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P R E F A C E

The subject of materials science and engineering is an essential course to 
engineers and scientists from all disciplines. With advances in science and 
technology, development of new engineering fields, and changes in the 

engineering profession, today’s engineer must have a deeper, more diverse, and 
up-to-date knowledge of materials-related issues. At a minimum, all engineering 
students must have the basic knowledge of the structure, properties, processing, and 
performance of various classes of engineering materials. This is a crucial first step in 
the materials selection decisions in everyday rudimentary engineering problems. A 
more in-depth understanding of the same topics is necessary for designers of complex 
systems, forensic (materials failure) analysts, and research and development engineers/
scientists.

Accordingly, to prepare materials engineers and scientists of the future, 
Foundations of Materials Science and Engineering is designed to present diverse top-
ics in the field with appropriate breadth and depth. The strength of the book is in its 
balanced presentation of concepts in science of materials (basic knowledge) and engi-
neering of materials (applied knowledge). The basic and applied concepts are inte-
grated through concise textual explanations, relevant and stimulating imagery, detailed 
sample problems, electronic supplements, and homework problems. This textbook is 
therefore suitable for both an introductory course in materials at the sophomore level 
and a more advanced (junior/senior level) second course in materials science and engi-
neering. Finally, the sixth edition and its supporting resources are designed to address 
a variety of student learning styles based on the well-known belief that not all students 
learn in the same manner and with the same tools.

The following improvements have been made to the sixth edition:

■ Chapter 1, Introduction to Materials Science and Engineering, has been updated 
to reflect the most recent available data on the use of various classes of materials 
in diverse industries. The use of materials in aerospace and automotive industries 
is discussed in detail. The historical competition among major classes of materi-
als has been discussed in more detail and updated.

■ All chapters have been reviewed for accuracy of content, images, and tables. 
New images representing more recent engineering applications have been 
included in all chapters. Diffusivity data in Chapter 5 has been updated. The 
mechanical property discussion in Chapter 6 has been expanded to include 
 modulus of resilience and toughness. The iron-carbon phase diagram in Chapter 9 
has been updated and improved. The concept of glass transition  temperature has 
been expanded upon in the discussion of polymers in Chapter 10. The classifi-
cation of composite materials in Chapter 12 has been expanded and improved. 
In Chapter 13, the sign convention in reporting the half-cell potentials has been 
made consistent with IUPAC conventions. The state of the art in microprocessor 
manufacturing, capability, and design has been updated.
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xvi Preface

■ The end-of-chapter problems have been classified according to the learning/ 
understanding level expected from the student by the instructor. The 
classification is based on Bloom’s Taxonomy and is intended to help students 
as well as instructors to set goals and standards for learning objectives. The first 
group in the classification is the Knowledge and Comprehension Problems. 
These problems will require students to show learning at the most basic level of 
recall of information and recognition of facts. Most problems ask the students 
to perform tasks such as define, describe, list, and name. The second group is 
the Application and Analysis Problems. In this group, students are required to 
apply the learned knowledge to the solution of a problem, demonstrate a concept, 
calculate, and analyze. Finally, the third class of problems is called Synthesis 
and Evaluation Problems. In this class of problems, the students are required 
to judge, evaluate, design, develop, estimate, assess, and in general synthesize 
new understanding based on what they have learned from the chapter. It is worth 
noting that this classification is not indicative of the level of difficulty, but 
simply different cognitive levels.

■ For most chapters, new problems—mostly in the synthesis and evaluation 
 category—have been developed. These problems are intended to make the 
students think in a more in-depth and reflective manner. This is an important 
objective of the authors to help instructors to train engineers and scientists who 
operate at a higher cognitive domain.

■ The instructors’ PowerPoint® lectures have been updated according to the 
changes made to various chapters. These detailed, yet succinct, PowerPoint 
 lectures are highly interactive and contain technical video clips, tutorials for 
problem solving, and virtual laboratory experiments. The PowerPoint lectures 
are designed to address a variety of learning styles including innovative,  analytic, 
common sense, and dynamic learners. Not only is this a great presentation tool 
for the instructor, it creates interest in the student to learn the subject more 
 effectively. We strongly recommend that the instructors for this course view and 
test these PowerPoint lecture presentations. This could be especially helpful for 
new instructors.

Additional resources available through the Instructor Resources are interactive 
quizzing, and step-by-step, real-life processes; animations; and a searchable materials 
properties database.
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A B O U T  T H E  C O V E R

A race car is an example of a complex mechanical system that utilizes a variety of 
materials from all five classes in its structure. For instance, for the race car in the 
image, the body is made of lightweight carbon fiber composites to save weight, the 
chassis is made of strong and tough steel alloys, the tires are made of durable volca-
nized rubber, key components in the engine and brake system are either made of or 
coated with ceramic materials to withstand high temperature, and a variety of sensors 
as well as the on-board computer system uses electronic materials. The design and 
selection of materials for the race car is based on many factors including safety, per-
formance, durability, and cost.
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3 C H A P T E R

Crystal and Amorphous 
Structure in Materials

((a) © McGraw-Hill Education; (b) © Doug Sherman/Geofile; (c) © Zadiraka Evgenii/Shutterstock; (d) © Getty Images/iStockphoto;  
(e) Source: James St. John)

(a) (b) (c)

(d) (e)

(a) (b) (c)

(d) (e)

Solids may be categorized broadly into crystalline and amorphous solids. Crystalline 
solids, due to orderly structure of their atoms, molecules, or ions, possess well-

defined shapes. Metals are crystalline and are composed of well-defined crystals or 
grains. The grains are small and are not clearly observable due to the opaque nature 
of metals. In minerals, mostly translucent to transparent in nature, the well-defined 
crystalline shapes are clearly observable. The following images show the crystalline 
nature of minerals such as (a) celestite (SrSo4) with a sky blue or celestial color, (b) 
pyrite (FeS2), also called “fool’s gold” due to its brassy yellow color, (c) amethyst 
(SiO2), a purple variety of quartz, and (d) halite (NaCl), better known as rock salt. 
In contrast, amorphous solids have poor or no long-range order and do not solidify 
with the symmetry and regularity of crystalline solids. As an example, the amorphous 
structure of hyalite opal or glass opal is shown in Figure e. Note the lack of symmetry 
and of sharp and well-defined crystal edges. ■

(a) (b) (c) (d ) (e)
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3.1 THE SPACE LATTICE AND UNIT CELLS 
The physical structure of solid materials of engineering importance depends mainly 
on the arrangements of the atoms, ions, or molecules that make up the solid and the 
bonding forces between them. If the atoms or ions of a solid are arranged in a pattern 
that repeats itself in three dimensions, they form a solid that has long-range order 
(LRO) and is referred to as a crystalline solid or crystalline material. Examples of 
crystalline materials are metals, alloys, and some ceramic materials. In contrast to 
crystalline materials, there are some materials whose atoms and ions are not arranged 
in a long-range, periodic, and repeatable manner and possess only short-range order 
(SRO). This means that order exists only in the immediate neighborhood of an atom 
or a molecule. As an example, liquid water has short-range order in its molecules in 
which one oxygen atom is covalently bonded to two hydrogen atoms. But this order 
disappears as each molecule is bonded to other molecules through weak secondary 
bonds in a random manner. Materials with only short-range order are classified as 
amorphous (without form) or noncrystalline. A more detailed definition and some 
examples of amorphous materials are given in Section 3.12.

Atomic arrangements in crystalline solids can be described by referring the atoms 
to the points of intersection of a network of lines in three dimensions. Such a net-
work is called a space lattice (Fig. 3.1a), and it can be described as an infinite three- 
dimensional array of points. Each point in the space lattice has identical surroundings. 

Animation
Tutorial

 6. Explain polymorphism or allotropy in 
materials.

 7. Compute the densities for metals  having 
 body-centered and face-centered cubic 
structures.

 8. Describe how to use the X-ray diffraction 
method for material characterization.

 9. Write the designation for atom position, 
 direction indices, and Miller indices for cubic 
crystals. Specify what are the three densely 
packed structures for most metals. Determine 
Miller-Bravais indices for hexagonal close-
packed structure. Be able to draw directions 
and planes in cubic and hexagonal crystals.

By the end of this chapter, students will be able to
 1. Describe what crystalline and noncrystalline 

(amorphous) materials are.

 2. Learn how atoms and ions in solids are 
arranged in space and identify the basic 
 building blocks of solids.

 3. Describe the difference between atomic 
 structure and crystal structure for solid 
material.

 4. Distinguish between crystal structure and 
 crystal system.

 5. Explain why plastics cannot be 100 percent 
crystalline in structure.

L E A R N I N G  O B J E C T I V E S
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94 C H A P T E R  3  Crystal and Amorphous Structure in Materials

In an ideal crystal, the grouping of lattice points about any given point are identical 
with the grouping about any other lattice point in the crystal lattice. Each space lattice 
can thus be described by specifying the atom positions in a repeating unit cell, such 
as the one heavily outlined in Figure 3.1a. The unit cell may be considered the small-
est subdivision of the lattice that maintains the characteristics of the overall crystal. A 
group of atoms organized in a certain arrangement relative to each other and associ-
ated with lattice points constitutes the motif or basis. The crystal structure may then 
be defined as the collection of lattice and basis. It is important to note that atoms do 
not necessarily coincide with lattice points. The size and shape of the unit cell can be 
described by three lattice vectors a, b, and c, originating from one corner of the unit 
cell (Fig. 3.1b). The axial lengths a, b, and c and the interaxial angles α, β, and γ are 
the lattice constants of the unit cell.

3.2  CRYSTAL SYSTEMS AND  
BRAVAIS LATTICES

By assigning specific values for axial lengths and interaxial angles, unit cells of differ-
ent types can be constructed. Crystallographers have shown that only seven different 
types of unit cells are necessary to create all space lattices. These crystal systems are 
listed in Table 3.1.

Many of the seven crystal systems have variations of the basic unit cell. A.J. 
Bravais1 showed that 14 standard unit cells could describe all possible lattice net-
works. These Bravais lattices are illustrated in Figure 3.2. There are four basic types of 
unit cells: (1) simple, (2) body-centered, (3) face-centered, and (4) base-centered. 

Tutorial

1  August Bravais (1811–1863). French crystallographer who derived the 14 possible arrangements of points 
in space.

Figure 3.1
(a) Space lattice of ideal crystalline solid. (b) Unit cell showing lattice constants.

(b)(a)

c

β α

γa

b

smi96553_ch03_092-145.indd 94 10/14/17  05:16 AM

Final PDF to printer



Confirming Pages

 3.3 Principal Metallic Crystal Structures 95

In the cubic system there are three types of unit cells: simple cubic, body-centered 
cubic, and face-centered cubic. In the orthorhombic system all four types are repre-
sented. In the tetragonal system there are only two: simple and body-centered. The 
face-centered tetragonal unit cell appears to be missing but can be constructed from 
four body-centered tetragonal unit cells. The monoclinic system has simple and base-
centered unit cells, and the rhombohedral, hexagonal, and triclinic systems have only 
one simple type of unit cell.

3.3 PRINCIPAL METALLIC CRYSTAL STRUCTURES
In this chapter, the principal crystal structures of elemental metals will be discussed in 
detail. Most ionic and covalent materials also possess a crystal structure which will be 
discussed in detail in Chapter 11.

Most elemental metals (about 90%) crystallize upon solidification into three 
densely packed crystal structures: body-centered cubic (BCC) (Fig. 3.3a), face- 
centered cubic (FCC) (Fig. 3.3b), and hexagonal close-packed (HCP) (Fig. 3.3c). 
The HCP structure is a denser modification of the simple hexagonal crystal struc-
ture shown in Figure 3.2. Most metals crystallize in these dense-packed structures 
because energy is released as the atoms come closer together and bond more tightly 
with each other. Thus, the densely packed structures are in lower and more stable 
energy arrangements.

The extremely small size of the unit cells of crystalline metals that are shown in Figure 
3.3 should be emphasized. The cube side of the unit cell of body-centered cubic iron, for 

Crystal System Axial Lengths and Interaxial Angles Space Lattice

Cubic Three equal axes at right angles
a = b = c, α = β = γ = 90°

Simple cubic
Body-centered cubic
Face-centered cubic

Tetragonal Three axes at right angles, two equal
a = b ≠ c, α = β = γ = 90°

Simple tetragonal
Body-centered tetragonal

Orthorhombic Three unequal axes at right angles
a ≠ b ≠ c, α = β = γ = 90°

Simple orthorhombic
Body-centered orthorhombic
Base-centered orthorhombic
Face-centered orthorhombic

Rhombohedral Three equal axes, equally inclined
a = b = c, α = β = γ ≠ 90°

Simple rhombohedral

Hexagonal Two equal axes at 120°, third axis at right 
angles
a = b ≠ c, α = β = 90°, γ = 120°

Simple hexagonal

Monoclinic Three unequal axes, one pair not at right 
angles
a ≠ b ≠ c, α = γ = 90° ≠ b

Simple monoclinic
Base-centered monoclinic

Triclinic Three unequal axes, unequally inclined  
and none at right angles
a ≠ b ≠ c, α ≠ β ≠ γ ≠ 90°

Simple triclinic

Table 3.1 Classification of space lattices by crystal system
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96 C H A P T E R  3  Crystal and Amorphous Structure in Materials

Figure 3.2
The 14 Bravais conventional unit cells grouped according to crystal system. The dots indi-
cate lattice points that, when located on faces or at corners, are shared by other identical 
lattice unit cells.
(Source: W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, vol. 1: 
“Structure,” Wiley, 1964, p. 47.)
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 3.3 Principal Metallic Crystal Structures 97

Figure 3.3
Principal metal crystal structure and unit cells: (a) body-centered cubic, (b) 
 face-centered cubic, (c) hexagonal close-packed crystal structure (the unit cell is 
shown by solid lines).

(b)(a) (c)

example, at room temperature is equal to 0.287 × 10−9 m, or 0.287 nanometer  (nm).2 
Therefore, if unit cells of pure iron are lined up side by side, in 1 mm there will be

 1 mm ×   
1 unit cell

  _____________________  
0.287 nm ×  10   −6   mm/nm

   = 3.48 ×  10   6   unit cells! 

Let us now examine in detail the arrangement of the atoms in the three principal 
crystal structure unit cells. Although an approximation, we shall consider atoms in 
these crystal structures to be hard spheres. The distance between the atoms (inter-
atomic distance) in crystal structures can be determined experimentally by X-ray dif-
fraction analysis.3 For example, the interatomic distance between two neighboring 
aluminum atoms in a piece of pure aluminum at 20°C is 0.286 nm. The radius of the 
aluminum atom in the aluminum metal is assumed to be half the interatomic distance, 
or 0.143 nm. The atomic radii of selected metals are listed in Tables 3.2 to 3.4.

3.3.1 Body-Centered Cubic (BCC) Crystal Structure

First, consider the atomic-site unit cell for the BCC crystal structure shown in 
Figure 3.4a. In this unit cell, the solid spheres represent the centers where atoms are 
located and clearly indicate their relative positions. If we represent the atoms in this 
cell as hard spheres, then the unit cell appears as shown in Figure 3.4b. In this unit cell, 
we see that the central atom is surrounded by eight nearest neighbors and is said to 
have a coordination number of 8.

If we isolate a single hard-sphere unit cell, we obtain the model shown in 
Figure 3.4c. Each of these cells has the equivalent of two atoms per unit cell. One 
complete atom is located at the center of the unit cell, and an eighth of a sphere (an 

Animation
Tutorial

2 1 nanometer = 10−9 meter.
3 Some of the principles of X-ray diffraction analysis will be studied in Section 3.11.
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98 C H A P T E R  3  Crystal and Amorphous Structure in Materials

octant) is located at each corner of the cell, making the equivalent of another atom. 
Thus, there is a total of  1 (at the center) + 8 ×   1 _ 8   (at the corners ) = 2  atoms per unit 
cell. The atoms in the BCC unit cell contact each other across the cube diagonal, as 
indicated in Figure 3.5, so the relationship between the length of the cube side a and 
the atomic radius R is

   √ 
__

 3  a = 4 R   or   a =   
4 R

 ___ 
 √ 

__
 3  
    (3.1)

Figure 3.4
BCC unit cells: (a) atomic-site unit cell, (b) hard-sphere unit cell, and  
(c) isolated unit cell.

(a) (b) (c)

Iron at 20°C is BCC with atoms of atomic radius 0.124 nm. Calculate the lattice constant a 
for the cube edge of the iron unit cell.

■ Solution
From Figure 3.5 it is seen that the atoms in the BCC unit cell touch across the cube diago-
nals. Thus, if a is the length of the cube edge, then

   √ 
__

 3  a = 4 R  (3.1)

where R is the radius of the iron atom. Therefore, considering that three significant digits 
should be used in all calculations, the answer will be (use three significant digits for   √ 

__
 3   )

  a =    
4 R

 ___ 
 √ 

__
 3  
    =    

4 (  0.124 nm )  
 ___________ 

 √ 
__

 3  
    =  0.287 nm ◂    

 
  

 
  

use three significant digits
  

EXAMPLE 
PROBLEM 3.1

Figure 3.5
BCC unit cell showing  
relationship between the 
lattice constant a and  
the atomic radius R.
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 3.3 Principal Metallic Crystal Structures 99

If the atoms in the BCC unit cell are considered to be spherical, an atomic packing 
factor (APF) can be calculated by using the equation

  APF =    
volume of atoms in unit cell

   _______________________  
volume of unit cell

    (3.2)

Using this equation, the APF for the BCC unit cell (Fig. 3.4c) is calculated to be 
68% (see Example Problem 3.2). That is, 68% of the volume of the BCC unit cell is 
occupied by atoms and the remaining 32% is empty space. The BCC crystal structure 
is not a close-packed structure since the atoms could be packed closer together. Many 
metals such as iron, chromium, tungsten, molybdenum, and vanadium have the BCC 
crystal structure at room temperature. Table 3.2 lists the lattice constants and atomic 
radii of selected BCC metals.

Metal Lattice Constant a (nm) Atomic Radius R* (nm)

Chromium 0.289 0.125
Iron 0.287 0.124
Molybdenum 0.315 0.136
Potassium 0.533 0.231
Sodium 0.429 0.186
Tantalum 0.330 0.143
Tungsten 0.316 0.137
Vanadium 0.304 0.132

*Calculated from lattice constants by using Eq. (3.1),  R =  √ 
__

 3   a / 4 .

Table 3.2  Selected metals that have the BCC crystal structure at room temperature (20°C) and 
their lattice constants and atomic radii

Calculate the atomic packing factor (APF) for the BCC unit cell, assuming the atoms to be 
hard spheres.

■ Solution

  APF =    
volume of atoms in BCC unit cell

   ____________________________   
volume of BCC unit cell

    (3.2)

Since there are two atoms per BCC unit cell, the volume of atoms in the unit cell of radius 
R is

  V  atoms   =   (  2 )    (  
4
 __ 

3
   π  R   3 )  = 8.373  R   3  

The volume of the BCC unit cell is

  V  unit cell   =  a   3  

EXAMPLE 
PROBLEM 3.2

Tutorial
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100 C H A P T E R  3  Crystal and Amorphous Structure in Materials

where a is the lattice constant. The relationship between a and R is obtained from Figure 3.5, 
which shows that the atoms in the BCC unit cell touch each other across the cubic diagonal. 
Thus,

   √ 
__

 3  a = 4 R   or   a =   
4 R

 ___ 
 √ 

__
 3  
    (3.1)

Thus,

  V  unit cell   =  a   3  = 12.32  R   3  

The atomic packing factor for the BCC unit cell is, therefore,

 APF =    
 V  atoms   /unit cell

  ____________ 
 V  unit cell  

   =   
8.373  R   3 

 _______ 
12.32  R   3 

   = 0.6796 ≈ 0.68 ◂ 

3.3.2 Face-Centered Cubic (FCC) Crystal Structure

Consider next the FCC lattice-point unit cell of Figure 3.6a. In this unit cell, there is 
one lattice point at each corner of the cube and one at the center of each cube face. The 
hard-sphere model of Figure 3.6b indicates that the atoms in the FCC crystal structure 
are packed as close together as possible, and are thus called a close-packed structure. 
The APF for this close-packed structure is 0.74 as compared to 0.68 for the BCC  
structure, which is not close-packed.

The FCC unit cell as shown in Figure 3.6c has the equivalent of four atoms per 
unit cell. The eight corner octants account for one atom ( 8 ×   1 _ 8   = 1 ), and the six half-
atoms on the cube faces contribute another three atoms, making a total of four atoms 
per unit cell. The atoms in the FCC unit cell contact each other across the cubic face 
diagonal, as indicated in Figure 3.7, so the relationship between the length of the cube 
side a and the atomic radius R is

   √ 
__

 2  a = 4R   or   a =   
4 R

 ___ 
 √ 

__
 2  
    (3.3)

Figure 3.6
FCC unit cells: (a) atomic-site unit cell, (b) hard-sphere unit cell, and  
(c) isolated unit cell.

(a) (b) (c)
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The APF for the FCC crystal structure is 0.74, which is greater than the 0.68 
factor for the BCC structure. The APF of 0.74 is for the closest packing possible of 
“spherical atoms.” Many metals such as aluminum, copper, lead, nickel, and iron at 
elevated temperatures (912°C to 1394°C) crystallize with the FCC crystal structure. 
Table 3.3 lists the lattice constants and atomic radii for some selected FCC metals. 

3.3.3 Hexagonal Close-Packed (HCP) Crystal Structure

The third common metallic crystal structure is the hexagonal close-packed (HCP) 
structure shown in Figures 3.8a and b. Metals do not crystallize into the simple hex-
agonal crystal structure shown in Figure 3.2 because the APF is too low. The atoms 
can attain a lower energy and a more stable condition by forming the HCP structure 
of Figure 3.8b. The APF of the HCP crystal structure is 0.74, the same as that for 
the FCC crystal structure since in both structures the atoms are packed as tightly as 

Figure 3.7
FCC unit cell showing rela-
tionship between the lattice 
constant a and atomic radius 
R. Since the atoms touch 
across the face diagonals,   
√ 

__
 2  a = 4R .

a

4R

= 4R

2a

2a

Tutorial

Tutorial
Animation

Metal Lattice Constant a (nm) Atomic Radius R* (nm)

Aluminum 0.405   0.143
Copper 0.3615 0.128
Gold 0.408   0.144
Lead 0.495   0.175
Nickel 0.352   0.125
Platinum 0.393   0.139
Silver 0.409   0.144

* Calculated from lattice constants by using Eq. 3.3,  R =  √ 
__

 2  a / 4 .

Table 3.3  Selected metals that have the FCC crystal structure at room temperature (20°C) and 
their lattice constants and atomic radii
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possible. In both the HCP and FCC crystal structures, each atom is surrounded by 12 
other atoms, and thus both structures have a coordination number of 12. The differ-
ences in the atomic packing in FCC and HCP crystal structures will be discussed in 
Section 3.8.

The isolated HCP unit cell, also called the primitive cell, is shown in Figure 3.8c. 
The atoms at locations marked “1” on Figure 3.8c contribute    1 _ 6    of an atom to the unit 
cell. The atoms at locations marked “2” contribute    1 __ 12    of an atom to the unit cell.

Thus, the atoms at the eight corners of the unit cell collectively contribute one 
atom  (4(  1 _ 6   ) + 4(  1 __ 12   ) = 1) . The atom at location “3” is centered inside the unit cell but 
extends slightly beyond the boundary of the cell. The total number of atoms inside an 
HCP unit cell is therefore two (one at corners and one at center). In some textbooks 
the HCP unit cell is represented by Figure 3.8a and is called the “larger cell.” In such 
a case, one finds six atoms per unit cell. This is mostly for convenience, and the true 
unit cell is presented in Figure 3.8c by the solid lines. When presenting the topics of 
crystal directions and planes we will also use the larger cell for convenience, in addi-
tion to the primitive cell.

The ratio of the height c of the hexagonal prism of the HCP crystal structure to its 
basal side a is called the c/a ratio (Fig. 3.8a). The c/a ratio for an ideal HCP crystal 
structure consisting of uniform spheres packed as tightly together as possible is 1.633. 
Table 3.4 lists some important HCP metals and their c/a ratios. Of the metals listed, 
cadmium and zinc have c/a ratios higher than the ideal ratio, which indicates that the 
atoms in these structures are slightly elongated along the c axis of the HCP unit cell. 
The metals magnesium, cobalt, zirconium, titanium, and beryllium have c/a ratios less 
than the ideal ratio. Therefore, in these metals, the atoms are slightly compressed in 
the direction along the c axis. Thus, for the HCP metals listed in Table 3.4, there is a 
certain amount of deviation from the ideal hard-sphere model.

Figure 3.8
HCP crystal structure: (a) schematic of the crystal structure, (b) hard-sphere 
model, and (c) isolated unit cell schematic.
(Source: F.M. Miller Chemistry: Structure and Dynamics, McGraw-Hill, 1984, p. 296.)
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 3.3 Principal Metallic Crystal Structures 103

Metal

Lattice Constants (nm) Atomic  
Radius R (nm) c/a Ratio

% Deviation  
from Idealitya c

Cadmium 0.2973 0.5618 0.149 1.890 +15.7
Zinc 0.2665 0.4947 0.133 1.856 +13.6
Ideal HCP 1.633   0
Magnesium 0.3209 0.5209 0.160 1.623     −0.66
Cobalt 0.2507 0.4069 0.125 1.623     −0.66
Zirconium 0.3231 0.5148 0.160 1.593     −2.45
Titanium 0.2950 0.4683 0.147 1.587     −2.81
Beryllium 0.2286 0.3584 0.113 1.568     −3.98

Table 3.4  Selected metals that have the HCP crystal structure at room temperature (20°C) and 
their lattice constants, atomic radii, and c/a ratios

 a. Calculate the volume of the zinc crystal structure unit cell by using the following 
data: pure zinc has the HCP crystal structure with lattice constants a = 0.2665 nm 
and c = 0.4947 nm.

 b. Find the volume of the larger cell.

■ Solution
The volume of the zinc HCP unit cell can be obtained by determining the area of the base of 
the unit cell and then multiplying this by its height (Fig. EP3.3).

 a. The area of the base of the unit cell is area ABDC of Figure EP3.3a and b. This total 
area consists of the areas of two equilateral triangles of area ABC of Figure EP3.3b. 
From Figure EP3.3c,

  
Area of triangle ABC

  
=

  
  1 _ 2    (  base )      (  height )   

     
 
  

=
  
  1 _ 2    (  a )      (  a   sin 60   ⚬  )    =   1 _ 2    a   2   sin 60   ⚬ 

  

From Figure EP3.3b,

  Total area of HCP base, area ABDC  =    (  2 )   (     1 _ 2    a   2   sin 60   ⚬  )      
 
  

=
  
 a   2   sin 60   ⚬ 

   

From Figure EP3.3a,

  
Volume of zinc HCP unit cell

  
=

  
  (    a   2   sin 60   ⚬  )   (  c )   

        =    (  0.2665 nm )     2   (  0.8660 )     (  0.4947 nm )          

 

  

=

  

0.03043   nm   3   ◂

   

EXAMPLE 
PROBLEM 3.3
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104 C H A P T E R  3  Crystal and Amorphous Structure in Materials

3.4 ATOM POSITIONS IN CUBIC UNIT CELLS
To locate atom positions in cubic unit cells, we use rectangular x, y, and z axes. In 
crystallography, the positive x axis is usually the direction coming out of the paper, the 
positive y axis is the direction to the right of the paper, and the positive z axis is the 
direction to the top (Fig. 3.9). Negative directions are opposite to those just described.

 b. From Figure EP3.3a,

  
Volume of “large” zinc HCP cell

  
=

  
3  (  volume of  the unit cell or primitive cell )   

        
 
  

=
  
3  (  0.0304 )    = 0.09130   nm   3 

   

Figure EP3.3
Diagrams for calculating the volume of an HCP unit cell. (a) HCP unit cell. 
(b) Base of HCP unit cell. (c) Triangle ABC removed from base of unit cell.
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Figure 3.9
(a) Rectangular x, y, and z axes for locating atom positions in cubic 
unit cells. (b) Atom positions in a BCC unit cell.
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 3.5 Directions in Cubic Unit Cells 105

Atom positions in unit cells are located by using unit distances along the x, y, and 
z axes, as indicated in Fig. 3.9a. For example, the position coordinates for the atoms 
in the BCC unit cell are shown in Fig. 3.9b. The atom positions for the eight corner 
atoms of the BCC unit cell are

  
  (  0, 0, 0 )   

  
  (  1, 0, 0 )   

  
  (  0, 1, 0 )   

  
  (  0, 0, 1 )   

    
  (  1, 1, 1 )   

  
  (  1, 1, 0 )   

  
  (  1, 0, 1 )   

  
  (  0, 1, 1 )   

  

The center atom in the BCC unit cell has the position coordinates  (  1 _ 2  ,   
1 _ 2  ,   

1 _ 2   ) . For simplicity, 
 sometimes only two atom positions in the BCC unit cell are specified, which are 
(0, 0, 0) and  (  1 _ 2  ,   

1 _ 2  ,   
1 _ 2   ) . The remaining atom positions of the BCC unit cell are assumed to 

be understood. In the same way, the atom positions in the FCC unit cell can be located.

3.5 DIRECTIONS IN CUBIC UNIT CELLS
Often it is necessary to refer to specific directions in crystal lattices. This is especially 
important for metals and alloys with properties that vary with crystallographic orienta-
tion. For cubic crystals, the crystallographic direction indices are the vector compo-
nents of the direction resolved along each of the coordinate axes and reduced to the 
smallest integers.

To diagrammatically indicate a direction in a cubic unit cell, we draw a direc-
tion vector from an origin, which is usually a corner of the cubic cell, until it emerges 
from the cube surface (Fig. 3.10). The position coordinates of the unit cell where the 
direction vector emerges from the cube surface after being converted to integers are 
the direction indices. The direction indices are enclosed by square brackets with no 
separating commas.

For example, the position coordinates of the direction vector OR in Figure 3.10a 
where it emerges from the cube surface are (1, 0, 0), and so the direction indices for 
the direction vector OR are [100]. The position coordinates of the direction vector OS 
(Fig. 3.10a) are (1, 1, 0), and so the direction indices for OS are [110]. The position 
coordinates for the direction vector OT (Fig. 3.10b) are (1, 1, 1), and so the direction 
indices of OT are [111].

Figure 3.10
Some directions in cubic unit cells.
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The position coordinates of the direction vector OM (Fig. 3.10c) are  (1,   1 _ 2  , 0) ,  
and since the direction vectors must be integers, these position coordinates must 
be multiplied by 2 to obtain integers. Thus, the direction indices of OM become  
 2  (  1,   1 _ 2  , 0 )    = [210] . The position coordinates of the vector ON (Fig. 3.10d) are  
(−1, −1, 0). A negative direction index is written with a bar over the index. Thus, the 
direction indices for the vector ON are [   ̄  1   ̄  1 0 ]. Note that to draw the direction ON inside 
the cube, the origin of the direction vector had to be moved to the front lower-right 
corner of the unit cube (Fig. 3.10d). Further examples of cubic direction vectors are 
given in Example Problem 3.4.

Often it is useful to determine the angle between two crystal directions. In addi-
tion to geometrical analysis, we can use the definitions of dot product to determine the 
angles between any two direction vectors. Recall from your knowledge of vectors that

  

A · B = ∥ A ∥ ∥ B ∥ cos  θ; A

  

=

  

 a  x   i +  a  y    j +  a  z   k and B  =    b  x   i +  b  y    j +  b  z   k

      

 

  

 

  

also,

     
A · B

  
=

  
 a  x    b  x   +  a  y    b  y   +  a  z    b  z       

 
  

 
  

therefore,
     

cos  θ

  

=

  

  
 a  x    b  x   +  a  y    b  y   +  a  z    b  z    ________________  

∥ A ∥ ∥ B ∥
  

    (3.4)

Draw the following direction vectors in cubic unit cells:

 a. [100] and [110]
 b. [112]
 c. [   ̄  1 10 ]
 d. [   ̄  3 2  ̄  1  ]
 e. Find the angle between [100] and [110]
 f. Find the angle between [112] and [   ̄  1 10 ]

■ Solution

 a. The position coordinates for the [100] direction are (1, 0, 0) (Fig. EP3.4a). The 
 position coordinates for the [110] direction are (1, 1, 0) (Fig. EP3.4a).

 b. The position coordinates for the [112] direction are obtained by dividing the direc-
tion indices by 2 so that they will lie within the unit cube. Thus, they are  (  1 _ 2  ,   

1 _ 2  , 1)  
(Fig. EP3.4b).

 c. The position coordinates for the [   ̄  1 10 ] direction are (−1, 1, 0) (Fig. EP3.4c). Note 
that the origin for the direction vector must be moved to the lower-left front corner of 
the cube.

 d. The position coordinates for the [   ̄  3 2  ̄  1  ] direction are obtained by first dividing all the 
indices by 3, the largest index. This gives  − 1,   2 _ 3  , −   1 _ 3    for the position coordinates of the 
exit point of the direction [   ̄  3 2  ̄  1  ], which are shown in Figure EP3.4d. 

EXAMPLE 
PROBLEM 3.4
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 3.5 Directions in Cubic Unit Cells 107

 e. The angle between directions [100] and [110] can be determined using Eq. 3.4 as 
follows:

∥ A ∥ =  √ 
_________

   1   2   +  0   2  +  0   2    = 1

∥ B ∥ =  √ 
_________

  1   2  +  1   2  +  0   2     =  √ 
__

 2   

cos θ =    
 a  x    b  x   +  a  y    b  y   +  a  z    b  z    ________________  

∥ A ∥ ∥ B ∥
    =    

 (  1 )   (  1 )   +  (  0 )   (  1 )   +  (  0 )   (  0 )  
  ___________________  

 (1)  ( √ 
__

 2  ) 
   =   

1
 __ 

 √ 
__

 2  
   

θ = 45°

 f. The angle between directions [112] and [   ̄  1 10 ] can be determined using Eq. 3.4 as 
follows:

∥ A ∥ =  √ 
_________

   1   2   +  1   2  +  2   2    =  √ 
__

 6   

∥ B ∥ =  √ 
__________

  −  1   2  +  1   2  +  0   2     =  √ 
__

 2   

cos θ =    
 a  x    b  x   +  a  y    b  y   +  a  z    b  z    ________________  

∥ A ∥ ∥ B ∥
    =    

 (  1 )   (  − 1 )   +  (  1 )   (  1 )   +  (  2 )   (  0 )  
  ___________________  

 (   √ 
__

 6   )   (   √ 
__

 2 )    
   =   

0
 ___ 

 √ 
___

 12  
   

θ = 90°

Figure EP3.4
Direction vectors in cubic unit cells.
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108 C H A P T E R  3  Crystal and Amorphous Structure in Materials

The letters u, v, and w are used in a general sense for the direction indices in the x, 
y, and z directions, respectively, and are written as [uvw]. It is also important to note 
that all parallel direction vectors have the same direction indices.

Directions are said to be crystallographically equivalent if the atom spacing along 
each direction is the same. For example, the following cubic edge directions are crys-
tallographic equivalent directions:

   [  100 ]   ,    [  010 ]   ,    [  001 ]   ,    [  0  ̄  1 0 ]   ,    [  00  ̄  1  ]   ,    [    ̄  1 00 ]    ≡ 〈100〉 

Equivalent directions are called indices of a family or form. The notation 〈100〉 is used 
to indicate cubic edge directions collectively. Other directions of a form are the cubic 
body diagonals 〈111〉 and the cubic face diagonals 〈110〉.

Determine the direction indices of the cubic direction shown in Figure EP3.5a.

■ Solution
Parallel directions have the same direction indices, and so we move the direction vector in 
a parallel manner until its tail reaches the nearest corner of the cube, still keeping the vector 
within the cube. Thus, in this case, the upper-left front corner becomes the new origin for 
the direction vector (Fig. EP3.5b). We can now determine the position coordinates where 
the direction vector leaves the unit cube. These are x = −1, y = +1, and  z = −   1 _ 6   . The  position 
coordinates of the direction where it leaves the unit cube are thus  (− 1, +1, −   1 _ 6   ) . The direc-
tion indices for this direction are, after clearing the fraction 6x,  (− 1, +1, −   1 _ 6   ) , or [   ̄  6 6  ̄  1  ].

EXAMPLE 
PROBLEM 3.5

Tutorial

Figure EP3.5

1–
3

1–
2

1–
6

1–
2

(0, 0, 0)

New
origin

1–
31–

2

zz

yy
xx

(a) (b)

Determine the direction indices of the cubic direction between the position coordinates  
  (  3 _ 4  , 0,   1 _ 4  )   and   (  1 _ 4  ,   

1 _ 2  ,   
1 _ 2  )  .

■ Solution
First we locate the origin and termination points of the direction vector in a unit cube, as 
shown in Figure EP3.6. The fraction vector components for this direction are

EXAMPLE 
PROBLEM 3.6
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x

  

=

  

−  (  
3
 __ 

4
   −   

1
 __ 

4
  )  = −   

1
 __ 

2
  

  

 

  

 

   y  =   (  
1
 __ 

2
   − 0)  =   

1
 __ 

2
           

 

  

=

  

 (  
1
 __ 

2
   −   

1
 __ 

4
  )  =   

1
 __ 

4
  

  

 

  

 

  

Thus, the vector direction has fractional vector components of  −   1 __ 2,     
1 __ 2,     

1 __ 4.   . The direction indices 
will be in the same ratio as their fractional components. By multiplying the fraction vector 
components by 4, we obtain [   ̄  2 21 ] for the direction indices of this vector direction.

Figure EP3.6

3
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1
4
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z

y

x

3.6  MILLER INDICES FOR CRYSTALLOGRAPHIC 
PLANES IN CUBIC UNIT CELLS

Sometimes it is necessary to refer to specific lattice planes of atoms within a crystal 
structure, or it may be of interest to know the crystallographic orientation of a plane 
or group of planes in a crystal lattice. To identify crystal planes in cubic crystal struc-
tures, the Miller notation system4 is used. The Miller indices of a crystal plane are 
defined as the reciprocals of the fractional intercepts (with fractions cleared) that the 
plane makes with the crystallographic x, y, and z axes of the three nonparallel edges 
of the cubic unit cell. The cube edges of the unit cell represent unit lengths, and the 
intercepts of the lattice planes are measured in terms of these unit lengths.

The procedure for determining the Miller indices for a cubic crystal plane is as follows:

 1. Choose a plane that does not pass through the origin at (0, 0, 0).
 2. Determine the intercepts of the plane in terms of the crystallographic x, y, and z 

axes for a unit cube. These intercepts may be fractions.

4  William Hallowes Miller (1801–1880). English crystallographer who published a “Treatise on 
Crystallography” in 1839, using crystallographic reference axes that were parallel to the crystal edges and 
using reciprocal indices.

Tutorial
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Figure 3.11
Miller indices of some important cubic crystal planes: (a) (100), (b) (110), and (c) (111).
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yyy

Tutorial

 3. Form the reciprocals of these intercepts.
 4. Clear fractions and determine the smallest set of whole numbers that are in the 

same ratio as the intercepts. These whole numbers are the Miller indices of the 
crystallographic plane and are enclosed in parentheses without the use of com-
mas. The notation (hkl) is used to indicate Miller indices in a general sense, 
where h, k, and l are the Miller indices of a cubic crystal plane for the x, y, and z 
axes, respectively.

Figure 3.11 shows three of the most important crystallographic planes of cubic 
crystal structures. Let us first consider the shaded crystal plane in Figure 3.11a, which 
has the intercepts 1, ∞, ∞ for the x, y, and z axes, respectively. We take the recipro-
cals of these intercepts to obtain the Miller indices, which are therefore 1, 0, 0. Since 
these numbers do not involve fractions, the Miller indices for this plane are (100), 
which is read as the one-zero-zero plane. Next let us consider the second plane shown 
in Figure 3.11b. The intercepts of this plane are 1, 1, ∞. Since the reciprocals of these 
numbers are 1, 1, 0, which do not involve fractions, the Miller indices of this plane 
are (110). Finally, the third plane (Fig. 3.11c) has the intercepts 1, 1, 1, which give the 
Miller indices (111) for this plane.

Consider now the cubic crystal plane shown in Figure 3.12 that has the inter-
cepts    1 _ 3  ,   

2 _ 3  , 1 . The reciprocals of these intercepts are  3,   3 _ 2  , 1 . Since fractional intercepts 
are not allowed, these fractional intercepts must be multiplied by 2 to clear the    3 _ 2    frac-
tion. Thus, the reciprocal intercepts become 6, 3, 2, and the Miller indices are (632). 
Further examples of cubic crystal planes are shown in Example Problem 3.7.

If the crystal plane being considered passes through the origin so that one or more 
intercepts are zero, the plane must be moved to an equivalent position in the same unit 
cell, and the plane must remain parallel to the original plane. This is possible because 
all equispaced parallel planes are indicated by the same Miller indices.

If sets of equivalent lattice planes are related by the symmetry of the crystal sys-
tem, they are called planes of a family or form, and the indices of one plane of the fam-
ily are enclosed in braces as {hkl} to represent the indices of a family of symmetrical 
planes. For example, the Miller indices of the cubic surface planes (100), (010), and 
(001) are designated collectively as a family or form by the notation {100}.
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 3.6 Miller Indices for Crystallographic Planes in Cubic Unit Cells 111

Figure 3.12
Cubic crystal plane (632), which 
has fractional intercepts.

(632)

O
y

z

x

1
3

2
3

Draw the following crystallographic planes in cubic unit cells:

 a. (101)
 b. ( 1  ̄  1 0 )
 c. (221)
 d. Draw a (110) plane in a BCC atomic-site unit cell, and list the position coordinates of 

the atoms whose centers are intersected by this plane.

EXAMPLE 
PROBLEM 3.7

Figure EP3.7
Various important cubic crystal planes.
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112 C H A P T E R  3  Crystal and Amorphous Structure in Materials

■ Solution

 a. First determine the reciprocals of the Miller indices of the (101) plane. These are 
1, ∞, 1. The (101) plane must pass through a unit cube at intercepts x = 1 and z = 1 
and be parallel to the y axis (Fig. EP3.7a).

 b. First determine the reciprocals of the Miller indices of the ( 1  ̄  1 0 ) plane. These 
are1, −1, ∞. The ( 1  ̄  1 0 ) plane must pass through a unit cube at intercepts x = 1 and 
y = −1 and be parallel to the z axis. Note that the origin of axes must be moved to the 
lower-right back side of the cube (Fig. EP3.7b).

 c. First determine the reciprocals of the Miller indices of the (221) plane. These are    1 _ 2  ,   
1 _ 2  , 1 .  

The (221) plane must pass through a unit cube at intercepts  x =   1 _ 2   , y =   1 _ 2   , and z = 1 
(Fig. EP3.7c).

 d. Atom positions whose centers are intersected by the (110) plane are (1, 0, 0), (0, 1, 0), (1, 
0, 1), (0, 1, 1), and  (  1 _ 2  ,   

1 _ 2  ,   
1 _ 2  ) . These positions are indicated by the solid circles (Fig. EP3.7d).

An important relationship for the cubic system, and only the cubic system, is that 
the direction indices of a direction perpendicular to a crystal plane are the same as the 
Miller indices of that plane. For example, the [100] direction is perpendicular to the 
(100) crystal plane.

In cubic crystal structures, the interplanar spacing between two closest parallel 
planes with the same Miller indices is designated dhkl, where h, k, and l are the Miller 
indices of the planes. This spacing represents the distance from a selected origin con-
taining one plane and another parallel plane with the same indices that is closest to it. 
For example, the distance between (110) planes 1 and 2, d110, in Figure 3.13 is AB. 

Figure 3.13
Top view of cubic unit cell showing the distance 
between (110) crystal planes, d110.

d110

d110

a

A

B

O

C

a

x

y

(110) plane 1

(110) plane 2

(110) plane 3
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 3.6 Miller Indices for Crystallographic Planes in Cubic Unit Cells 113

Also, the distance between (110) planes 2 and 3 is d110 and is length BC in Figure 3.13. 
From simple geometry, it can be shown that for cubic crystal structures

   d  hkl   =   
a
 _________  

 √ 
________

  h   2  +  k   2  +  l   2   
    (3.5)

where dhkl =  interplanar spacing between parallel closest planes with  
Miller indices h, k, and l

a = lattice constant (edge of unit cube)
h, k, l = Miller indices of cubic planes being considered

Determine the Miller indices of the cubic crystallographic plane shown in Figure EP3.8a.

■ Solution
First, transpose the plane parallel to the z axis    1 _ 4    unit to the right along the y axis as shown in 
Figure EP3.8b so that the plane intersects the x axis at a unit distance from the new origin 
located at the lower-right back corner of the cube. The new intercepts of the transposed 
plane with the coordinate axes are now  (+1, −   5 __ 12  , ∞) . Next, we take the reciprocals of these 
intercepts to give  (1, −   12 __ 5  , 0) . Finally, we clear the    12 __ 5    fraction to obtain ( 5  ̄  12 0 ) for the Miller 
indices of this plane.

EXAMPLE 
PROBLEM 3.8

Figure EP3.8

New
origin

1
3

– =2
3

1
4

5
12( )z

y

z

y

xx
3
4

(a) (b)

Determine the Miller indices of the cubic crystal plane that intersects the position coordi-
nates  (1,   1 _ 4  , 0),  (1, 1,   1 _ 2  ),  (  

3 _ 4  , 1,   1 _ 4  ) , and all coordinate axes.

■ Solution
First, we locate the three position coordinates as indicated in Figure EP3.9 at A, B, and C. 
Next, we join A and B, extend AB to D, and then join A and C. Finally, we join A to C to 
complete plane ACD. The origin for this plane in the cube can be chosen at E, which gives 

EXAMPLE 
PROBLEM 3.9
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114 C H A P T E R  3  Crystal and Amorphous Structure in Materials

axial intercepts for plane ACD at  x = −   1 _ 2  , y = −   3 _ 4   , and z =   1 _ 2   . The reciprocals of these axial 
intercepts are  − 2, −   4 _ 3   , and 2. Multiplying these intercepts by 3 clears the fraction, giving 
Miller indices for the plane of (   ̄  6   ̄  4 6 ).

Figure EP3.9
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C E (origin for plane)

Origin for
position
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1
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1
2(   , 1, 0)
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4

1
4(   , 1, )3

4

Copper has an FCC crystal structure and a unit cell with a lattice constant of 0.361 nm. What 
is its interplanar spacing d220?

■ Solution

  d  hkl   =   
a
 _________  

 √ 
________

  h   2  +  k   2  +  l   2   
   =   

0.361 nm
  _____________  

 √ 
_____________

   (2)   2  +  (2)   2  +  (0)   2   
   = 0.128 nm ◂ 

EXAMPLE 
PROBLEM 3.10

3.7  CRYSTALLOGRAPHIC PLANES AND  
DIRECTIONS IN HEXAGONAL CRYSTAL 
STRUCTURE

3.7.1 Indices for Crystal Planes in HCP Unit Cells

Crystal planes in HCP unit cells are commonly identified by using four indices instead 
of three. The HCP crystal plane indices, called Miller-Bravais indices, are denoted 
by the letters h, k, i, and l and are enclosed in parentheses as (hkil). These four-digit 
hexagonal indices are based on a coordinate system with four axes, as shown in Figure 
3.14 in an HCP unit cell. There are three basal axes, a1, a2, and a3, which make 120° 
with each other. The fourth axis or c axis is the vertical axis located at the center of 
the unit cell. The a unit of measurement along the a1, a2, and a3 axes is the distance 
between the atoms along these axes and is indicated in Figure 3.14. In the discussion 
of HCP planes and directions, we will use both the “unit cell” and the “larger cell” for 
the presentation of concepts. The unit of measurement along the c axis is the height of 
the unit cell. The reciprocals of the intercepts that a crystal plane makes with the a1, a2, 
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 3.7 Crystallographic Planes and Directions in Hexagonal Crystal Structure  115

and a3 axes give the h, k, and i indices, while the reciprocal of the intercept with the c 
axis gives the l index.

Basal Planes The basal planes of the HCP unit cell are very important planes for 
this unit cell and are indicated in Figure 3.15a. Since the basal plane on the top of the 
HCP unit cell in Figure 3.15a is parallel to the a1, a2, and a3 axes, the intercepts of 
this plane with these axes will be at infinity. Thus, a1intercept = ∞, a2intercept = ∞, and 
a3intercept = ∞. The c axis, however, is unity since the top basal plane intersects the c 
axis at unit distance, cintercept = 1. Taking the reciprocals of these intercepts gives the 
Miller-Bravais indices for the HCP basal plane. Thus h = 0, k = 0, i = 0, and l = 1. The 
HCP basal plane is, therefore, a zero-zero-zero-one or (0001) plane.

Figure 3.14
The four coordinate axes (a1, a2, a3, 
and c) of the HCP crystal structure.
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Figure 3.15
Miller-Bravais indices of hexagonal crystal planes: (a) basal planes and (b) prism planes.
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116 C H A P T E R  3  Crystal and Amorphous Structure in Materials

Prism Planes Using the same method, the intercepts of the front prism plane (ABCD) 
of Figure 3.15b are a1intercept = +1, a2intercept = ∞, a3intercept = −1, and cintercept = ∞.  
Taking the reciprocals of these intercepts gives h = 1, k = 0, i = −1, and l = 0, or 
the ( 10  ̄  1 0 ) plane. Similarly, the ABEF prism plane of Figure 3.15b has the indices  
( 1  ̄  1 00 ) and the DCGH plane the indices ( 01  ̄  1 0 ). All HCP prism planes can be identi-
fied collectively as the { 10  ̄  1 0 } family of planes.

Sometimes HCP planes are identified only by three indices (hkl) since h + k = −i. 
However, the (hkil) indices are used more commonly because they reveal the hexago-
nal symmetry of the HCP unit cell.

3.7.2 Direction Indices in HCP Unit Cells5

Directions in HCP unit cells are also usually indicated by four indices u, v, t, and w 
enclosed by square brackets as [uvtw]. The u, v, and t indices are lattice vectors in the 
a1, a2, and a3 directions, respectively (Fig. 3.16), and the w index is a lattice vector in 
the c direction. To maintain uniformity for both HCP indices for planes and directions, 
it has been agreed that u + v = −t for directions.

Let us now determine the Miller-Bravais hexagonal indices for the directions a1, 
a2, and a3, which are the positive basal axes of the hexagonal unit cell. The a1 direc-
tion indices are given in Figure 3.16a, the a2 direction indices in Figure 3.16b, and the 
a3 direction indices in Figure 3.16c. If we need to indicate a c direction also for the 
a3 direction, this is shown in Figure 3.16d. Figure 3.16e summarizes the positive and 
negative directions on the upper basal plane of the simple hexagonal crystal structure.

3.8  COMPARISON OF FCC, HCP, AND  
BCC CRYSTAL STRUCTURES

3.8.1 FCC and HCP Crystal Structures

As previously pointed out, both the HCP and FCC crystal structures are close-packed 
structures. That is, their atoms, which are considered approximate “spheres,” are 
packed together as closely as possible so that an atomic packing factor of 0.74 is 
attained.6 The (111) planes of the FCC crystal structure shown in Figure 3.17a have a 
packing arrangement identical to the (0001) planes of the HCP crystal structure shown 
in Figure 3.17b. However, the three-dimensional FCC and HCP crystal structures are 
not identical because there is a difference in the stacking arrangement of their atomic 
planes, which can best be described by considering the stacking of hard spheres 
 representing atoms. As a useful analogy, one can imagine the stacking of planes of 
equal-sized marbles on top of each other, minimizing the space between the marbles.

5  The topic of direction indices for hexagonal unit cells is not normally presented in an introductory course in 
materials but is included here for advanced students.

6  As pointed out in Section 3.3, the atoms in the HCP structure deviate to varying degrees from ideality. In some 
HCP metals, the atoms are elongated along the c  axis, and in other cases, they are compressed along the c  axis 
(see Table 3.4).
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 3.8 Comparison of FCC, HCP, and BCC Crystal Structures  117

Consider first a plane of close-packed atoms designated the A plane, as shown in 
Figure 3.18. Note that there are two different types of empty spaces or voids between 
the atoms. The voids pointing to the top of the page are designated a voids and those 
pointing to the bottom of the page, b voids. A second plane of atoms can be placed over 
the a or b voids, and the same three-dimensional structure will be produced. Let us 
place plane B over the a voids, as shown in Figure 3.18b. Now if a third plane of atoms 
is placed over plane B to form a closest-packed structure, it is possible to form two dif-
ferent close-packed structures. One possibility is to place the atoms of the third plane 
in the b voids of the B plane. Then the atoms of this third plane will lie directly over 
those of the A plane and thus can be designated another A plane (Fig. 3.18c). If subse-
quent planes of atoms are placed in this same alternating stacking arrangement, then 

Figure 3.16
Miller-Bravais hexagonal crystal structure direction indices for principal directions: (a) +a1 axis direction on 
basal plane, (b) +a2 axis direction on basal plane, (c) +a3 direction axis on basal plane, and (d) +a3 direction 
axis incorporating c axis. (e) Positive and negative Miller-Bravais directions are indicated in simple hexago-
nal crystal structure on upper basal plane.
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Figure 3.17
Comparison of the (a) FCC crystal structure showing a close-
packed (111) plane and (b) an HCP crystal structure showing 
the close-packed (0001) plane.
(Source: W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and 

Properties of Materials, vol. 1: “Structure,” Wiley, 1964, p. 51.)

(111)
plane

(0001) plane

(a) (b)

Figure 3.18
Formation of the HCP and FCC crystal structures by the stacking of 
atomic planes. (a) A plane showing the a and b voids. (b) B plane 
placed in a voids of plane A. (c) Third plane placed in b voids of B 
plane, making another A plane and forming the HCP crystal structure. 
(d) Third plane placed in the a voids of B plane, making a new C plane 
and forming the FCC crystal structure.
(Source: Ander, P.; Sonnessa, A.J., Principles of Chemistry, 1st ed.)
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 3.9 Volume, Planar, and Linear Density Unit-Cell Calculations  119

the stacking sequence of the three-dimensional structure produced can be denoted by 
ABABAB. . . . Such a stacking sequence leads to the HCP crystal structure (Fig. 3.17b).

The second possibility for forming a simple close-packed structure is to place the 
third plane in the a voids of plane B (Fig. 3.18d). This third plane is designated the C 
plane since its atoms do not lie directly above those of the B plane or the A plane. The 
stacking sequence in this close-packed structure is thus designated ABCABCABC. . . 
and leads to the FCC structure shown in Figure 3.17a.

3.8.2 BCC Crystal Structure

The BCC structure is not a close-packed structure and hence does not have close-
packed planes like the {111} planes in the FCC structure and the {0001} planes in the 
HCP structure. The most densely packed planes in the BCC structure are the {110} 
family of planes, of which the (110) plane is shown in Figure 3.19b. However, the 
atoms in the BCC structure do have close-packed directions along the cube diagonals, 
which are the 〈111〉 directions.

3.9  VOLUME, PLANAR, AND LINEAR DENSITY  
UNIT-CELL CALCULATIONS

3.9.1 Volume Density

Using the hard-sphere atomic model for the crystal structure unit cell of a metal and 
a value for the atomic radius of the metal obtained from X-ray diffraction analysis, a 
value for the volume density of a metal can be obtained by using the equation

  Volume density of metal =  ρ  υ   =   
mass/unit cell

  ______________  
volume/unit cell

    (3.6)

Figure 3.19
BCC crystal structure showing (a) the (100) plane and (b) a section of the (110) plane. 
Note that this is not a close-packed structure, but that the diagonals have close-
packed directions.
(Source: W.G. Moffatt, G.W. Pearsall and J. Wulff, The Structure and Properties of Materials, vol. 1: 
“Structure,” Wiley, 1964, p. 51.)
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120 C H A P T E R  3  Crystal and Amorphous Structure in Materials

In Example Problem 3.11, a value of 8.933 Mg/m3 (8.933 g/cm3) is obtained for the 
theoretical density of copper. The handbook experimental value for the density of cop-
per is 8.96 Mg/m3 (8.96 g/cm3). The slightly different density of the experimental value 
could be attributed to various defects, mismatch where grains meet (grain boundaries), 
and human error. These crystalline defects are discussed in Chapter 4. Another cause 
of the discrepancy could also be due to the atoms not being perfect spheres.

Copper has an FCC crystal structure and an atomic radius of 0.1278 nm. Assuming the 
atoms to be hard spheres that touch each other along the face diagonals of the FCC unit cell 
as shown in Figure 3.7, calculate a theoretical value for the density of copper in mega-grams 
per cubic meter. The atomic mass of copper is 63.54 g/mol.

■ Solution
For the FCC unit cell,  1   ̄  2 a = 4R , where a is the lattice constant of the unit cell, and R is the 
atomic radius of the copper atom. Thus,

   
              a =   

4R
 ___ 

 √ 
__

 2  
   =   

 (  4 )   (  0.1278 nm )  
  _____________ 

 √ 
__

 2  
   = 0.3615 nm

     
Volume density of copper =  ρ  υ   =   

mass/unit cell
  ______________  

volume/unit cell
  
   (3.6)

In the FCC unit cell, there are four atoms/unit cell. Each copper atom has a mass of (63.54 g/
mol) (6.02 × 1023 atoms/mol). Thus, the mass m of Cu atoms in the FCC unit cell is

 m =   
 (  4 atoms )   (  63.54 g/mol )  

  ____________________  
6.022 ×  10   23   atoms/mol

    (     
 10   −6   Mg

 _ 
g
   )    = 4.220 ×  10   −28   Mg 

The volume V of the Cu unit cell is

 V =  a   3  =   (  0.361 nm ×   
 10   −9   m

 _______ 
nm

   )     
3

  = 4.724 ×  10   −29   m   3  

Thus, the theoretical density of copper is

   ρ  υ   =   
m

 _ 
V

   =   
4.220 ×  10   −28   Mg

  _______________  
4.724 ×  10   −29   m   3 

   = 8.933 Mg /  m   3  (8.933   g/cm   3 )  ◂  

EXAMPLE 
PROBLEM 3.11

3.9.2 Planar Atomic Density

Sometimes it is important to determine the atomic densities on various crystal planes. To 
do this, a quantity called the planar atomic density is calculated by using the relationship

 Planar atomic density =  ρ  p   =   
 
equiv. no. of atoms whose centers

    are intersected by selected area  
   ___________________________________  

selected area
    (3.8)

For convenience, the area of a plane that intersects a unit cell is usually used in these 
calculations, as shown, for example, in Figure 3.20 for the (110) plane in a BCC unit 
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 3.9 Volume, Planar, and Linear Density Unit-Cell Calculations  121

cell. In order for an atom area to be counted in this calculation, the plane of interest must 
intersect the center of an atom. In Example Problem 3.12, the (110) plane  intersects the 
centers of five atoms, but the equivalent of only two atoms is counted since only one-
quarter of each of the four corner atoms is included in the area inside the unit cell.

Figure 3.20
(a) A BCC atomic-site unit cell showing a shaded (110) plane. 
(b) Areas of atoms in BCC unit cell cut by the (110) plane.

z

x

y

aa (110)

(a) (b)

2–a

2–a

Calculate the planar atomic density ρp on the (110) plane of the α iron BCC lattice in atoms 
per square millimeter. The lattice constant of α iron is 0.287 nm.

■ Solution

  ρ  P   =   
equiv. no. of atoms whose centers are intersected by selected area

      _____________________________________________________   
selected area

    (3.7)

The equivalent number of atoms intersected by the (110) plane in terms of the surface area 
inside the BCC unit cell is shown in Figure 3.22 and is

 1 atom at center + 4 ×   
1
 __ 

4
   atoms at four corners of plane = 2 atoms 

The area intersected by the (110) plane inside the unit cell (selected area) is

  ( √ 
__

 2  a) (a) =  √ 
__

 2   a   2  

Thus, the planar atomic density is

  

 ρ  P  

  

=

  

  
2 atoms
 ___________  

 √ 
__

 2    (0.287 nm )   2 
   =   

17.2 atoms
 _________ 

 nm   2 
  

    
 
  
=

  
  
17.2 atoms

 _________ 
 nm   2 

   ×   
 10   12    nm   2 

 ________ 
 mm   2 

  
    

 

  

=

  

1.72 ×  10   13   atoms /  mm   2   ◂

   

EXAMPLE 
PROBLEM 3.12
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122 C H A P T E R  3  Crystal and Amorphous Structure in Materials

3.9.3 Linear Atomic Density and Repeat Distance

Sometimes it is important to determine the atomic densities in various directions in 
crystal structures. To do this, a quantity called the linear atomic density is calculated 
by using the relationship

 Linear atomic density =  ρ  l   =   
 
no. of atomic diam. intersected by selected

     length of line in direction of interest  
    ___________________________________   

selected length of line
    (3.8)

The distance between two consecutive lattice points along a specific direction is called 
the repeat distance.

Example Problem 3.13 shows how the linear atomic density can be calculated in 
the [110] direction in a pure copper crystal lattice.

Calculate the linear atomic density ρl in the [110] direction in the copper crystal lattice in 
atoms per millimeter. Copper is FCC and has a lattice constant of 0.361 nm.

■ Solution
The atoms whose centers the [110] direction intersects are shown in Figure EP3.13. We shall 
select the length of the line to be the length of the face diagonal of the FCC unit cell, which 
is   √ 

__
 2   a . The number of atomic diameters intersected by this length of line are    1 _ 2   + 1 +   1 _ 2   = 2  

atoms. Thus using Eq. 3.8, the linear atomic density is

  

 ρ  l  

  

=

  

  
2 atoms

 _______ 
 √ 

__
 2   a

   =   
2 atoms

 ___________  
 √ 

__
 2    (  0.361 nm )   

   =   
3.92 atoms

 _________ 
nm

  

     
 
  
=

  
  
3.92 atoms

 _________ 
nm

   ×   
 10   6   nm

 ______ 
mm

  
   

 

  

=

  

3.92 ×  10   6   atoms / mm ◂

   

EXAMPLE 
PROBLEM 3.13

Figure EP3.13
Diagram for calculating 
the linear atomic density 
in the [110] direction in 
an FCC unit cell.
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o
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 3.10 Polymorphism or Allotropy 123

3.10 POLYMORPHISM OR ALLOTROPY
Many elements and compounds exist in more than one crystalline form under different 
conditions of temperature and pressure. This phenomenon is termed polymorphism, 
or allotropy. Many industrially important metals such as iron, titanium, and cobalt 
undergo allotropic transformations at elevated temperatures at atmospheric pressure. 
Table 3.5 lists some selected metals that show allotropic transformations and the struc-
ture changes that occur.

Iron exists in both BCC and FCC crystal structures over the temperature range 
from room temperature to its melting point at 1539°C as shown in Figure 3.21. Alpha 
(α) iron exists from −273°C to 912°C and has the BCC crystal structure. Gamma (γ) 

Metal
Crystal Structure  

at Room Temperature
At Other  

Temperatures

Ca FCC BCC (>447°C)
Co HCP FCC (>427°C)
Hf HCP BCC (>1742°C)
Fe BCC FCC (912–1394°C)

BCC (>1394°C)
Li BCC HCP (<−193°C)
Na BCC HCP (<−233°C)
Tl HCP BCC (>234°C)
Ti HCP BCC (>883°C)
Y HCP BCC (>1481°C)
Zr HCP BCC (>872°C)

Table 3.5 Allotropic crystalline forms of some metals

Figure 3.21
Allotropic crystalline forms of 
iron over temperature ranges at 
atmospheric pressure.

1539
1394

912

-273

Liquid ironC

δ (delta) iron (BCC)

γ (gamma) iron (FCC)

α (alpha) iron (BCC)
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m
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124 C H A P T E R  3  Crystal and Amorphous Structure in Materials

iron exists from 912°C to 1394°C and has the FCC crystal structure. Delta (δ) iron 
exists from 1394°C to 1539°C which is the melting point of iron. The crystal structure 
of δ iron is also BCC but with a larger lattice constant than α iron.

Calculate the theoretical volume change accompanying a polymorphic transformation in a 
pure metal from the FCC to BCC crystal structure. Assume the hard-sphere atomic model 
and that there is no change in atomic volume before and after the transformation.

■ Solution
In the FCC crystal structure unit cell, the atoms are in contact along the face diagonal of the 
unit cell, as shown in Figure 3.7. Hence,

   √ 
__

 2  a = 4R   or   a =   
4R

 ___ 
 √ 

__
 2  
    (3.3)

In the BCC crystal structure unit cell, the atoms are in contact along the body diagonal of the 
unit cell as shown in Figure 3.5. Hence,

   √ 
__

 3  a = 4R   or   a =   
4R

 ___ 
 √ 

__
 3  
    (3.1)

The volume per atom for the FCC crystal lattice, since it has four atoms per unit cell, is

  V  FCC   =   
 a   3 

 __ 
4
   =   (    

4R
 ____ 

 √ 
__

 2  
   )     

3

   (    
1
 _ 

4
   )    = 5.66  R   3  

The volume per atom for the BCC crystal lattice, since it has two atoms per unit cell, is

  V  BCC   =   
 a   3 

 __ 
2
   =   (    

4R
 ____ 

 √ 
__

 3  
   )     

3

   (    
1
 _ 

2
   )    = 6.16  R   3  

The change in volume associated with the transformation from the FCC to BCC crystal 
structure, assuming no change in atomic radius, is

  
  
ΔV

 _____ 
 V  FCC  

  
  
=

  
  
 V  BCC   −  V  FCC  

 __________ 
 V  FCC  

  
   

 
  

=
  
  (     

6.16  R   3  − 5.66  R   3 
  ______________ 

5.66  R   3 
   )   100 %  = +8.83 %  ◂

  

EXAMPLE 
PROBLEM 3.14

3.11 CRYSTAL STRUCTURE ANALYSIS
Our present knowledge of crystal structures has been obtained mainly by X-ray 
 diffraction techniques that use X-rays whose wavelength are the same as the dis-
tance between crystal lattice planes. However, before discussing the manner in  
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 3.11 Crystal Structure Analysis 125

which X-rays are diffracted in crystals, let us consider how X-rays are produced for 
experimental purposes.

3.11.1 X-Ray Sources

X-rays used for diffraction are electromagnetic waves with wavelengths in the range 
0.05 to 0.25 nm (0.5 to 2.5 Å). By comparison, the wavelength of visible light is 
of the order of 600 nm (6000 Å). In order to produce X-rays for diffraction pur-
poses, a voltage of about 35 kV is necessary and is applied between a cathode and an 
anode target metal, both of which are contained in a vacuum, as shown in Figure 3.22. 
When the tungsten filament of the cathode is heated, electrons are released by therm-
ionic emission and accelerated through the vacuum by the large voltage difference 
between the cathode and anode, thereby gaining kinetic energy. When the electrons 
strike the target metal (e.g., molybdenum), X-rays are given off. However, most of the 
kinetic energy (about 98%) is converted into heat, so the target metal must be cooled 
externally.

The X-ray spectrum emitted at 35 kV using a molybdenum target is shown in 
Figure 3.23. The spectrum shows continuous X-ray radiation in the wavelength range 
from about 0.2 to 1.4 Å (0.02 to 0.14 nm) and two spikes of characteristic radiation 
that are designated the Kα and Kβ lines. The wavelengths of the Kα and Kβ lines are 
characteristic for an element. For molybdenum, the Kα line occurs at a wavelength 
of about 0.7 Å (0.07 nm). The origin of the characteristic radiation is explained as 
follows: first, K electrons (electrons in the n = 1 shell) are knocked out of the atom 
by highly energetic electrons bombarding the target, leaving excited atoms. Next, 
some electrons in higher shells (that is, n = 2 or 3) drop down to lower energy levels 

Figure 3.22
Schematic diagram of the cross section of a sealed-off filament X-ray tube.
(Source: B. D. Cullity, Elements of X-Ray Diffraction 2nd ed., Addison-Wesley, 1978, p. 23.)
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126 C H A P T E R  3  Crystal and Amorphous Structure in Materials

to replace the lost K electrons, emitting energy of a characteristic wavelength. The 
 transition of electrons from the L (n = 2) shell to the K (n = 1) shell creates energy of 
the wavelength of the Kα line, as indicated in Figure 3.24.

3.11.2 X-Ray Diffraction

Since the wavelengths of some X-rays are about equal to the distance between planes of 
atoms in crystalline solids, reinforced diffraction peaks of radiation of varying inten-
sities can be produced when a beam of X-rays strikes a crystalline solid. However, 
before considering the application of X-ray diffraction techniques to crystal structure 
analysis, let us examine the geometric conditions necessary to produce diffracted or 
reinforced beams of reflected X-rays.

Consider a monochromatic (single-wavelength) beam of X-rays to be incident on 
a crystal, as shown in Figure 3.25. For simplification, let us allow the crystal planes of 
atomic scattering centers to be replaced by crystal planes that act as mirrors in reflect-
ing the incident X-ray beam. In Figure 3.25, the horizontal lines represent a set of 
parallel crystal planes with Miller indices (hkl). When an incident beam of monochro-
matic X-rays of wavelength λ strikes this set of planes at an angle such that the wave 
patterns of the beam leaving the various planes are not in phase, no reinforced beam 
will be produced (Figure 3.25a). Thus, destructive interference occurs. If the reflected 
wave patterns of the beam leaving the various planes are in phase, then reinforcement 
of the beam or constructive interference occurs (Fig. 3.25b).

Figure 3.23
X-ray emission spectrum produced when 
molybdenum metal is used as the target metal 
in an X-ray tube operating at 35 kV.
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Figure 3.24
Energy levels of electrons in  
molybdenum showing the origin of Kα 
and Kβ radiation.
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 3.11 Crystal Structure Analysis 127

Figure 3.25
The reflection of an X-ray beam by the (hkl) planes 
of a crystal. (a) No reflected beam is produced at an 
arbitrary angle of incidence. (b) At the Bragg angle 
θ, the reflected rays are in phase and reinforce one 
another. (c) Similar to (b) except that the wave rep-
resentation has been omitted.
(Source: A.G. Guy and J.J. Hren Elements of Physical 

Metallurgy (3rd ed.). Addison-Wesley, 1974, p. 201.)
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Let us now consider incident X-rays 1 and 2 as indicated in Figure 3.25c. For 
these rays to be in phase, the extra distance of travel of ray 2 is equal to MP + PN, 
which must be an integral number of wavelengths λ. Thus,
  nλ = MP + PN  (3.9)
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128 C H A P T E R  3  Crystal and Amorphous Structure in Materials

where n = 1, 2, 3, . . . and is called the order of the diffraction. Since both MP and PN 
equal dhkl sin θ, where dhkl is the interplanar spacing of the crystal planes of indices 
(hkl), the condition for constructive interference (i.e., the production of a diffraction 
peak of intense radiation) must be

  nλ = 2  d  hkl   = sin θ  (3.10)

This equation, known as Bragg’s law,7 gives the relationship among the angular posi-
tions of the reinforced diffracted beams in terms of the wavelength λ of the incoming 
X-ray radiation and of the interplanar spacings dhkl of the crystal planes. In most cases, 
the first order of diffraction where n = 1 is used, and so for this case, Bragg’s law takes 
the form
  λ = 2  d  hkl   = sin θ  (3.11)

A sample of BCC iron was placed in an X-ray diffractometer using incoming X-rays with a 
wavelength λ = 0.1541 nm. Diffraction from the {110} planes was obtained at 2θ = 44.70°. 
Calculate a value for the lattice constant a of BCC iron. (Assume first-order diffraction with 
n = 1.)

■ Solution

    

2θ

  

=

  

 44.704   ⚬      θ = 22  .35   ⚬ 

    

λ

  

=

  

2  d  hkl   sin θ

    d  110    =    
λ
 ______ 

2 sin θ
   =   

0.1541 nm
 ____________  

2(sin   22.35   ⚬ )
      

 

  

=

  

  
0.1541 nm

 _________ 
2(0.3803)

   = 0.2026 nm

    (3.11)

Rearranging Eq. 3.5 gives

 a =  d  hkl    √ 
________

  h   2  +  k   2  +  l   2    

Thus,

   a (  Fe )   =   d  110    √ 
___________

  1   2  +  1   2  +  0   2        
 =  (  0.2026 nm )   (  1.414 )   = 0.2865 nm ◂ 

  

EXAMPLE 
PROBLEM 3.15

7 William Henry Bragg (1862–1942). English physicist who worked on X-ray crystallography.

3.11.3 X-Ray Diffraction Analysis of Crystal Structures

The Powder Method of X-Ray Diffraction Analysis The most commonly used 
X-ray diffraction technique is the powder method. In this technique, a powdered specimen 
is utilized so that there will be a random orientation of many crystals to ensure that some 
of the particles will be oriented in the X-ray beam to satisfy the diffraction conditions of 
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 3.11 Crystal Structure Analysis 129

Bragg’s law. Modern X-ray crystal analysis uses an X-ray diffractometer that has a radia-
tion counter to detect the angle and intensity of the diffracted beam (Fig. 3.26). A recorder 
automatically plots the intensity of the diffracted beam as the counter moves on a 
 goniometer8 circle (Fig. 3.27) that is in synchronization with the specimen over a range of 
2θ values. Figure 3.28 shows an X-ray diffraction recorder chart for the intensity of the 
diffracted beam versus the diffraction angles 2θ for a powdered pure-metal specimen. In 
this way, both the angles of the diffracted beams and their intensities can be recorded at 
one time. Sometimes a powder camera with an enclosed filmstrip is used instead of the 
diffractometer, but this method is much slower and in most cases, less convenient.

Diffraction Conditions for Cubic Unit Cells X-ray diffraction techniques enable 
the structures of crystalline solids to be determined. The interpretation of X-ray dif-
fraction data for most crystalline substances is complex and beyond the scope of this 

8 A goniometer is an instrument for measuring angles.

Figure 3.26
An X-ray diffractometer (with X-radiation shields removed).
(Courtesy of Rigaku)
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130 C H A P T E R  3  Crystal and Amorphous Structure in Materials

Figure 3.27
Schematic illustration of the diffractometer method of crystal analysis and of the conditions 
 necessary for diffraction.
(Source: A.G. Guy, Essentials of Materials Science, McGraw-Hill, 1976.)
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Figure 3.28
Record of the diffraction angles for a tungsten sample obtained by the 
use of a diffractometer with copper radiation.
(Source: A.G. Guy and J.J. Hren, Elements of Physical Metallurgy 3rd ed., Addison-
Wesley, 1974, p. 208.)
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book, and so only the simple case of diffraction in pure cubic metals will be consid-
ered. The analysis of X-ray diffraction data for cubic unit cells can be simplified by 
combining Eq. 3.4,

  d  hkl   =   
a
 _________  

 √ 
________

  h   2  +  k   2  +  l   2   
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with the Bragg equation λ = 2d sin θ, giving

  λ =   
2a sin θ

 _________  
 √ 

________
  h   2  +  k   2  +  l   2   
    (3.12)

This equation can be used along with X-ray diffraction data to determine if a cubic 
crystal structure is body-centered or face-centered cubic. The rest of this subsection 
will describe how this is done.

To use Eq. 3.12 for diffraction analysis, we must know which crystal planes are 
the diffracting planes for each type of crystal structure. For the simple cubic lattice, 
reflections from all (hkl) planes are possible. However, for the BCC structure, dif-
fraction occurs only on planes whose Miller indices when added together (h + k + l) 
total to an even number (Table 3.6). Thus, for the BCC crystal structure, the principal 
diffracting planes are {110}, {200}, {211}, etc., which are listed in Table 3.7. In the 
case of the FCC crystal structure, the principal diffracting planes are those whose 
Miller indices are either all even or all odd (zero is considered even). Thus, for the 
FCC crystal structure, the diffracting planes are {111}, {200}, {220}, etc., which are 
listed in Table 3.7.

Interpreting Experimental X-Ray Diffraction Data for Metals with Cubic Crystal 
Structures We can use X-ray diffractometer data to determine crystal structures. A 
simple case to illustrate how this analysis can be used is to distinguish between the 

Bravais Lattice Reflections Present Reflections Absent

BCC (h + k + l) = even (h + k + l) = odd
FCC (h, k, l) all odd or all even (h, k, l) not all odd or all even

Table 3.6 Rules for determining the diffracting {hkl} planes in cubic crystals

Cubic  
Planes  
{hkl} h2 + k2 + l2

Sum  
Σ[h2 + k2 + l2]

Cubic  
Diffracting  
Planes {hkl}

FCC BCC

{100} 12 + 02 + 02   1
{110} 12 + 12 + 02   2 . . . 110
{111} 12 + 12 + 12   3 111
{200} 22 + 02 + 02   4 200 200
{210} 22 + 12 + 02   5
{211} 22 + 12 + 12   6 . . . 211
  . . .   7
{220} 22 + 22 + 02   8 220 220
{221} 22 + 22 + 12   9
{310} 32 + 12 + 02 10 . . . 310

Table 3.7 Miller indices of the diffracting planes for BCC and FCC lattices
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132 C H A P T E R  3  Crystal and Amorphous Structure in Materials

BCC and FCC crystal structures of a cubic metal. Let us assume that we have a metal 
with either a BCC or an FCC crystal structure and that we can identify the principal 
diffracting planes and their corresponding 2θ values, as indicated for the metal tung-
sten in Figure 3.28.

By squaring both sides of Eq. 3.12 and solving for sin2θ, we obtain

  sin     2  θ =   
 λ   2 ( h   2  +  k   2  +  l   2  )

  ____________ 
4  a   2 

    (3.13)

From X-ray diffraction data, we can obtain experimental values of 2θ for a series of 
principal diffracting {hkl} planes. Since the wavelength of the incoming radiation and 
the lattice constant a are both constants, we can eliminate these quantities by forming 
the ratio of two sin2 θ values as

    
 sin   2   θ  A  

 ______ 
 sin   2   θ  B  

   =   
 h  A  2   +  k  A  2   +  l  A  2  

 _________ 
 h  B  2   +  k  B  2   +  l  B  2  

    (3.14)

where θA and θB are two diffracting angles associated with the principal diffracting 
planes {hAkAlA} and {hBkBlB}, respectively.

Using Eq. 3.14 and the Miller indices of the first two sets of principal diffracting 
planes listed in Table 3.7 for BCC and FCC crystal structures, we can determine val-
ues for the sin2θ ratios for both BCC and FCC structures.

For the BCC crystal structure, the first two sets of principal diffracting planes are 
the {110} and {200} planes (Table 3.7). Substitution of the Miller {hkl} indices of 
these planes into Eq. 3.14 gives

    
 sin   2   θ  A  

 ______ 
 sin   2   θ  B  

   =   
 1   2  +  1   2  +  0   2 

 _________ 
 2   2  +  0   2  +  0   2 

   = 0.5  (3.15)

Thus, if the crystal structure of the unknown cubic metal is BCC, the ratio of the sin2θ 
values that correspond to the first two principal diffracting planes will be 0.5.

For the FCC crystal structure, the first two sets of principal diffracting planes are 
the {111} and {200} planes (Table 3.7). Substitution of the Miller {hkl} indices of 
these planes into Eq. 3.15 gives

    
sin     2   θ  A  

 ________ 
sin     2   θ  B  

   =   
 1   2  +  1   2  +  1   2 

 _________ 
 2   2  +  0   2  +  0   2 

   = 0.75  (3.16)

Thus, if the crystal structure of the unknown cubic metal is FCC, the ratio of the sin2θ 
values that correspond to the first two principal diffracting planes will be 0.75.

Example Problem 3.16 uses Eq. 3.14 and experimental X-ray diffraction data for 
the 2θ values for the principal diffracting planes to determine whether an unknown 
cubic metal is BCC or FCC. X-ray diffraction analysis is usually much more compli-
cated than Example Problem 3.16, but the principles used are the same. Both experi-
mental and theoretical X-ray diffraction analysis has been and continues to be used for 
the determination of the crystal structure of materials.
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An X-ray diffractometer recorder chart for an element that has either the BCC or the FCC 
crystal structure shows diffraction peaks at the following 2θ angles: 40, 58, 73, 86.8, 100.4, 
and 114.7. The wavelength of the incoming X-ray used was 0.154 nm.

 a. Determine the cubic structure of the element.
 b. Determine the lattice constant of the element.
 c. Identify the element.

■ Solution

 a. Determination of the crystal structure of the element. First, the sin2 θ values are calcu-
lated from the 2θ diffraction angles.

2θ(deg) θ(deg) sin θ sin2 θ

  40       20     0.3420 0.1170
  58       29     0.4848 0.2350
  73      36.5 0.5948 0.3538
86.8 43.4 0.6871 0.4721

100.4 50.2 0.7683 0.5903
114.7   57.35 0.8420 0.7090

  Next, the ratio of the sin2θ values of the first and second angles is calculated:

   
 sin   2  θ

 _____ 
 sin   2  θ

   =   
0.117

 _____ 
0.235

   = 0.498 ≈ 0.5 

  The crystal structure is BCC since this ratio is ≈ 0.5. If the ratio had been ≈ 0.75, the 
structure would have been FCC.

 b. Determination of the lattice constant. Rearranging Eq. 3.14 and solving for a2 gives

   a   2  =   
 λ   2 

 __ 
4
     
 h   2  +  k   2  +  l   2 

 ________ 
 sin   2  θ

    (3.17)

  or

  a =   
λ
 __ 

2
    √ 

_________

   
 h   2  +  k   2  +  l   2 

 ________ 
 sin   2  θ

      (3.18)

  Substituting into Eq. 3.18 h = 1, k = 1, and l = 0 for the h, k, l Miller indices of the 
first set of principal diffracting planes for the BCC crystal structure, which are the 
{110} planes, the corresponding value for sin2θ, which is 0.117, and 0.154 nm for λ, 
the incoming radiation, gives

 a =   
0.154 nm

 ________ 
2
    √ 

_________

   
 1   2  +  1   2  +  0   2 

 _________ 
0.117

     = 0.318 nm ◂ 

 c. Identification of the element. The element is tungsten since this element has a lattice 
constant of 0.316 nm and is BCC.

EXAMPLE 
PROBLEM 3.16
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134 C H A P T E R  3  Crystal and Amorphous Structure in Materials

3.12 AMORPHOUS MATERIALS
As discussed previously, some materials are called amorphous or noncrystalline 
because they lack long-range order in their atomic structure. It should be noted that, 
in general, materials have a tendency to achieve a crystalline state because that is the 
most stable state and it corresponds to the lowest energy level. However, atoms in 
amorphous materials are bonded in a disordered manner because of factors that inhibit 
the formation of a periodic arrangement. Atoms in amorphous materials, therefore, 
occupy random spatial positions as opposed to specific positions in crystalline solids. 
For clarity, various degrees of order (or disorder) are shown in Figure 3.29.

Most polymers, glasses, and some metals are members of the amorphous class 
of materials. In polymers, the secondary bonds among molecules do not allow for 
the formation of parallel and tightly packed chains during solidification. As a result, 
polymers such as polyvinylchloride consist of long, twisted molecular chains that 
are entangled to form a solid with amorphous structure, similar to Figure 3.29c. In 
some polymers such as polyethylene, the molecules are more efficiently and tightly 
packed in some regions of the material and produce a higher degree of regional long-
range order. As a result, these polymers are often classified as semicrystalline. A more 
detailed discussion of semicrystalline polymers will be given in Chapter 10.

Inorganic glass based on glass-forming oxide, silica (SiO2), is generally character-
ized as a ceramic material (ceramic glass) and is another example of a material with an 
amorphous structure. In this type of glass, the fundamental subunit in the molecules is 
the   SiO  4  4−   tetrahedron. The ideal crystalline structure of this glass is shown in Figure 
3.29a. The schematic shows the Si–O tetrahedrons joined corner to corner to form 
long-range order. In its viscous liquid state, the molecules have limited mobility, and, 
in general, crystallization occurs slowly. Therefore, a modest cooling rate suppresses 
the formation of the crystal structure, and instead the tetrahedra join corner to corner 
to form a network lacking in long-range order (Fig. 3.29b).

In addition to polymers and glasses, some metals also have the ability to form 
amorphous structures (metallic glass) under strict and often difficult-to-achieve condi-
tions. Unlike glasses, metals have very small and mobile building blocks under molten 

Figure 3.29
A schematic showing various degrees of order in materials: (a) long-range 
order in crystalline silica, (b) silica glass without long-range order, and 
(c) amorphous structure in polymers.

(a) (c)(b)
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conditions. As a result, it is difficult to prevent metals from crystallizing. However, 
alloys such as 78%Fe–9%Si–13%B that contain a high percentage of semimetals, Si 
and B, may form metallic glasses through rapid solidification at cooling rates in excess 
of 108 °C/s. At such high cooling rates, the atoms simply do not have enough time to 
form a crystalline structure and instead form a metal with an amorphous structure, that 
is, they are highly disordered. In theory, any crystalline material can form a noncrys-
talline structure if solidified rapidly enough from a molten state.

Amorphous materials, because of their structure, possess properties that are supe-
rior. For instance, metallic glasses possess higher strength, better corrosion charac-
teristics, and magnetic properties when compared to their crystalline counterparts. 
Finally, it is important to note that amorphous materials do not show sharp diffraction 
patterns when analyzed using X-ray diffraction techniques. This is due to a lack of 
order and periodicity in the atomic structure. In future chapters, the role of structure of 
the material on its properties will be explained in detail.

3.13 S U M M A R Y

Atomic arrangements in crystalline solids can be described by a network of lines called a 
space lattice. Each space lattice can be described by specifying the atom positions in a repeat-
ing unit cell. The crystal structure consists of space lattice and motif or basis. Crystalline 
materials, such as most metals, possess long-range atomic order. But some materials, such as 
many polymers and glasses, possess only short-range order. Such materials are called semi-
crystalline or amorphous. There are seven crystal systems based on the geometry of the axial 
lengths and interaxial angles of the unit cells. These seven systems have a total of 14 sublat-
tices (unit cells) based on the internal arrangements of atomic sites within the unit cells.

In metals, the most common crystal structure unit cells are: body-centered cubic (BCC), 
face-centered cubic (FCC), and hexagonal close-packed (HCP) (which is a dense variation 
of the simple hexagonal structure).

Crystal directions in cubic crystals are the vector components of the directions resolved 
along each of the component axes and reduced to smallest integers. They are indicated as 
[uvw]. Families of directions are indexed by the direction indices enclosed by pointed brack-
ets as 〈uvw〉. Crystal planes in cubic crystals are indexed by the reciprocals of the axial 
intercepts of the plane (followed by the elimination of fractions) as (hkl). Cubic crystal 
planes of a form (family) are indexed with braces as {hkl}. Crystal planes in hexagonal 
crystals are commonly indexed by four indices h, k, i, and l enclosed in parentheses as (hkil). 
These indices are the reciprocals of the intercepts of the plane on the a1, a2, a3, and c axes of 
the hexagonal crystal structure unit cell. Crystal directions in hexagonal crystals are the vec-
tor components of the direction resolved along each of the four coordinate axes and reduced 
to smallest integers as [uvtw].

Using the hard-sphere model for atoms, calculations can be made for the volume, pla-
nar, and linear density of atoms in unit cells. Planes in which atoms are packed as tightly as 
possible are called close-packed planes, and directions in which atoms are in closest con-
tact are called close-packed directions. Atomic packing factors for different crystal struc-
tures can also be determined by assuming the hard-sphere atomic model. Some metals have 
different crystal structures at different ranges of temperature and pressure, a phenomenon 
called polymorphism.
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136 C H A P T E R  3  Crystal and Amorphous Structure in Materials

Crystal structures of crystalline solids can be determined by using X-ray diffraction 
analysis techniques. X-rays are diffracted in crystals when the Bragg’s law (nλ = 2d sin θ) 
conditions are satisfied. By using the X-ray diffractometer and the powder method, the crys-
tal structure of many crystalline solids can be determined.

3.14 DEFINITIONS
Sec. 3.1
Amorphous: lacking in long-range atomic order.
Crystal: a solid composed of atoms, ions, or molecules arranged in a pattern that is repeated 

in three dimensions.
Crystal structure: a regular three-dimensional pattern of atoms or ions in space.
Space lattice: a three-dimensional array of points each of which has identical surroundings.
Lattice point: one point in an array in which all the points have identical surroundings.
Unit cell: a convenient repeating unit of a space lattice. The axial lengths and axial angles are 

the lattice constants of the unit cell.
Motif (or Basis): a group of atoms that are organized relative to each other and are associated 

with corresponding lattice points.

Sec. 3.3
Body-centered cubic (BCC) unit cell: a unit cell with an atomic packing arrangement in 

which one atom is in contact with eight identical atoms located at the corners of an imagi-
nary cube.

Face-centered cubic (FCC) unit cell: a unit cell with an atomic packing arrangement in 
which 12 atoms surround a central atom. The stacking sequence of layers of close-packed 
planes in the FCC crystal structure is ABCABC. . . .

Hexagonal close-packed (HCP) unit cell: a unit cell with an atomic packing arrangement 
in which 12 atoms surround a central identical atom. The stacking sequence of layers of 
close-packed planes in the HCP crystal structure is ABABAB....

Atomic packing factor (APF): the volume of atoms in a selected unit cell divided by the vol-
ume of the unit cell.

Sec. 3.5
Indices of direction in a cubic crystal: a direction in a cubic unit cell is indicated by a vector 

drawn from the origin at one point in a unit cell through the surface of the unit cell; the 
position coordinates (x, y, and z) of the vector where it leaves the surface of the unit cell 
(with fractions cleared) are the indices of direction. These indices, designated u, v, and w, 
are enclosed in brackets as [uvw]. Negative indices are indicated by a bar over the index.

Sec. 3.6
Indices for cubic crystal planes (Miller indices): the reciprocals of the intercepts (with 

fractions cleared) of a crystal plane with the x, y, and z axes of a unit cube are called 
the Miller indices of that plane. They are designated h, k, and l for the x, y, and z axes, 
respectively, and are enclosed in parentheses as (hkl). Note that the selected crystal plane 
must not pass through the origin of the x, y, and z axes.

Sec. 3.9
Volume density ρv: mass per unit volume; this quantity is usually expressed in Mg/m3 or g/cm3.
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Planar density ρp: the equivalent number of atoms whose centers are intersected by a selected 
area divided by the selected area.

Linear density ρl: the number of atoms whose centers lie on a specific direction on a specific 
length of line in a unit cube.

Repeat Distance: The distance between two consecutive lattice points along a specific 
direction.

Sec. 3.10
Polymorphism (as pertains to metals): the ability of a metal to exist in two or more crystal 

structures. For example, iron can have a BCC or an FCC crystal structure, depending on 
the temperature.

Sec. 3.12
Semicrystalline: materials with regions of crystalline structure dispersed in the surrounding, 

amorphous region, for instance, some polymers.
Metallic glass: metals with an amorphous atomic structure.

3.15 PROBLEMS
Answers to problems marked with an asterisk are given at the end of the book.

Knowledge and Comprehension Problems

 3.1 Define the following terms: (a) crystalline solid, (b) long-range order, (c) short-range 
order, and (d) amorphous.

 3.2 Define the following terms: (a) crystal structure, (b) space lattice, (c) lattice point, (d) 
unit cell, (e) motif, and (f) lattice constants.

 3.3 What are the 14 Bravais unit cells?
 3.4 What are the three most common metal crystal structures? List five metals that have 

each of these crystal structures.
 3.5 For a BCC unit cell, (a) how many atoms are there inside the unit cell, (b) what is the 

coordination number for the atoms, (c) what is the relationship between the length of 
the side a of the BCC unit cell and the radius of its atoms, and (d) what is the atomic 
packing factor?

 3.6 For an FCC unit cell, (a) how many atoms are there inside the unit cell, (b) what is the 
coordination number for the atoms, (c) what is the relationship between the length of 
the side a of the FCC unit cell and the radius of its atoms, and (d) what is the atomic 
packing factor?

 3.7 For an HCP unit cell (consider the primitive cell), (a) how many atoms are there 
inside the unit cell, (b) what is the coordination number for the atoms, (c) what is the 
atomic packing factor, (d) what is the ideal c/a ratio for HCP metals, and (e) repeat (a) 
through (c) considering the “larger” cell.

 3.8 How are atomic positions located in cubic unit cells?
 3.9 List the atom positions for the eight corner and six face-centered atoms of the FCC 

unit cell.  
 3.10 How are the indices for a crystallographic direction in a cubic unit cell determined?
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138 C H A P T E R  3  Crystal and Amorphous Structure in Materials

 3.11 What are the crystallographic directions of a family or form? What generalized nota-
tion is used to indicate them?

 3.12 How are the Miller indices for a crystallographic plane in a cubic unit cell deter-
mined? What generalized notation is used to indicate them?

 3.13 What is the notation used to indicate a family or form of cubic crystallographic 
planes?

 3.14 How are crystallographic planes indicated in HCP unit cells?
 3.15 What notation is used to describe HCP crystal planes?
 3.16 What is the difference in the stacking arrangement of close-packed planes in (a) the 

HCP crystal structure and (b) the FCC crystal structure?
 3.17 What are the closest-packed directions in (a) the BCC structure, (b) the FCC structure, 

and (c) the HCP structure?
 3.18 Identify the close-packed planes in (a) the BCC structure, (b) the FCC structure, and 

(c) the HCP structure.
 3.19 What is polymorphism with respect to metals?
 3.20 What are X-rays, and how are they produced?
 3.21 Draw a schematic diagram of an X-ray tube used for X-ray diffraction, and indicate 

on it the path of the electrons and X-rays.
 3.22 What is the characteristic X-ray radiation? What is its origin?
 3.23 Distinguish between destructive interference and constructive interference of reflected 

X-ray beams through crystals. 

Application and Analysis Problems

 3.24 Tungsten at 20°C is BCC and has an atomic radius of 0.137 nm. (a) Calculate a value 
for its lattice constant a in nanometers. (b) Calculate the volume of the unit cell.

 3.25 Lead is FCC and has an atomic radius of 0.175 nm. (a) Calculate a value for its lattice 
constant a in nanometers. (b) Calculate the volume of the unit cell in nm3.

 3.26 Verify that the atomic packing factor for the FCC structure is 0.74. 
 3.27 Calculate the volume in cubic nanometers of the cobalt crystal structure unit cell (use 

the larger cell). Cobalt is HCP at 20°C with a = 0.2507 nm and c = 0.4069 nm. 
 3.28 Consider a 0.05-mm-thick, 500 mm2 (about three times the area of a dime) piece of 

aluminum foil. How many unit cells exist in the foil? If the density of aluminum is 
2.7 g/cm3, what is the mass of each cell?

 3.29 Draw the following directions in a BCC unit cell, and list the position coordinates of 
the atoms whose centers are intersected by the direction vector. Determine the repeat 
distance in terms of the lattice constant in each direction.

 (a) [010]  (b) [011]  (c) [111]
 (d) Find the angle between directions in (b) and (c).
 3.30 Draw direction vectors in an FCC unit cell for the following cubic directions, and list 

the position coordinates of the atoms whose centers are intersected by the direction 
vector. Determine the repeat distance in terms of the lattice constant in each direction.

 (a) [   ̄  1   ̄  1 1 ]  (b) [ 10  ̄  1  ]  (c) [ 2  ̄  1   ̄  1  ]  (d) [   ̄  1 3  ̄  1  ]
 (e) Find the angle between directions in (b) and (d).

Tutorial
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 3.31 Draw direction vectors in unit cells for the following cubic directions:
 (a) [ 1  ̄  1   ̄  2  ]  (b) [ 1  ̄  2 3 ]  (c) [   ̄  3 31 ]  (d) [ 0  ̄  2 1 ]  (e) [ 2  ̄  1 2 ]  (f) [ 2  ̄  3 3 ]
 (g) [   ̄  1 01 ]  (h) [ 12  ̄  1  ]  (i) [321]  (j) [ 10  ̄  3  ]  (k) [ 1  ̄  2   ̄  2  ]  (l) [   ̄  2   ̄  2 3 ]
 3.32 What are the indices of the directions shown in the unit cubes of Figure P3.32? 
 3.33 A direction vector passes through a unit cube from the (   3 _ 4  ,  0,     1 _ 4   ) to the (   1 _ 2  ,  1,  0 ) 

 positions. What are its direction indices?  
 3.34 A direction vector passes through a unit cube from the ( 1,  0,     3 _ 4   ) to the (   1 _ 4  ,  1,     1 _ 4   ) 

 positions. What are its direction indices?
 3.35 What are the directions of the 〈 10  ̄  3  〉 family or form for a unit cube? Draw all 

 directions in a unit cell. 
 3.36 What are the directions of the 〈111〉 family or form for a unit cube? Draw all 

 directions in a BCC unit cell. Can you identify a special quality of these directions?
 3.37 What 〈110〉 type directions lie on the (111) plane of a cubic unit cell? Draw those 

directions in an FCC unit cell. Can you identify a special quality of these directions?
 3.38 What 〈111〉 type directions lie on the (110) plane of a BCC unit cell? Draw those 

directions in a unit cell. Can you identify  a special quality of these directions?
 3.39 Draw in unit cubes the crystal planes that have the following Miller indices:
  (a) ( 1  ̄  1   ̄  1  )  (b) ( 10  ̄  2  )  (c) ( 1  ̄  2   ̄  1  )  (d) ( 21  ̄  3  )  (e) ( 3  ̄  2 1 )  (f) ( 30  ̄  2  )
 (g) ( 20  ̄  1  )  (h) (   ̄  2 1  ̄  2  )  (i) (   ̄  2 32 )  (j) ( 13  ̄  3  )  (k) ( 3  ̄  1 2 )  (l) (   ̄  3 3  ̄  1  )
 3.40 What are the Miller indices of the cubic crystallographic planes shown in 

Figure P3.40?  
 3.41 What are the {100} family of planes of the cubic system? Draw those planes in a BCC 

unit cell and show all atoms whose centers are intersected by the planes. What is your 
conclusion?

 3.42 Draw the following crystallographic planes in a BCC unit cell, and list the position of 
the atoms whose centers are intersected by each of the planes:

 (a) (010)  (b) (011)  (c) (111)

Figure P3.32
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 3.43 Draw the following crystallographic planes in an FCC unit cell, and list the position 
coordinates of the atoms whose centers are intersected by each of the planes:

  (a) (010) (b) (011) (c) (111)
 3.44 A cubic plane has the following axial intercepts:  a =   1 _ 3  ,  b = −   2 _ 3  ,  c =   1 _ 2   . What are the 

Miller indices of this plane?
 3.45 A cubic plane has the following axial intercepts:  a = −   1 _ 2  ,  b = −   1 _ 2  ,  c =   2 _ 3   . What are the 

Miller indices of this plane?
 3.46 Determine the Miller indices of the cubic crystal plane that intersects the following 

position coordinates:  (1,   1 _ 2  , 1);  (  1 _ 2  , 0,   3 _ 4  );  (1, 0,   1 _ 2  ) .
 3.47 Determine the Miller indices of the cubic crystal plane that intersects the following 

position coordinates:  (0, 0,   1 _ 2   );  (1, 0, 0);  (  1 _ 2  ,   
1 _ 4  , 0) .

 3.48 Rodium is FCC and has a lattice constant a of 0.38044 nm. Calculate the following 
interplanar spacings:

  (a) d111  (b) d200  (c) d220

 3.49 Tungsten is BCC and has a lattice constant a of 0.31648 nm. Calculate the following 
interplanar spacings:

  (a) d110  (b) d220  (c) d310  
 3.50 The d310 interplanar spacing in a BCC element is 0.1587 nm. (a) What is its  lattice 

constant a? (b) What is the atomic radius of the element? (c) What could this 
element be?

 3.51 The d422 interplanar spacing in an FCC metal is 0.083397 nm. (a) What is its lattice 
constant a? (b) What is the atomic radius of the metal? (c) What could this metal be? 

 3.52 Draw the hexagonal crystal planes whose Miller-Bravais indices are:
  (a) ( 10  ̄  1 1 )  (b) ( 01  ̄  1 1 )  (c) (   ̄  1 2  ̄  1 0 )  (d) ( 1  ̄  2 12 )  (e) ( 2  ̄  1   ̄  1 1 )  (f) ( 1  ̄  1 01 )
 (g) (   ̄  1 2  ̄  1 2 )  (h) ( 2  ̄  2 00 )  (i) ( 10  ̄  1 2 )  (j) (   ̄  1 100 )  (k) (   ̄  2 111 )  (l) (   ̄  1 012 )
 3.53 Determine the Miller-Bravais indices of the hexagonal crystal planes in Figure P3.53. 

Tutorial

Figure P3.40

x

y

z
3
4

3
4

1
3

1
3

1
3

2
3

dc

a
b

a

d

c

b

x

y

z

2
3

2
3

1
4

1
2
1
3

(a) (b)

smi96553_ch03_092-145.indd 140 07/02/18  10:08 AM



 3.15 Problems 141

 3.54 Determine the Miller-Bravais direction indices of the −a1, −a2, and −a3 directions.
 3.55 Determine the Miller-Bravais direction indices of the vectors originating at the center 

of the lower basal plane and ending at the endpoints of the upper basal plane as indi-
cated in Figure 3.16d.

 3.56 Determine the Miller-Bravais direction indices of the basal plane of the vectors origi-
nating at the center of the lower basal plane and exiting at the midpoints between the 
principal planar axes.

 3.57 Determine the Miller-Bravais direction indices of the directions indicated in 
Figure P3.57.  

 3.58 The lattice constant for BCC tantalum at 20°C is 0.33026 nm and its density is  
16.6 g/cm3. Calculate a value for its relative atomic mass.

 3.59 Calculate a value for the density of FCC platinum in grams per cubic centimeter from 
its lattice constant a of 0.39239 nm and its atomic mass of 195.09 g/mol.

Figure P3.53
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142 C H A P T E R  3  Crystal and Amorphous Structure in Materials

 3.60 Calculate the planar atomic density in atoms per square millimeter for the fol-
lowing crystal planes in BCC chromium, which has a lattice constant of 0.28846 
nm. Compare the values and draw a conclusion.  (a) (100), (b) (110), (c) (111).

 3.61 Calculate the planar atomic density in atoms per square millimeter for the following 
crystal planes in FCC gold, which has a lattice constant of 0.40788 nm. Compare the 
values and draw a conclusion.  (a) (100), (b) (110), (c) (111).  

 3.62 Calculate the planar atomic density in atoms per square millimeter for the (0001) 
plane in HCP beryllium, which has a lattice constant a = 0.22856 nm and a c constant 
of 0.35832 nm. Can you make any observations about this plane?

 3.63 Calculate the linear atomic density in atoms per millimeter for the following 
 directions in BCC vanadium, which has a lattice constant of 0.3039 nm: (a) [100], 
(b) [110], (c) [111]. Determine the repeat distance along each direction.

 3.64 Calculate the linear atomic density in atoms per millimeter for the following direc-
tions in FCC iridium, which has a lattice constant of 0.38389 nm: (a) [100], (b) [110], 
(c) [111]. Determine the repeat distance along each direction. 

 3.65 Titanium goes through a polymorphic change from BCC to HCP crystal structure upon 
cooling through 332°C. Calculate the percentage change in volume when the crystal 
structure changes from BCC to HCP. The lattice constant a of the BCC unit cell at 
882°C is 0.332 nm, and the HCP unit cell has a = 0.2950 nm and c = 0.4683 nm.

 3.66 Pure iron goes through a polymorphic change from BCC to FCC upon heating 
through 912°C. Calculate the volume change associated with the change in crystal 
structure from BCC to FCC if at 912°C the BCC unit cell has a lattice constant a = 
0.293 nm and the FCC unit cell a = 0.363 nm.

 3.67 Derive Bragg’s law by using the simple case of incident X-ray beams being diffracted 
by parallel planes in a crystal.

 3.68 A sample of BCC metal was placed in an X-ray diffractometer using X-rays with a 
wavelength of λ = 0.1541 nm. Diffraction from the {221} planes was obtained at 2θ 
= 88.838°. Calculate a value for the lattice constant a for this BCC elemental metal. 
(Assume first-order diffraction, n = 1.)

 3.69 X-rays of an unknown wavelength are diffracted by a gold sample. The 2θ angle was 
64.582° for the {220} planes. What is the wavelength of the X-rays used? (The lattice 
constant of gold = 0.40788 nm; assume first-order diffraction, n = 1.)

 3.70 An X-ray diffractometer recorder chart for an element that has either the BCC or 
the FCC crystal structure showed diffraction peaks at the following 2θ angles: 
41.069°, 47.782°, 69.879°, and 84.396°. The wavelength of the incoming radiation 
was 0.15405 nm. (X-ray diffraction data courtesy of the International Centre for 
Diffraction Data.)

  (a) Determine the crystal structure of the element.
 (b) Determine the lattice constant of the element.
 (c) Identify the element.
 3.71 An X-ray diffractometer recorder chart for an element that has either the BCC or the 

FCC crystal structure showed diffraction peaks at the following 2θ angles: 38.60°, 
55.71°, 69.70°, 82.55°, 95.00°, and 107.67°. Wavelength λ of the incoming radiation 
was 0.15405 nm.

  (a) Determine the crystal structure of the element.
 (b) Determine the lattice constant of the element.
 (c) Identify the element.  
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 3.72 An X-ray diffractometer recorder chart for an element that has either the BCC or the 
FCC crystal structure showed diffraction peaks at the following 2θ angles: 36.191°, 
51.974°, 64.982°, and 76.663°. The wavelength of the incoming radiation was 
0.15405 nm.

  (a) Determine the crystal structure of the element.
 (b) Determine the lattice constant of the element.
 (c) Identify the element.
 3.73 An X-ray diffractometer recorder chart for an element that has either the BCC or the 

FCC crystal structure showed diffraction peaks at the following 2θ angles: 40.663°, 
47.314°, 69.144°, and 83.448°. Wavelength l of the incoming radiation was 0.15405 nm.

  (a) Determine the crystal structure of the element.
 (b) Determine the lattice constant of the element.
 (c) Identify the element.

Synthesis and Evaluation Problems

 3.74 Do you expect iron and silver to have the same (a) atomic packing factor, (b) volume 
of unit cell, (c) number of atoms per unit cell, and (d) coordination number? How 
about gold and silver? How about titanium and silver?

 3.75 In a cubic unit cell, draw the (111) and (011) planes. Highlight the intersection of the 
two planes. What are the direction indices of the intersection line?

 3.76 In a cubic unit cell, draw the (011) and (110) planes. Highlight the intersection of the 
two planes. What are the direction indices of the intersection line?

 3.77 Show using geometry that the ideal c/a ratio of the hexagonal close-packed unit cell 
(when atoms are perfect spheres) is 1.633. Hint: Draw the center atom in the top basal 
plane in contact with the three atoms in the center of the HCP cell; connect the centers 
of the three atoms inside the HCP cell to each other and to the atom at the center of 
one of the basal planes.  

 3.78 Assuming that the volume of an HCP metal cell (larger cell) is 0.09130 nm3 and the 
c/a ratio is 1.856, determine (a) the values for c and a, and (b) the radius, R, of the 
atom. (c) If you were told that the metal is zinc, would you be surprised? How do you 
explain the discrepancy?

 3.79 Assuming that the volume of an HCP metal cell (larger cell) is 0.01060 nm3 and the 
c/a ratio is 1.587, determine (a) the values for c and a, and (b) the radius, R, of the 
atom. (c) If you were told that the metal is titanium, does the calculated R match that 
of Ti? How do you explain the discrepancy?  

 3.80 The structure of NaCl (an ionic material) is given in Figure 2.18b. Determine (a) its 
lattice constant a, and (b) its density. Hint: Since NaCl is ionic, use the ion radius data 
and note the atomic radii.

 3.81 The unit cell structure of the ionic solid, CsI, is similar to that in Figure 2.18a. 
Determine (a) its packing factor, and (b) compare this packing factor with that of 
BCC metals. Explain the difference, if any.

 3.82 Iron (below 912°C) and tungsten are both BCC with significantly different atomic 
radii. However, they have the same atomic packing factor of 0.68. How do you 
explain this?

 3.83 Verify that there are eight atoms inside a diamond cubic structure (see Figure 2.23b 
and c). Draw a 3D schematic of the atoms inside the cell.
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144 C H A P T E R  3  Crystal and Amorphous Structure in Materials

 3.84 The lattice constant for the diamond cubic structure of diamond is 0.357 nm. Diamond 
is metastable, meaning that it will transform to graphite at elevated temperatures. 
If this transformation occurs, what percent volume change will occur? (Density of 
graphite is 2.25 gr/cm3)  

 3.85 Calculate the center-to-center distance between adjacent atoms of gold along the fol-
lowing directions: (a) [100], (b) [101], (c) [111], and (d) [102]. Speculate as to why 
such information may be important in understanding the behavior of the material.

 3.86 Calculate the center-to-center distance between adjacent atoms of tungsten along the 
following directions: (a) [100], (b) [101], (c) [111], and (d) [102]. Speculate as to why 
such information may be important in understanding the behavior of the material.  

 3.87 A plane in a cubic crystal intersects the x axis at 0.25, the y axis at 2, and is parallel to 
the z axis. What are the Miller indices for this plane? Draw this plane in a single cube 
and show all key dimensions.

 3.88 A plane in a cubic crystal intersects the x axis at 3, the y axis at 1, and the z axis at 1. 
What are the Miller indices for this plane? Draw this plane in a single cube and show 
all key dimensions.

 3.89 A plane in a hexagonal crystal intersects at the a1 axis at −1, the a2 axis at 1, and the 
c axis at infinity. What are the Miller indices for this plane? Draw this plane in a hex-
agonal unit cell and show all key dimensions.

 3.90 A plane in a hexagonal crystal intersects at the a1 axis at 1, the a2 axis at 1, and the c 
axis at 0.5. What are the Miller indices for this plane? Draw this plane in a hexagonal 
unit cell and show all key dimensions.

 3.91 Without drawing any of the hexagonal planes given below, determine which of the 
planes is, in fact, not a plane. (a) (   ̄  1 0  ̄  1 0 ), (b) ( 10  ̄  1 0 ), and (c) (   ̄  1 1  ̄  1 0 ).  

 3.92 Name as many carbon allotropes as you can, and discuss their crystal structure.
 3.93 A thin layer of aluminum nitride is sometimes deposited on silicon wafers at high 

temperatures (1000°C). The coefficient of thermal expansion and the lattice constant 
of the silicon crystal is different than that of aluminum nitride. Will this cause a prob-
lem? Explain.

 3.94 An unknown material is being analyzed using X-ray diffraction techniques. However, 
the diffraction patterns are extremely broad (no clear peaks are visible). (a) What does 
this tell you about the material? (b) What are some of the tests that you can perform to 
help identify the material or narrow the possibilities?

 3.95 Explain, in general terms, why many polymers and some ceramic glasses have an 
amorphous or semicrystalline structure.

 3.96 Explain how ultra-rapid cooling of some metal alloys produces metallic glass.
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4 C H A P T E R

Solidification and Crystalline 
Imperfections 

When molten alloys are cast, solidification starts at the walls of the mold as it is 
being cooled. The solidification of an alloy (as opposed to a pure metal) takes 

place not at a specific temperature but over a range of temperatures. While the alloy is in 
this range, it has a pasty form that consists of solid, treelike structures called dendrites 
(meaning treelike), and liquid metal. The size and shape of the dendrite depends on the 
cooling rate. The liquid metal existing among these three-dimensional dendritic struc-
tures eventually solidifies to form a completely solid structure that we refer to as the 
grain structure. The study of dendrites is important because they influence composi-
tional variations, porosity, and segregation and therefore the properties of the cast metal. 
The figure shows the three-dimensional structure of dendrites. The figure shows a “for-
est” of dendrites formed during the solidification of a nickel-based superalloy.1 ■

1 http://mgnews.msfc.nasa.gov/IDGE/IDGE.html

(Courtesy of Stan David and Lynn Boatner, Oak Ridge National 
Library)

smi96553_ch04_146-195.indd 146 10/14/17  05:16 AM

Final PDF to printer


	Cover
	Foundations of Materials Scienceand Engineering
	ABOUT THE AUTHORS
	TABLE OF CONTENTS
	PREFACE
	ABOUT THE COVER
	CHAPTER 3: Crystal and Amorphous Structure in Materials
	3.1 The Space Lattice and Unit Cells
	3.2 Crystal Systems and Bravais Lattices
	3.3 Principal Metallic Crystal Structures
	3.3.1 Body-Centered Cubic (BCC) Crystal Structure
	3.3.2 Face-Centered Cubic (FCC) Crystal Structure
	3.3.3 Hexagonal Close-Packed (HCP) Crystal Structure

	3.4 Atom Positions in Cubic Unit Cells
	3.5 Directions in Cubic Unit Cells
	3.6 Miller Indices for Crystallographic Planes in Cubic Unit Cells
	3.7 Crystallographic Planes and Directions in Hexagonal Crystal Structure
	3.7.1 Indices for Crystal Planes in HCP Unit Cells
	3.7.2 Direction Indices in HCP Unit Cells

	3.8 Comparison of FCC, HCP, and BCC Crystal Structures
	3.8.1 FCC and HCP Crystal Structures
	3.8.2 BCC Crystal Structure

	3.9 Volume, Planar, and Linear Density Unit-Cell Calculations
	3.9.1 Volume Density
	3.9.2 Planar Atomic Density
	3.9.3 Linear Atomic Density and Repeat Distance

	3.10 Polymorphism or Allotropy
	3.11 Crystal Structure Analysis
	3.11.1 X-Ray Sources
	3.11.2 X-Ray Diffraction
	3.11.3 X-Ray Diffraction Analysis of Crystal Structures

	3.12 Amorphous Materials
	3.13 Summary
	3.14 Definitions
	3.15 Problems

	CHAPTER 4: Solidification and Crystalline Imperfections

