TP ANALYSE PAR EF d'une barre en 3D

Sur les logiciels Abaqus et Catia V5.

Travail demandé :

- 1- Démarrer \rightarrow Conception mécanique \rightarrow Part design
- 2- Choisissez le plan YZ et faites le profil (figure 1), ensuite tracer un cercle de Diametre (25mm) dans le plan

XY et à la fin appliquer la fonction 3D nervure \square

- 3- Insérer un matériau 🖆 (choisissez l'Aluminium)
- 4- Démarrer \rightarrow Analyse & simulation \rightarrow generative structural analysis
- 5- Une boite de dialogue apparait, choisissez Analyse statique

Figure 1 : Barre en 3D soumie à la flextion.

- 6- Sur l'arboresence, selectionner modele element finis, puis maillage, faites un double clic sur maillage octree et changer les parametres comme indiquée sur la figure 2.
- 7- Clique droit sur maillage et faites une visualisation du maillage (figure 3)

Figure 2

figure 3

8- Appliquer les chargements et les conditions aux limites pour le modèle

9- afficher les résultats

Refaire le même exercice sur Abaqus et faites une comparaison entre les deux ?

Etape 1 : Module Part :

Dessiner la géométrie en Double Cliquant sur part dans l'arborescence ou bien sur l'icône create part

- a- Choisissez : Name : Barre_C_3D **3D Déformable Solide Approximate size** = 200
- b- Tracer la barre en utilisant l'outil Create lines Create Fillet sur le plan XY

c- Dimensionner de la façon suivante avec la comande: Add dimensions vuivante Seewp.

Etape 2 : Mod	ule Proprety (donner les propriétés du matériau)
₹ E	Cliquer sur <i>Creat material</i> ou bien faire un double clic sur Materials dans l'arborescence Name: Aliminum- $E = 69x10^9$ Pa $v=0.346$
ŀ	Creat section : Name : Section_barre_C_3D – Category : Solide – Type : Homogenous - Cliquer sur continue laisser les paramètres tel qu'ils sont et valider par OK.
æL	Ensuite il faut affecter la section à la poutre, Assign section : (sélectionner toutes la structure) et cliquer sur Done , Il apparait un message (choisissez Section_barre_C_3D), valider par OK - Remarquer le changement du couleur (bleu ciel)

<u>Etape 3 : Module Assembly (faire l'instance : cocher Independent mesh on part)</u> Remarquer le repère (X,Y,Z) en jaune sur le mileiu de la barre. Etape 4 : Module Step (Configuration de l'analyse : étape d'analyse et spécification des requêtes de sorties)

	Name : Chargement – type de procédure : Générale – sélectionner Static, Genéral
•+=	dans la liste et cliquer sur continue la boite de dialogue Edit step apparait, laisser
	les paramètres tel qu'ils sont et valider par OK.

Etape 5 : Module Load (Appliquer les chargements et les conditions aux limites pour le modèle)

Ľ	Creat load : Name : Pression - Step : Chargement – Type for selected step: Pressure On applique la charge répartie (sélectionner la face haut du modèle dont laquelle on applique la charge répartie) et valider par Done , ensuite saisit la valeur 1000 dans			
	Magnitude. Il apparait la charge appliquée sur la structure.			
	Creat Boundary condition : Name : Encastrement- Step : Chargement – Type for			
	selected step: Symmetry/Antisymmertry/Encastre			
	Sectionner la surface circulaire en bas du modele valider par Done , ensuite cocher			
	U1, U2, U3, UR1, UR2, UR3 pour empêcher le déplacement et la rotation dans les			
	directions 1,2 et 3. Enfin valider par OK.			
	🕂 Create Boundary Condition			

		Edit Boundary Condition
Name: BC-2		Name: BC-1
Name: 1002 Step: Step-1 Procedure: Static, General Category Mechanical Fluid Electrical/Magnetic Other Other Step: Step-1 Types for Selected Step Symmetry/Antisymmetry/Encastre Displacement/Rotation Velocity/Angular velocity Connector velocity Connector velocity		Type: Symmetry/Antisymmetry/Encastre Step: Step-1 (Static, General) Region: Set-1 CSYS: (Global) XSYMM (U1 = UR2 = UR3 = 0) YSYMM (U2 = UR1 = UR3 = 0) ZSYMM (U3 = UR1 = UR2 = 0) XASYMM (U2 = U3 = UR1 = 0; Abaqus/Standard only) YASYMM (U1 = U2 = UR3 = 0; Abaqus/Standard only) ZASYMM (U1 = U2 = U3 = 0; Abaqus/Standard only) EXASYMM (U1 = U2 = U3 = 0; Abaqus/Standard only) EXASYMM (U1 = U2 = U3 = 0; Abaqus/Standard only) EXASYMM (U1 = U2 = U3 = 0; Abaqus/Standard only) EXASYMM (U1 = U2 = U3 = 0; Abaqus/Standard only)
Continue	Cancel	OK Cancel

U1 : Déplacement sur l'axe des X, U2 : Déplacement sur l'axe des Y, UR3 : Rotation sur l'axe des Z, (1= Axe X, 2= Axe Y, 3= Axe Z)

Etape 6 : Module Mesh (créer le maillage de la structure)

Tout d'abord, allez vers modèle 1 et cliquer sur part pour que la pièce apparaisse

	Cliquer sur Assing Mesh controls et choisissez Tet et valider par Yes pour valider le maillage
Eq.	Sélectionner la commande Seed Part , puis entrer la valeur 0.005 dans le champ Approximat global size , cliquer sur Allpy pour voir la distribution des nœuds.
L,	Cliquer sur Mesh Part et valider par Yes pour valider le maillage

Etape 7 : Module: Job

Job => Create => Name: Job- Section_barre_C_3D, Model: Model-1 => Continue => Job Type: Full analysis, Run

Job => Submit => Job- Section_barre_C_3D

Job => Manager => Results (enters Module: Visualization) <u>Etape 8: Module Visualization</u>

Cliquer sur *Plot contours on deformed Shape* (afficher la contrainte de Von Mises S)