colorer ses sommets. Une fois cette coloriage est faite, on colorera les arêtes de G avec les mêmes couleurs des sommets correspondantes.

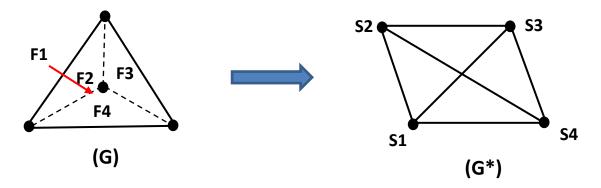


Coloriage des faces

Définition de dual d'un graphe

- Soit G(X, U) un multi-graphe planaire, le dual G* de G est le graphe défini comme suit:
- Les faces de G sont représentées par des sommets dans G*
- A chaque arête de G appartenant à la frontière de deux faces F1, F2, on correspond une arête dans G* reliant les sommets S1, S2 correspondants aux faces F1, F2.
- Le Dual d'un graphe planaire G est aussi un graphe planaire.

$$(G^*)^* = G$$



Et donc, le problème de coloriage des faces d'un graphe planaire G revient à colorer les sommets de son graphe dual G* et inversement.