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Chapter 3, Problem 1 
Define a crystalline solid. 

Chapter 3, Solution 1 
A crystalline solid is one which has a crystal structure in which atoms or ions are arranged in a pattern that repeats 
itself in three dimensions.  
 

Chapter 3, Problem 2 
Define a crystal structure. Give examples of materials that have crystal structures. 

Chapter 3, Solution 2 
A crystal structure is identical to a crystalline solid, as defined by the solution of Problem 3.1.  Examples include 
metals, ionic crystals and certain ceramic materials. 
 

Chapter 3, Problem 3 
Define a space lattice. 

Chapter 3, Solution 3 
A space lattice is an infinite three-dimensional array of points with each point having identical surrounding points. 
 

Chapter 3, Problem 4 
Define a unit cell of a space lattice. What lattice constants define a unit cell? 

Chapter 3, Solution 4 
The unit cell of a space lattice represents a repeating unit of atomic spatial positions.  The cell is defined by the 
magnitudes and directions of three lattice vectors, a, b, and c:  axial lengths a, b, and c; interaxial angles 

, , and .α β γ  
 

Chapter 3, Problem 5 
What are the 14 Bravais unit cells? 

Chapter 3, Solution 5 
The fourteen Bravais lattices are:  simple cubic, body-centered cubic, face-centered cubic, simple tetragonal, body-
centered tetragonal, simple orthorhombic, base-centered orthorhombic, body-centered orthorhombic, face-centered 
orthorhombic, simple rhombohedral, simple hexagonal, simple monoclinic, base-centered monoclinic, and simple 
triclinic. 
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Chapter 3, Problem 6 
What are the three most common metal crystal structures? List five metals that have each of these crystal structures. 

Chapter 3, Solution 6 
The three most common crystal structures found in metals are:  body-centered cubic (BCC), face-centered cubic 
(FCC), and hexagonal close-packed (HCP).  Examples of metals having these structures include the following. 
 
BCC:  iron,α − vanadium, tungsten, niobium, and chromium. 
FCC: copper, aluminum, lead, nickel, and silver. 
HCP: magnesium, titanium,α − zinc, beryllium, and cadmium. 
 

Chapter 3, Problem 7 
How many atoms per unit cell are there in the BCC crystal structure? 

Chapter 3, Solution 7 
A BCC crystal structure has two atoms in each unit cell. 
 

Chapter 3, Problem 8 
What is the coordination number for the atoms in the BCC crystal structure? 

Chapter 3, Solution 8 
A BCC crystal structure has a coordination number of eight. 
 

Chapter 3, Problem 9 
What is the relationship between the length of the side a of the BCC unit cell and the radius of its atoms? 

Chapter 3, Solution 9 
In a BCC unit cell, one complete atom and two atom eighths touch each other along the cube diagonal.  This 
geometry translates into the relationship 3 4 .a R=  
 

Chapter 3, Problem 10 
Molybdenum at 20°C is BCC and has an atomic radius of 0.140 nm. Calculate a value for its lattice constant a in 
nanometers. 

Chapter 3, Solution 10 
Letting a represent the edge length of the BCC unit cell and R the molybdenum atomic radius,  
 

4 43 4    or   (0.140 nm)
3 3

a R a R= = = =0.323 nm  
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Chapter 3, Problem 11 
Niobium at 20°C is BCC and has an atomic radius of 0.143 nm. Calculate a value for its lattice constant a in 
nanometers. 

Chapter 3, Solution 11 
For a BCC unit cell having an edge length a and containing niobium atoms, 
 

4 43 4    or   (0.143 nm)
3 3

a R a R= = = =0.330 nm  

 

Chapter 3, Problem 12 
Lithium at 20°C is BCC and has a lattice constant of 0.35092 nm. Calculate a value for the atomic radius of a 
lithium atom in nanometers. 

Chapter 3, Solution 12 
For the lithium BCC structure, which has a lattice constant of  a = 0.35092 nm, the atomic radius is, 
 

3 3 (0.35092 nm)
4 4

R a= = =0.152 nm  

 

Chapter 3, Problem 13 
Sodium at 20°C is BCC and has a lattice constant of 0.42906 nm. Calculate a value for the atomic radius of a 
sodium atom in nanometers. 

Chapter 3, Solution 13 
For the sodium BCC structure, with a lattice constant of  a = 0.42906 nm, the atomic radius is, 
 

3 3 (0.42906 nm)
4 4

R a= = =0.186 nm  

 

Chapter 3, Problem 14 
How many atoms per unit cell are there in the FCC crystal structure? 

Chapter 3, Solution 14 
Each unit cell of the FCC crystal structure contains four atoms. 
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Chapter 3, Problem 15 
What is the coordination number for the atoms in the FCC crystal structure? 

Chapter 3, Solution 15 
The FCC crystal structure has a coordination number of twelve. 
 

Chapter 3, Problem 16 
Gold is FCC and has a lattice constant of 0.40788 nm. Calculate a value for the atomic radius of a gold atom in 
nanometers. 

Chapter 3, Solution 16 
For the gold FCC structure, which has a lattice constant of a = 0.40788 nm, the atomic radius is, 
 

2 2 (0.40788 nm)
4 4

R a= = =0.144 nm  

 

Chapter 3, Problem 17 
Platinum is FCC and has a lattice constant of 0.39239 nm. Calculate a value for the atomic radius of a platinum atom 
in nanometers. 

Chapter 3, Solution 17 
For the platinum FCC structure, with a lattice constant of a = 0.39239 nm, the atomic radius is, 
 

2 2 (0.39239 nm)
4 4

R a= = =0.139 nm  

 

Chapter 3, Problem 18 
Palladium is FCC and has an atomic radius of 0.137 nm. Calculate a value for its lattice constant a in nanometers. 

Chapter 3, Solution 18 
Letting a represent the FCC unit cell edge length and R the palladium atomic radius,  
 

4 42 4    or   (0.137 nm)
2 2

a R a R= = = =0.387 nm  

 
 
 
 
 
 
 
 
 
 



Problems and Solutions to Smith/Hashemi  
Foundations of Materials Science and Engineering 4/e 
 
 

 
PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part 
of this Manual may be displayed, reproduced or distributed in any form or by any means, without the 
prior written permission of the publisher, or used beyond the limited distribution to teachers and 
educators permitted by McGraw-Hill for their individual course preparation. If you are a student using 
this Manual, you are using it without permission. 

 Page 5 

 

Chapter 3, Problem 19 
Strontium is FCC and has an atomic radius of 0.215 nm. Calculate a value for its lattice constant a in nanometers. 

Chapter 3, Solution 19 
For an FCC unit cell having an edge length a an containing strontium atoms,  

 
4 42 4    or   (0.215 nm)
2 2

a R a R= = = =0.608 nm  

 

Chapter 3, Problem 20 
Calculate the atomic packing factor for the FCC structure. 

Chapter 3, Solution 20 
By definition, the atomic packing factor is given as: 
 

volume of atoms in FCC unit cellAtomic packing factor
volume of the FCC unit cell

=  

 
These volumes, associated with the four-atom FCC unit cell, are 
 

3 34 164
3 3atomsV R Rπ π = =  

  and 3
unit cellV a=  

where a represents the lattice constant.  Substituting 
4

2
Ra = , 

3
3

unit cell
64
2 2

RV a= =  

 
The atomic packing factor then becomes, 
 

3

3
16 1 2 2APF (FCC unit cell)

3 632
R

R
π π  

= =       
= 0.74  
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Chapter 3, Problem 21 
How many atoms per unit cell are there in the HCP crystal structure? 

Chapter 3, Solution 21 
The hexagonal prism contains six atoms. 
 

Chapter 3, Problem 22 
What is the coordination number for the atoms in the HCP crystal structure? 

Chapter 3, Solution 22 
The coordination number associated with the HCP crystal structure is twelve. 
 

Chapter 3, Problem 23 
What is the ideal c/a ratio for HCP metals? 

Chapter 3, Solution 23 
The ideal c/a ratio for HCP metals is 1.633; however, the actual ratios may deviate significantly from this value. 
 

Chapter 3, Problem 24 
Of the following HCP metals, which have higher or lower c/a ratios than the ideal ratio: Zr, Ti, Zn, Mg, Co, Cd, and 
Be? 

Chapter 3, Solution 24 
Cadmium and zinc have significantly higher c/a ratios while zirconium, titanium, magnesium, cobalt and beryllium 
have slightly lower ratios. 
 

Chapter 3, Problem 25 
Calculate the volume in cubic nanometers of the titanium crystal structure unit cell. Titanium is HCP at 20°C with a 
= 0.29504 nm and c = 0.46833 nm. 

Chapter 3, Solution 25 
For a hexagonal prism, of height c and side length a, the volume is given by: 

2

2

(Area of Base)(Height) [(6 Equilateral Triangle Area)(Height)]

(3 sin 60 )( )

3(0.29504 nm) (sin 60 )(0.46833 nm)

=

V

a c

= = ×

=

=
30.106 nm

o

o
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Chapter 3, Problem 26 
Rhenium at 20°C is HCP. The height c of its unit cell is 0.44583 nm and its c/a ratio is 1.633. Calculate a value for 
its lattice constant a in nanometers. 

Chapter 3, Solution 26 
The rhenium lattice constant a is calculated as, 
 

0.44583 nm
/ 1.633
ca

c a
= = =0.273 nm  

 

Chapter 3, Problem 27 
Osmium at 20°C is HCP. Using a value of 0.135 nm for the atom radius of osmium atoms, calculate a value for its 
unit-cell volume. Assume a packing factor of 0.74. 

Chapter 3, Solution 27 
From the definition of the atomic packing factor, 
 

volume of atoms in HCP unit cellHCP unit cell volume
APF

=  

 
Since there are six atoms in the HCP unit cell, the volume of atoms is: 
 

3 3 3
atoms

46 8 (0.135) 0.0618 nm
3

V Rπ π = = =  
 

 
The unit cell volume thus becomes, 
 

30.0618 nmHCP unit cell volume
0.74

= = 30.084 nm  
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Chapter 3, Problem 28 
How are atomic positions located in cubic unit cells? 

Chapter 3, Solution 28 
Atomic positions are located in cubic unit cells using rectangular x, y, and z axes and unit distances along the 
respective axes.  The directions of these axes are shown below. 
 

 
 

Chapter 3, Problem 29 
List the atom positions for the eight corner and six face-centered atoms of the FCC unit cell. 

Chapter 3, Solution 29 
The atom positions at the corners of an FCC unit cell are: 
(0, 0, 0), (1, 0, 0), ( 1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1) 
 
On the faces of the FCC unit cell, atoms are located at: 
(½, ½, 0), (½, 0, ½), (0, ½, ½), (½, ½, 1), (1, ½, ½), (½, 1, ½) 
 

Chapter 3, Problem 30 
How are the indices for a crystallographic direction in a cubic unit cell determined? 

Chapter 3, Solution 30 
For cubic crystals, the crystallographic direction indices are the components of the direction vector, resolved along 
each of the coordinate axes and reduced to the smallest integers.  These indices are designated as [uvw]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

-z 

+y -y 

+x 

-x 

+z 
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Chapter 3, Problem 31 
Draw the following directions in a BCC unit cell and list the position coordinates of the atoms whose centers are 
intersected by the direction vector: 
(a) [100] (b) [110] (c) [111] 

Chapter 3, Solution 31 
 

 
(a)  Position Coordinates: (b)  Position Coordinates: (c)  Position Coordinates: 
      (0, 0, 0), (1, 0, 0)                     (0, 0, 0), (1, 1, 0)                     (0, 0, 0), (1, 1, 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1, 1, 1) 

(0, 0, 0) 

(0, 0, 0) 

(1, 1, 0) 

(0, 0, 0) 

(1, 0, 0) 

y 

x 

z 
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Chapter 3, Problem 32 
Draw direction vectors in unit cells for the following cubic directions: 
(a) 111    (b) 110    (c) 121    (d) 113    

Chapter 3, Solution 32 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y 

x 

z 

[11 1]  

x = +1 
y = -1 
z = -1 

x = +1 
y = -1 
z = 0 

(a) (b) 

[11 0]

[121]  

½ ½ 

Dividing by 2, 
    x = -½ 
    y = 1 
    z = -½ 

(c) 
[113] 

⅓ 

⅓ 

Dividing by 3, 
    x = – ⅓ 
    y = – ⅓ 
    z = 1 

(d) 
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Chapter 3, Problem 33 
Draw direction vectors in unit cells for the following cubic directions: 
(a) 112    (c) 331    (e) 212    (g) 101    (i) [ ]321  (k) 122    

(b) 123    (d) 021    (f) 233    (h) 121    (j) 103    (l) 223    

Chapter 3, Solution 33 

x 

y 

z 

1 1, 1 ,
4 4

 
  

 [ ]3 2 1  

½ 

½ 
1 

(e)  Dividing [212] by 2,
11, , 1
2

x y z= = − =
 

(f)  Dividing [233] by 3,
2 , 1, 1
3

x y z= = − =
 

⅓

1 

1 

1
½

⅔

1 

⅓

1 

⅔

(a)  Dividing [112] by 2,
1 1, , 1
2 2

x y z= = − = −
 

(d)  Dividing [021] by 2,
10, 1,
2

x y z= = − =
 

½ 

1 

1
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(g)  For [101],
1, 0, 1x y z= − = =

½ 

½ 

(h)  Dividing [121] by 2,
1 1, 1,
2 2

x y z= = = −
 

(i)  Dividing [321] by 3,
2 11, ,
3 3

x y z= = =
 

(j)  Dividing [103] by 3,
1 , 0, 1
3

x y z= = = −
 

(k)  Dividing [122] by 2,
1 , 1, 1
2

x y z= = − = −
 

(l)  Dividing [223] by 3,
2 2, , 1
3 3

x y z= − = − =
 

½ 

1 

1 

⅔ 

⅔ 

1 

⅓ 

1 

1 

1 ⅓ 1

⅔ 



Problems and Solutions to Smith/Hashemi  
Foundations of Materials Science and Engineering 4/e 
 
 

 
PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part 
of this Manual may be displayed, reproduced or distributed in any form or by any means, without the 
prior written permission of the publisher, or used beyond the limited distribution to teachers and 
educators permitted by McGraw-Hill for their individual course preparation. If you are a student using 
this Manual, you are using it without permission. 

 Page  

 

13

Chapter 3, Problem 34 
What are the indices of the directions shown in the unit cubes of Fig. P3.34? 
 

 
 
Figure P3.34 

Chapter 3, Solution 34 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 

z

y 

z

y 

a 

¼ 

½ ¼

¾ 

½ 

⅓

b

c 

d

(a) (b) ¼
¾ 

½ 
⅓ 

¼ ¾ 

⅔ 
f 

g

h
e 

x 
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a.  Vector components: 
     x = -1,  y = 1,  z = 0 
    Direction indices: [110]  

b.  Moving direction vector    
down ¼ , vector components 
are:  x = 1,  y = -1,  z = ¼ 
Direction indices:  [441]  

c. Moving direction vector for- 
 ward  ½, vector components 

are:  x = -1/6 ,  y = 1,  z = 1 
Direction indices: [166]  

d.  Moving direction vector 
 left ¼, vector components 
are:  x = 1,  y = ½ ,  z = 1 
Direction indices:  [212]  

e.  Vector components are: 
x = -¾ ,  y = -1,  z = 1 

Direction indices:  [344]  

f.  Moving direction vector up  
 ⅓, vector components are: 
 x = -1,  y = 1,  z = -⅓ 
 Direction indices: [331]  

g. Moving direction vector 
up ½, vector components 
are: x = 1, y = -1, z = -¼ 
Direction indices:  [441]  

h. Moving direction vector  
up ¼, vector components 
are:  x = ¾ , y = -1, z = -¾ 
Direction indices:  [343]  

a 

New 0 
b 

½ 
¼

¼ 

¼

e 

⅓ 
1/6 

½

New 0 

c 

New 0 

⅔

-⅓ 

⅓
f 

New 0 

½

¼ 

¾ 
g 

¾ 

New 0 

h 

¾ 

-¾ 

¼ 
New 0 

½ ¾ 

d 
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Chapter 3, Problem 35 

A direction vector passes through a unit cube from the 
3 1,0,
4 4

 
  

 to the 
1 ,1,0
2

 
  

 positions. What are its direction 

indices? 

Chapter 3, Solution 35 
 
The starting point coordinates, subtracted from the end point, give the vector components: 
 

1 3 1 1 11 0 1 0
2 4 4 4 4

x y z= − = − = − = = − = −  

 
The fractions can then be cleared through multiplication by 4, giving 1, 4, 1.x y z= − = = −  The direction 

indices are therefore .[1 4 1]  
 

Chapter 3, Problem 36 

A direction vector passes through a unit cube from the 
31,0,
4

 
  

 to the 
1 1,1,
4 4

 
  

 positions. What are its direction 

indices? 

Chapter 3, Solution 36 
 
Subtracting coordinates, the vector components are: 

 
1 3 1 3 11 1 0 1
4 4 4 4 2

x y z= − = − = − = = − = −  

 
Clearing fractions through multiplication by 4, gives 3, 4, 2.x y z= − = = −   

The direction indices are therefore .[3 4 2]  
 

Chapter 3, Problem 37 
What are the crystallographic directions of a family or form? What generalized notation is used to indicate them? 

Chapter 3, Solution 37 
 
A family or form has equivalent crystallographic directions; the atom spacing along each 
direction is identical.  These directions are indicated by uvw . 
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Chapter 3, Problem 38 

What are the directions of the 103    family or form for a unit cube? 

Chapter 3, Solution 38 
 

     [100] , [010] , [001] , [100] , [010] , [001]  
 

Chapter 3, Problem 39 

What are the directions of the 111  family or form for a unit cube? 

Chapter 3, Solution 39 
 

     [111] , [111] , [111] , [111] ,  

     [111] , [111] , [111] , [111]  
 
 

Chapter 3, Problem 40 

What 110 -type directions lie on the (111) plane of a cubic unit cell? 

Chapter 3, Solution 40 
 
[011] , [011] , [110] , [110] , [101] , [101]  
 
 [1 01] 

[0 11] 

[10 1] 

[011]

[110] 
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Chapter 3, Problem 41 

What 111 -type directions lie on the (110) plane of a cubic unit cell? 

Chapter 3, Solution 41 
 

[111] , [111] , [111] , [111]  
 
 
 
 
 
 

Chapter 3, Problem 42 
How are the Miller indices for a crystallographic plane in a cubic unit cell determined? What generalized notation is 
used to indicate them? 

Chapter 3, Solution 42 
The Miller indices are determined by first identifying the fractional intercepts which the plane makes with the 
crystallographic x, y, and z axes of the cubic unit cell.  Then all fractions must be cleared such that the smallest set of 
whole numbers is attained.  The general notation used to indicate these indices is (hkl), where h, k, and l correspond 
to the x, y and z axes, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[111]  

[111]  

[111]  
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Chapter 3, Problem 43 
Draw in unit cubes the crystal planes that have the following Miller indices: 
(a) ( )111  (c) ( )121  (e) ( )321  (g) ( )201  (i) (232)  (k) ( )312  

(b) ( )102  (d) ( )213  (f) ( )302  (h) ( )212  (j) ( )133  (l) ( )331  

Chapter 3, Solution 43 
 

z 

y

x 

a.  For (1 1 1) reciprocals 
are:  x = 1,  y = -1,  z = -1 

b.  For (102) reciprocals 
are:  x = 1,  y = ∞, z = -½ 

c.  For (1 2 1) reciprocals 
are:  x = 1,  y = -½ ,  z = -1 

(1 1 1)  
-1 

-1 

+1 

(0, 0, 0) 

(0, 0, 0) +1 

-⅓ 
+½ (213)  

d.  For (213) reciprocals 
are:  x = ½ ,  y = 1,  z = -⅓ 

e.  For (321) reciprocals 
are:  x = ⅓ ,  y = -½ , z = 1 

(0, 0, 0) 

+1 

-½ 
+⅓ (321)  

f.  For (302) reciprocals 
are:  x = ⅓ , y = ∞, z = -½ 

•
(302)  

(0, 0, 0) 

+⅓ 

-½ 

••

•

(102)  

+1 
-½ 

(0, 0, 0) •

-1 
(1 2 1)

(0, 0, 0) -½ 

+1 

•
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(0, 0, 0) 

g.  For (201) reciprocals 
are:  x = ½ ,  y = ∞,  z = -1 

j.  For (133) reciprocals 
are:  x = 1 ,  y = ⅓,  z = -⅓ 

h.  For ( 212) reciprocals 
are:  x =-½ ,  y = 1,  z = -½ 

(0, 0, 0) +1 

-½ 

(212)  
-½ 

•

(201)  

+½ 

-1 

•

(0, 0, 0) 

+1 
-⅓ 

+⅓ 

(133)  

•

(0, 0, 0) 
+⅓ 

-½ 

(232)  
+½ 

•
i.  For (232) reciprocals are: 
x =-½ ,  y = ⅓,  z = ½ 

(0, 0, 0) -1 

+½ 

+⅓ (312)  
•

k.  For (31 2) reciprocals 
are:  x = ⅓ ,  y = -1,  z = ½ 

k.  For (331) reciprocals 
are:  x = -⅓ ,  y = ⅓,  z = -1 

-1 

(0, 0, 0) 
+⅓ -⅓ 

(331)  

•
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Chapter 3, Problem 44 
What are the Miller indices of the cubic cyrsyallographic planes shown in Fig. P3.44? 

Chapter 3, Solution 44 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Miller Indices for Figure P3.44(a) 
 

Plane a based on (0, 1, 1) as origin Plane b based on (1, 1, 0) as origin 
Planar Intercepts Reciprocals of Intercepts Planar Intercepts Reciprocals of Intercepts 

x = ∞ 1 0
x

=  x = -1 1 1
x

= −  

y = -1 
1 1
y

= −  5
12

y −=     1 12
5y

−=  

1
4

z = −  1 4
z

= −  z = ∞ 
1 0
z

=  

    
The Miller indices of plane a are .( 0 1 4)  The Miller indices of plane b are .(5 12 0)  

 
Plane c based on (1, 1, 0) as origin 

 
Plane d based on (0, 0, 0) as origin 

Planar Intercepts Reciprocals of Intercepts Planar Intercepts Reciprocals of Intercepts 

x = ∞ 1 0
x

=  x = 1 1 1
x

=  

y = -1 
1 1
y

= −  y = 1 
1 1
y

=  

1
3

z =  1 3
z

=  2
3

z =  1 3
2z

=  

    
The Miller indices of plane c are .( 0 1 3)  The Miller indices of plane d are .(2 2 3)  

 

b 

bx 

z

y 

a
⅔ 

½
⅓

¾ 

⅓ 

⅓

c

d
 ¾ (a z

y 

(b) ¼

½
⅓ 

⅔ 

a

d
c

x ⅔ 
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Miller Indices for Figure P3.44(b) 
 

Plane a based on (1, 0, 1) as origin Plane b based on (0, 1, 1) as origin 
Planar Intercepts Reciprocals of Intercepts Planar Intercepts Reciprocals of Intercepts 

x = -1 1 1
x

= −  x = 1 1 1
x

=  

y = ∞ 
1 0
y

=  1y = −     1 1
y

= −  

1
3

z = −  1 3
z

= −  2
3

z = −  1 3
2z

= −  

    
The Miller indices of plane a are .( 1 0 3)  The Miller indices of plane b are .(2 2 3)  

  
Plane c based on (0, 1, 0) as origin Plane d based on (0, 1, 0) as origin 

Planar Intercepts Reciprocals of Intercepts Planar Intercepts Reciprocals of Intercepts 

x = 1 1 1
x

=  x = 1 1 1
x

=  

5
12

y −=  
1 12

5y
−=  y = -1 

1 1
y

= −  

z = ∞ 
1 0
z

=  1
2

z =  1 2
z

=  

    
The Miller indices of plane c are .( 5 12 0)  The Miller indices of plane d are .(1 1 2)  

 
 

 
 
Figure P3.44 
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a.  (1, 0, 0), (1, 0, 1),  
(1, 1, 0), (1, 1, 1) 

b.  (1, 0, 0), (1, 0, 1),  
(0, 1, 0), (0, 1, 1), (½, ½, ½) 

•z

y 

x 

• •
•

•

z

y 

x 
• •

••

c.  (1, 0, 0), (0, 0, 1),  
(0, 1, 0) 

z

y 

x 

•

•
•

Chapter 3, Problem 45 
What is the notation used to indicate a family or form of cubic crystallographic planes? 

Chapter 3, Solution 45 
A family or form of a cubic crystallographic plane is indicated using the notation {hkl}. 
 
Chapter 3, Problem 46 
What are the {100} family of planes of the cubic system? 
Chapter 3, Solution 46 
 

(100) , (010) , (001) , (100) , (010) , (001)  
 

Chapter 3, Problem 47 
Draw the following crystallographic planes in a BCC unit cell and list the position of the atoms whose centers are 
intersected by each of the planes:  
(a) (100) (b) (110) (c) (111) 

Chapter 3, Solution 47 
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a.  (1, 0, 0), (1, 0, 1),  
(1, 1, 0), (1, 1, 1) 
(1, ½, ½) 

z

y 

x 

b.  (1, 0, 0), (1, 0, 1),  
(0, 1, 0), (0, 1, 1),  
(½, ½, 0), ( ½, ½, 1) 

y 

c.  (1, 0, 0), (0, 0, 1),  
(0, 1, 0), (½, 0, ½) 
(½, ½, 0), (0, ½, ½) 

•

•
•

z

y 

x 
• •

••
•

•z

x 

•
•

•

• •
• •

•

Chapter 3, Problem 48 
Draw the following crystallographic planes in an FCC unit cell and list the position coordinates of the atoms whose 
centers are intersected by each of the planes:  
(a) (100) (b) (110) (c) (111) 

Chapter 3, Solution 48 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Chapter 3, Problem 49 
A cubic plane has the following axial intercepts: 1 2 1

3 3 2,  ,  a b c= = − = . What are the Miller indices of this plane?  

Chapter 3, Solution 49 

Given the axial intercepts of (⅓, -⅔, ½), the reciprocal intercepts are: 
1 1 3 13 , , 2.

2x y z
= = − =   Multiplying 

by 2 to clear the fraction, the Miller indices are .(6 3 4)  
 

Chapter 3, Problem 50 
A cubic plane has the following axial intercepts: 1 1 2

2 2 3,  ,  a b c= − = − = . What are the Miller indices of this 
plane?  

Chapter 3, Solution 50 

Given the axial intercepts of (-½, -½, ⅔), the reciprocal intercepts are: 
1 1 1 32, 2, .

2x y z
= − = − =   Multiplying 

by 2, the Miller indices are .(4 4 3)  
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Chapter 3, Problem 51 
A cubic plane has the following axial intercepts: 2 1

3 21,  ,  a b c= = = − . What are the Miller indices of this plane?  

Chapter 3, Solution 51 

Given the axial intercepts of (1, ⅔, -½), the reciprocal intercepts are: 
1 1 3 11, , 2.

2x y z
= = = −   Multiplying by 

2, the Miller indices are .( 2 3 4)  
 

Chapter 3, Problem 52 
Determine the Miller indices of the cubic crystal plane that intersects the following position coordinates: 

1 1 1 1
2 4 2 2(1, 0, 0); (1, , );  ( , ,0).  

Chapter 3, Solution 52 
First locate the three position coordinates as shown.  Next, connect points a and b, extending the line to point d and 
connect a to c and extend to e.  Complete the plane by connecting point d to e.  Using (1, 1, 0) as the plane origin, x 

= -1,  y = -1 and z = ½.  The intercept reciprocals are thus 
1 1 11, 1, 2.
x y z

= − = − =   The Miller indices are 

.( 1 1 2)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(0, 0, 0) 

(1, 0, 0) 

• •
(½, ½, 0) 

(1, ½, ¼) (1, 1, 0) 

e 
b 

a 
c 

d

•
•

••
•
•
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Chapter 3, Problem 53 
Determine the Miller indices of the cubic crystal plane that intersects the following position coordinates: 

1 1
2 2( , 0, ); (0,0,1);  (1,1,1).  

Chapter 3, Solution 53 
First locate the three position coordinates as shown.  Next, connect points a and b and extend the line to point d.  
Complete the plane by connecting point d to c and point c to b.  Using (1, 0, 1) as the plane origin, x = -1,  y = 1 and  

z = –1.  The intercept reciprocals are thus 
1 1 11, 1, 1.
x y z

= − = = −   The Miller indices are .( 1 1 1)  

 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 3, Problem 54 
Determine the Miller indices of the cubic crystal plane that intersects the following position coordinates: 

31 1 1
2 2 4 2(1, , 1); ( ,0, );  (1,0, ).  

Chapter 3, Solution 54 
After locating the three position coordinates, connect points b and c and extend the line to point d.  Complete the 
plane by connecting point d to a and a to c.  Using  
(1, 0, 1) as the plane origin, x = -1, y = ½ and z = -½.  The intercept reciprocals then become 
1 1 11, 2, 2.
x y z

= − = = −   The Miller indices are .( 1 2 2)  

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

(1, 0, 1) 

b 

a 

c 

d • 

• 
• (0, 0, 0) 

(1, 1, 1) 

• 
(½, 0, ½ ) 

(0, 0, 1) 

(1, 0, 1) 
b 

a 

c •
••

(0, 0, 0) 

(½, 0, ¾) 

••
(1, 0, ½,) •

(1, ½, 1) 

d
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Chapter 3, Problem 55 
Determine the Miller indices of the cubic crystal plane that intersects the following position coordinates: 

1 1 1
2 2 4(0, 0, ); (1,0,0);  ( , ,0).  

Chapter 3, Solution 55 
After locating the three position coordinates, connect points b and c and extend the line to point d.  Complete the 
plane by connecting point d to a and a to b.  Using  

(0, 0, 0) as the plane origin, x = 1, y = ½ and z = ½.  The intercept reciprocals are thus 
1 1 11, 2, 2.
x y z

= = =   

The Miller indices are therefore .(1 2 2)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 3, Problem 56 
Rodium is FCC and has a lattice constant a of 0.38044 nm. Calculate the following interplanar spacings: 
(a) d111  (b) d200  (c) d220 

Chapter 3, Solution 56 
 

(a)  111 2 2 2

0.38044 nm 0.38044 nm
31 1 1

d = = =
+ +

0.220 nm  

 

(b)  200 2 2 2

0.38044 nm 0.38044 nm
42 0 0

d = = =
+ +

0.190 nm  

 

(c)  220 2 2 2

0.38044 nm 0.38044 nm
82 2 0

d = = =
+ +

0.135 nm  

 
 
 
 
 

d

b 

a 

c 

•

(0, ½, 0) •
(0, 0, 0) 

(1, 0, 0) 

•

•
(0, 0, ½,) •

(½, ¼, 0) 
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Chapter 3, Problem 57 
Tungsten is BCC and has a lattice constant a of 0.31648 nm. Calculate the following interplanar spacings: 
(a) d110  (b) d220  (c) d310 

Chapter 3, Solution 57 
 

(a)  110 2 2 2

0.31648 nm 0.31648 nm
21 1 0

d = = =
+ +

0.224 nm  

 

(b)  220 2 2 2

0.31648 nm 0.31648 nm
82 2 0

d = = =
+ +

0.112 nm  

 

(c)  310 2 2 2

0.31648 nm 0.31648 nm
103 1 0

d = = =
+ +

0.100 nm  

 

Chapter 3, Problem 58 
The d310 interplanar spacing in a BCC element is 0.1587 nm. (a) What is its lattice constant a? (b) What is the 
atomic radius of the element? (c) What could this element be? 

Chapter 3, Solution 58 
 

(a)  2 2 2 2 2 2
310 (0.1587 nm) 3 1 0a d h k l= + + = + + =0.502 nm  

 

(b)  
3 3(0.502 nm)
4 4

aR = = =0.217 nm  

 
(c)  The element is barium (Ba). 
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Chapter 3, Problem 59 
The d422 interplanar spacing in an FCC metal is 0.083397 nm. (a) What is its lattice constant a? (b) What is the 
atomic radius of the metal? (c) What could this metal be? 

Chapter 3, Solution 58 
 

(a)  2 2 2 2 2 2
310 (0.1587 nm) 3 1 0a d h k l= + + = + + =0.502 nm  

 

(b)  
3 3(0.502 nm)
4 4

aR = = =0.217 nm  

 
(c)  The element is barium (Ba). 
 

Chapter 3, Problem 60 
How are crystallographic planes indicated in HCP unit cells? 
 

Chapter 3, Solution 60 
In HCP unit cells, crystallographic planes are indicated using four indices which correspond to four axes: three basal 
axes of the unit cell, a1, a2, and a3 , which are separated by 120º; and the vertical c axis. 
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Chapter 3, Problem 61 
What notation is used to describe HCP crystal planes? 

Chapter 3, Solution 61 
HCP crystal planes are described using the Miller-Bravais indices, (hkil). 
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Chapter 3, Problem 62 
Draw the hexagonal crystal planes whose Miller-Bravais indices are: 
( ) (1011)   ( ) (1212)   ( ) (1212)   ( ) ( 1100)
( ) (0111)   ( ) (2111)   ( ) (2200)   ( ) (2111)
( ) (1210)   ( ) (1101)   ( ) (1012)   ( ) (1012)

a d g j
b e h k
c f i l

 

Chapter 3, Solution 62 
The reciprocals of the indices provided give the intercepts for the plane (a1, a2, a3, and c). 

 

a2 

1 2

3

.  1,  ,  
1, 1

a a a
a c

= = ∞
= − =

 

1 2

3

1.  1,  ,  
2

11,
2

d a a

a c

= = −

= =
 

1 2

3

1  ,  1,  
2

1, 1

e. a a

a c

= =

= − =
 

1 2

3

.  1,  1,  
, 1

f a a
a c

= = −
= ∞ =

 

1 2

3

  ,  1,  
1, 1

b. a a
a c

= ∞ =
= − =

 1 2

3

1  1,  ,  
2

1,

c. a a

a c

= = −

= − = ∞
 

– a3 

a2 

a1 – a3 
[0 1 1]  

(1 1 0 1)  

a2 

a1 a1 – a3 
( 2 1 1 1)  (1 21 2)  

a2 

– a3 
a1 

a2 

a1 – a3 
(0111)

– a3 

a2 

a1 
(1210)  
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1 2

3

1  1,  ,  
2

11,
2

g. a a

a c

= − =

= − =

1 2

3

j.  1,  1,  
,

a a
a c

= − =
= ∞ = ∞

 

– a3 

1 2

3

1  ,  1,  
2

1, 1

k. a a

a c

= − =

= =
 1 2

3

.  1,  ,  
11,
2

l a a

a c

= − = ∞

= =
 

( 1 0 1 2)  

1 2

3

1 1  ,  ,  
2 2

,

h. a a

a c

= = −

= ∞ = ∞
 1 2

3

  1,  ,  
11,
2

i. a a

a c

= = ∞

= − =
 

a2 

a1 – a3 

a2 

a1 – a3 
(1212)  

a2 

a1 ( 2200)  

a2 

a1 – a3 
(1210)  

a2 

a1 – a3 
( 2 111)  (110 0)  

a2 

– a3 
a1 
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Chapter 3, Problem 63 
Determine the Miller-Bravais indices of the hexagonal crystal planes in Fig. P3.63. 
 

 
 
Figure P3.63 
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Chapter 3, Solution 63 
 

 
    
 
 

 
Miller-Bravais Indices for Planes Shown in Figure P3.63(a) 

 
Plane a  Plane b  Plane c  

Planar 
Intercepts 

Reciprocals 
of Intercepts 

Planar 
Intercepts 

Reciprocals 
of Intercepts 

Planar 
Intercepts 

Reciprocals 
of Intercepts 

a1 = ∞ 
1

1 0
a

=  a1 = 1 
1

1 1
a

=  a1 = -½ 
1

1 2
a

= −  

a2 = -1 
2

1 1
a

= −  a2 = ∞ 
2

1 0
a

=  a2 = ½ 
2

1 2
a

=  

a3 = 1 
3

1 1
a

=  a3 = –1 
3

1 1
a

= −  a3 = ∞ 
3

1 0
a

=  

Planar 
Intercepts 

Reciprocals 
of Intercepts 

Planar 
Intercepts 

Reciprocals 
of Intercepts 

Planar 
Intercepts 

Reciprocals 
of Intercepts 

c = ∞ 
1 0
c

=  c = ½ 2 c = ∞ 
1 0
c

=  

   
The Miller indices of plane a 

are .(0 1 1 0)  
The Miller indices of plane b 

are .(1 0 1 2)  
The Miller indices of plane c 

are .( 2 2 0 0)  
 

Miller-Bravais Indices for the Planes Shown in Figure P3.63(b) 
 

Plane a Plane b Plane c 
Planar 

Intercepts 
Reciprocals 
of Intercepts 

Planar 
Intercepts 

Reciprocals 
of Intercepts 

Planar 
Intercepts 

Reciprocals 
of Intercepts 

a1 = ∞ 
1

1 0
a

=  a1 = 1 
1

1 1
a

=  a1 = 1 
1

1 1
a

=  

a2 = 1 
2

1 1
a

=  a2 = -1 
2

1 1
a

= −  a2 = -1 
2

1 1
a

= −  

a3 = -1 
3

1 1
a

= −  a3 = ∞ 
3

1 0
a

=  a3 = ∞ 
3

1 0
a

=  

c = ∞ 
1 0
c

=  c = 1 
1,1,0
2

 
 

 c = 1 
1 1
c

=  

   
The Miller indices of plane a 

are .( 0 1 1 0)  
The Miller indices of plane b 

are .(1 1 0 1)  
The Miller indices of plane c 

are .(1 1 0 1)  
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Chapter 3, Problem 64 
Determine the Miller-Bravais direction indices of the –a1, -a2, and –a3 directions. 

Chapter 3, Solution 64 
The Miller-Bravais direction indices corresponding to the –a1, -a2 and –a3 directions are respectively, 

1 1, 1 ,
4 4

 
    

 

Chapter 3, Problem 65 
Determine the Miller-Bravais direction indices of the vectors originating at the center of the lower basal plane and 
ending at the endpoints of the upper basal plane as indicated in Fig. 3.18d. 
 

 
 
Figure 3.18 
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Chapter 3, Solution 65 
 
[1 1 21], [ 2111], [1 2 11],

[11 21], [ 2 1 11], [1 211]
  

 
 
 
 
 
 
 
 
 
 
 

Chapter 3, Problem 66 
Determine the Miller-Bravais direction indices of the basal plane of the vectors originating at the center of the lower 
basal plane and exiting at the midpoints between the principal planar axes. 

Chapter 3, Solution 66 
 
[ 3 0 3 4], [3 3 0 4], [0 3 3 4],

[3 0 3 4], [3 3 0 4], [0 3 3 4]
 

 
 
 
 
 
 
 
 
 
 
 
 
 

1 2 3    

–a3 

–a2 + a1 

(a)  Dividing [112] by 2,
1 1, , 1
2 2

x y z= =− =− [1 2 11]  

[11 21]  

[2 1 11]  [1 211]  

–a3 

–a2 + a1 

[3 0 3 4] [ 3 3 0 4]  
[0 3 3 4]

[0 3 3 4]

[3 3 0 4]  

[3 0 3 4]  
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Chapter 3, Problem 67 
Determine the Miller-Bravais direction indices of the directions indicated in Fig. P3.67. 
 

 
 
Figure P3.67 
 

Chapter 3, Solution 67 
 

 
 
For Fig. P3.67(a), the Miller-Bravais direction indices indicated are  and .[ 2 111] [11 2 1]  Those associated 

with Fig. P3.67(b) are  and .[ 1 1 0 1] [1 0 1 1]  
 
 
 
 
 
 
 

–a2 

 a3 

  a1 

a2 

 –a3 

(a) 

a2 

 –a3 

–a2 

a3 

  a1 (b) 
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Chapter 3, Problem 68 
What is the difference in the stacking arrangement of close-packed planes in (a) the HCP crystal structure and (b) 
the FCC crystal structure? 

Chapter 3, Solution 68 
Although the FCC and HCP are both close-packed lattices with APF = 0.74, the structures differ in the three 
dimensional stacking of their planes: 
 
(a) the stacking order of HCP planes is ABAB… ; 
(b) the FCC planes have an ABCABC… stacking sequence. 
 

Chapter 3, Problem 69 
What are the densest-packed directions in (a) the FCC structure and (b) the HCP structure? 

Chapter 3, Solution 69 
(a) The most densely packed planes of the FCC lattice are the {1 1 1} planes. 
(b) The most densely packed planes of the HCP structure are the {0 0 0 1} planes. 
 

Chapter 3, Problem 70 
What are the closest-packed directions in (a) the FCC structure and (b) the HCP structure? 

Chapter 3, Solution 70 

(a) The closest-packed directions in the FCC lattice are the 11 0  directions. 

(b) The closest-packed directions in the HCP lattice are the 11 2 0  directions. 
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Chapter 3, Problem 71 
The lattice constant for BCC tantalum at 20°C is 0.33026 nm and its density is  
16.6 g/cm3. Calculate a value for its atomic mass. 

Chapter 3, Solution 71 
The atomic mass can be assessed based upon the mass of tantalum in a unit BCC cell: 

3

3 6 3 3 9 3

22

mass/unit cell (volume/unit cell)

(16.6 g/cm )(10 cm /m )(0.33026 10  m)

5.98 10  g/u.c.

aυ υρ ρ
−

−

= =

= ×

= ×

 

Since there are two atoms in a BCC unit cell, the atomic mass is: 
 

22 23(5.98 10  g/unit cell)(6.023 10  atoms/mol)Atomic mass
2 atoms/unit cell

−× ×=

=180.09 g/mol
 

 

Chapter 3, Problem 72 
Calculate a value for the density of FCC platinum in grams per cubic centimeter from its lattice constant a of 
0.39239 nm and its atomic mass of 195.09 g/mol. 

Chapter 3, Solution 72 
First calculate the mass per unit cell based on the atomic mass and the number of atoms per unit cell of the FCC 
structure, 
 

21
23

(4 atoms/unit cell)(195.09 g/mol)mass/unit cell 1.296 10 g/unit cell
6.023 10  atoms/mol

−= = ×
×

 

 
The density is then found as, 
 

21

3 9 3

3
3

mass/unit cell mass/unit cell 1.296 10  g/unit cell
volume/unit cell a [(0.39239 10  m) ] / unit cell

m21,445,113 g/m
100 cm

υρ
−

−
×= = =
×

 = =  
321.45 g/cm
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(a)   (c) (b) 

a a a 

Chapter 3, Problem 73 
Calculate the planar atomic density in atoms per square millimeter for the following crystal planes in BCC 
chromium, which has a lattice constant of 0.28846 nm: (a) (100), (b) (110), (c) (111). 

Chapter 3, Solution 73 
(Solution C is on the next page.) 
 

 
 
 
 
 
 
 
 
 
 
 

To calculate the density, the planar area and the number of atoms contained in that area must first be determined. 
 
(a) The area intersected by the (1 0 0) plane inside the cubic unit cell is a2 while the number of atoms contained is: ( 
4 corners)× (¼ atom per corner) = 1 atom. The density is,  

 

2
19 2

9 2

equiv. no. of atoms whose centers are intersected by selected area
selected area

1 atom m(1.202 10 atoms/m )
1000 mm(0.28846 10  m)

pρ

−

=

 = = ×  ×  

= 13 21.202×10  atoms/mm

 

 
(b) For the more densely packed (1 1 0) plane, there are:  

 
1 atom at center + ( 4 corners) × (¼ atom per corner) = 2 atoms 
 

And the area is given as 2( 2 )( ) 2a a a= .  The density is thus, 
 

19 2 6 2 2
9 2

2 atoms (1.699 10 atoms/m )(10  m /mm )
2(0.28846 10  m)pρ −

−= = ×
×

= 13 21.699×10  atoms/mm
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(a)   (c) 

a 

(b) 

a a 

(c) The triangular (1 1 1) plane contains:  (3 corners) × (1/6 atom per corner) = ½ atom. 

The area is equal to 21 1 3 6( 2 )
2 2 2 4
bh a a a

 
= = =   

.  The density is thus, 

18 2 6 2 2

9 2

1/2 atom (9.813 10 atoms/m )(10  m /mm )
6 (0.28846 10  m)

4

pρ −

−
= = ×

×

= 12 29.813×10  atoms/mm

 

 

Chapter 3, Problem 74 
Calculate the planar atomic density in atoms per square millimeter for the following crystal planes in FCC gold, 
which has a lattice constant of 0.40788 nm: (a) (100), (b) (110), (c) (111). 

Chapter 3, Solution 74 
 
(Solutions B and C are on the next page.) 
 
 
 
 
 
 
 
 
 

 
(a) The 

area intersected by the (1 0 0) plane and the FCC unit cell is a2 while the number of atoms contained is:  
 

1 atom at center + ( 4 corners) × (¼ atom per corner) = 2 atoms 
 

 The density is therefore, 
 

2
19 2

9 2

equiv. no. of atoms whose centers are intersected by selected area
selected area

2 atoms m(1.202 10 atoms/m )
1000 mm(0.40788 10  m)

pρ

−

=

 = = ×  ×  

= 13 21.20×10  atoms/mm
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(b) For the more densely packed (1 1 0) plane, there are:  
 

(2 face atoms) × (½ atom)  + ( 4 corners) × (¼ atom per corner) = 2 atoms 
 

And the area is given as 2( 2 )( ) 2 .a a a=   The density is thus, 
 

[ 1 1 1 ]  

 
(c) The triangular (1 1 1) plane contains:   

 
(3 face atoms × ⅓ atom) + (3 corners) × (1/6 atom per corner) = 2 atoms 

 

The area is equal to: 21 1 3 6( 2 )
2 2 2 4
bh a a a

 
= = =   

.  The density is therefore, 

19 2 6 2 2

9 2

2 atoms (1.963 10 atoms/m )(10  m /mm )
6 (0.40788 10  m)

4

pρ −

−
= = ×

×

= 13 21.963×10  atoms/mm
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Chapter 3, Problem 75 
Calculate the planar atomic density in atoms per square millimeter for the (0001) plane in HCP beryllium, which has 
a lattice constant a = 0.22856 nm and a c constant of  0.35832 nm. 

Chapter 3, Solution 75 
The area intersected by the (0 0 0 1) plane and the HCP unit cell is simply 
the basal area, shown in the sketch to the right: 
 
 
 
 

21 3 3 3Selected Area = (6 triangles) (equilateral triangle area) = 6
2 2 2
a a a

  × =       
 

While the number of atoms contained is:  
 

1 atom at center + ( 6 corners) × (⅓ atom per corner) = 3 atoms 
 
The density is therefore, 

 

2
19 2

9 2

equiv. no. of atoms whose centers are intersected by selected area
selected area

3 atoms m(2.201 10 atoms/m )
1000 mm3 3 (0.22856 10  m)

2

pρ

−

=

 = = ×   ×

= 13 22.21×10  atoms/mm
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Chapter 3, Problem 76 
Calculate the linear atomic density in atoms per millimeter for the following directions in BCC vanadium, which has 
a lattice constant of 0.3039 nm: (a) [100],  (b) [110],  (c) [111]. 

Chapter 3, Solution 76 
 

 
In general, the linear atomic density is derived from: 
 

no. of atomic diam. intersected by selected length of direction line
selected length of linelρ =  

 
(a) For the [100] direction of BCC vanadium,  
 

-9 3
no. atom dia. 1 atom

a (0.3039 nm)(10  m/nm)(10  mm/m)lρ = = = 63.29×10  mm  

 
(b) For the [110] direction of BCC vanadium, 
 

-6
no. atom dia. 1 atom

2 2(0.3039 nm)(10  mm/nm)l a
ρ = = = 62.33×10  mm  

 
(c) For the [111] direction of BCC vanadium, 
 

-6
no. atom dia. 2 atoms

3 3(0.3039 nm)(10  mm/nm)l a
ρ = = = 63.80×10  mm  

 
 
 
 
 
 
 

[ 100 ] 

(a) 

[ 110 ] 

(b) (c) [ 111 ] 
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Chapter 3, Problem 77 
Calculate the linear atomic density in atoms per millimeter for the following directions in FCC iridium, which has a 
lattice constant of 0.38389 nm: (a) [100],  (b) [110],  (c) [111]. 

Chapter 3, Solution 77 
 

 
 
 
 
 
 
 
 
 
 
 
 
In general, the linear atomic density is derived from: 
 

no. of atomic diam. intersected by selected length of direction line
selected length of linelρ =  

 
(a) For the [100] direction of FCC iridium,  
 

-6
no. atom dia. 1 atom

a (0.38389 nm)(10  mm/nm)lρ = = = 62.60×10  mm  

 
(b) For the [110] direction of FCC iridium, 

 

-6
no. atom dia. 2 atoms

2 2(0.38389 nm)(10  mm/nm)l a
ρ = = = 63.68×10  mm  

 
(c) For the [111] direction of FCC iridium, 

 

-6
no. atom dia. 1 atom

3 3(0.38389 nm)(10  mm/nm)l a
ρ = = = 61.50×10  mm  

 
 
 
 
 
 
 
 
 
 
 

[ 100 ] 

(a) (c) [ 111 ] 

[ 110 ] 

(b) 
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Chapter 3, Problem 78 
What is polymorphism with respect to metals? 

Chapter 3, Solution 78 
A metal is considered polymorphic if it can exist in more than one crystalline form under different conditions of 
temperature and pressure. 
 

Chapter 3, Problem 79 
Titanium goes through a polymorphic change from BCC to HCP crystal structure upon cooling through 332°C. 
Calculate the percentage change in volume when the crystal structure changes from BCC to HCP. The lattice 
constant a of the BCC unit cell at 882°C is 0.332 nm, and the HCP unit cell has a = 0.2950 nm and c = 0.4683 nm. 

Chapter 3, Solution 79 
To determine the volume change, the individual volumes per atom for the BCC and HCP structures must be 
calculated: 
 

3 3 3
3 nm /unit cell (0.332 nm) 0.0183 nm /atom

2 atoms/unit cell 2 atomsBCC
aV = = =  

 
2 3 2

3

(3 c)(sin60 ) nm /unit cell (3)(0.2950 nm) (0.4683 nm)(sin60 )
6 atoms/unit cell 6 atoms

0.01765 nm /atom

HCP
aV = =

=

o o

 

 
Thus the change in volume due to titanium’s allotropic transformation is, 

3 3

3

% Volume change (100%)

0.01765 nm /atom 0.0183 nm /atom (100%)
0.0183 nm /atom

HCP BCC

BCC

V V
V

−=

−= = -3.55%
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problems and Solutions to Smith/Hashemi  
Foundations of Materials Science and Engineering 4/e 
 
 

 
PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part 
of this Manual may be displayed, reproduced or distributed in any form or by any means, without the 
prior written permission of the publisher, or used beyond the limited distribution to teachers and 
educators permitted by McGraw-Hill for their individual course preparation. If you are a student using 
this Manual, you are using it without permission. 

 Page 46 

 

Chapter 3, Problem 80 
Pure iron goes through a polymorphic change from BCC to FCC upon heating through 912°C. Calculate the volume 
change associated with the change in crystal structure from BCC to FCC if at 912°C the BCC unit cell has a lattice 
constant a = 0.293 nm and the FCC unit cell a = 0.363 nm. 

Chapter 3, Solution 80 
First determine the individual volumes per atom for the iron BCC and FCC crystal structures: 
 

3 3 3
3 nm /unit cell (0.293 nm) 0.01258 nm /atom

2 atoms/unit cell 2 atomsBCC
aV = = =  

 
3 3 3

3 nm /unit cell (0.363 nm) 0.01196 nm /atom
4 atoms/unit cell 4 atomsFCC
aV = = =  

 
Thus the change in volume due to iron’s allotropic transformation is, 
 

3 3

3
0.01196 nm /atom 0.01258 nm /atom% Volume change (100%) (100%)

0.01258 nm /atom
FCC BCC

BCC

V V
V

− −= =

= -4.94%
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Chapter 3, Problem 81 
What are X rays, and how are they produced? 

Chapter 3, Solution 81 
X-rays are electromagnetic radiation having wavelengths in the range of approximately 0.05 nm to 0.25 nm.  These 
waves are produced when accelerated electrons strike a target metal. 
 

Chapter 3, Problem 82 
Draw a schematic diagram of an x-ray tube used for x-ray diffraction, and indicate on it the path of the electrons and 
X rays. 

Chapter 3, Solution 82 
See Figure 3.25 of textbook. 
 

 
 
Figure 3.25 
 

Chapter 3, Problem 83 
What is the characteristic x-ray radiation? What is its origin? 

Chapter 3, Solution 83 
Characteristic radiation is an intense form of x-ray radiation which occurs at specific wavelengths for a particular 
element.  The Kα radiation, the most intense characteristic radiation emitted, is caused by excited electrons dropping 
from the second atomic shell 
(n = 2) to the first shell (n = 1).  The next most intense radiation, Kβ, is caused by excited electrons dropping from 
the third atomic shell (n = 3) to the first shell (n = 1). 
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Chapter 3, Problem 84 
Distinguish between destructive interference and constructive interference of reflected  
x-ray beams through crystals. 

Chapter 3, Solution 84 
Destructive interference occurs when the wave patterns of an x-ray beam, reflected from a crystal, are out of phase.  
Conversely, when the wave patterns leaving a crystal plane are in phase, constructive interference occurs and the 
beam is reinforced. 
 

Chapter 3, Problem 85 
Derive Bragg’s law by using the simple case of incident X ray beams being diffracted by parallel planes in a crystal. 

Chapter 3, Solution 85 
Referring to Fig. 3.28 (c), for these rays to be in phase, ray 2 must travel an additional distance of MP + PN.  This 
extra length must be an integral number of wavelengths, λ. 
 

    where 1, 2, 3...n MP PN nλ = + =  
 

Moreover, the MP and PN distances must equal sinhkld θ , where hkld is the crystal interplanar spacing required 
for constructive interference.   
 

sin  and sinhkl hklMP d PN dθ θ= =  
 
Substituting, 
 

2 sin    Bragg's Lawhkln dλ θ=  
 

Chapter 3, Problem 86 
A sample of BCC metal was placed in an x-ray diffractometer using X rays with a wavelength of λ = 0.1541 nm. 
Diffraction from the {221} planes was obtained at  
2θ  = 88.838°. Calculate a value for the lattice constant a for this BCC elemental metal. (Assume first-order 
diffraction, n = 1.) 

Chapter 3, Solution 86 
The interplanar distance is, 
 

221
0.1541 nm 0.1101 nm

2sin 2sin(44.419 )
d λ

θ
= = =

o
 

 
The lattice constant, a, is then, 
 

2 2 2 2 2 2(0.1101 nm) 2 2 1hkla d h k l= + + = + + =0.3303 nm  
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Chapter 3, Problem 87 
X rays of an unknown wavelength are diffracted by a gold sample. The 2θ angle was 64.582° for the {220} planes. 
What is the wavelength of the X rays used? (The lattice constant of gold = 0.40788 nm; assume first-order 
diffraction, n = 1.) 

Chapter 3, Solution 87 
The interplanar distance is, 
 

220 2 2 2 2 2 2

0.40788 nm

2 2 0

ad
h k l

= = =
+ + + +

0.1442 nm  

 
The lattice constant, a, is then, 
 

2212 sin 2(0.1442 nm)sin(32.291 )dλ θ= = =0.154 nmo  
 

Chapter 3, Problem 88 
An x-ray diffractometer recorder chart for an element that has either the BCC or the FCC crystal structure showed 
diffraction peaks at the following 2θ angles: 
41.069°, 47.782°, 69.879°, and 84.396°. (The wavelength of the incoming radiation was 0.15405 nm. (X-ray 
diffraction data courtesy of the International Centre for Diffraction Data.) 
(a) Determine the crystal structure of the element. 
(b) Determine the lattice constant of the element. 
(c) Identify the element. 

Chapter 3, Solution 88 
(a) Comparing the sin2θ term for the first two angles: 
 

2θ θ sin θ sin2 θ 
 

41.069º 
 

20.535º 
 

0.35077 
 

0.12304 
 47.782º 23.891º 0.40499 0.16402 

    
2

1
2

2

sin 0.12304   
0.16402sin

θ
θ

= = ⇒0.75 FCC  

 
(b) The lattice constant also depends upon the first sin2θ term, as well as, the Miller indices of the first set 

of FCC principal diffracting planes, {111}. 
 

2 2 2 2 2 2

2
1

0.15405 nm 1 1 1
2 2 0.12304sin

h k la λ
θ

+ + + += = =0.38034 nm  

 
(c) From Appendix I, the FCC metal whose lattice constant is closest to 0.38034  

nm is rhodium (Rh) which has a lattice constant of 0.38044 nm. 
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Chapter 3, Problem 89 
An x-ray diffractometer recorder chart for an element that has either the BCC or the FCC crystal structure showed 
diffraction peaks at the following 2θ angles: 
38.60°, 55.71°, 69.70°, 82.55°, 95.00°, and 107.67°. (Wavelength λ of the incoming radiation was 0.15405 nm.) 
a) Determine the crystal structure of the element. 
b) Determine the lattice constant of the element. 
c) Identify the element. 

Chapter 3, Solution 89 
(a) Comparing the sin2θ term for the first two angles: 
 
 

2θ θ sin θ sin2 θ 
    

38.60º 19.30º 0.33051 0.10924 
 55.71º 27.855º 0.46724 0.21831 

    
2

1
2

2

sin 0.10924   
0.21831sin

θ
θ

= = ⇒0.50 BCC  

 
(b) The lattice constant also depends upon the first sin2θ term, as well as, the Miller indices of the first set 

of BCC principal diffracting planes {110}. 
 

2 2 2 2 2 2

2
1

0.15405 nm 1 1 0
2 2 0.10924sin

h k la λ
θ

+ + + += = =0.3296 nm  

 
(c) From Appendix I, the BCC metal whose lattice constant is closest to 0.3296  

nm is niobium (Nb) which has a lattice constant of 0.33007 nm. 
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Chapter 3, Problem 90 
An x-ray diffractometer recorder chart for an element that has either the BCC or the FCC crystal structure showed 
diffraction peaks at the following 2θ angles: 
36.191°, 51.974°, 64.982°, and 76.663°. (The wavelength of the incoming radiation was 0.15405 nm.) 
a) Determine the crystal structure of the element. 
b) Determine the lattice constant of the element. 
c) Identify the element. 

Chapter 3, Solution 90 
(a) Comparing the sin2θ term for the first two angles: 
 
 

2θ θ sin θ sin2 θ 
 

36.191º 
 

18.096º 
 

0.31060 
 

0.09647 
 51.974º 25.987º 0.43817 0.19199 

    
 

2
1

2
2

sin 0.09647   
0.19199sin

θ
θ

= = ⇒0.50 BCC  

 
(b) The lattice constant also depends upon the first sin2θ term, as well as, the Miller indices of the first set of BCC 

principal diffracting planes, {110}. 
 

2 2 2 2 2 2

2
1

0.15405 nm 1 1 0
2 2 0.09647sin

h k la λ
θ

+ + + += = =0.35071 nm  

 
(c) From Appendix I, the BCC metal whose lattice constant is closest to 0.35071 nm is lithium (Li) which has a 

lattice constant of 0.35092 nm. 
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Chapter 3, Problem 91 
An x-ray diffractometer recorder chart for an element that has either the BCC or the FCC crystal structure showed 
diffraction peaks at the following 2θ angles: 
40.663°, 47.314°, 69.144°, and 83.448°. (Wavelength λ of the incoming radiation was 0.15405 nm.) 
a) Determine the crystal structure of the element. 
b) Determine the lattice constant of the element. 
c) Identify the element. 

Chapter 3, Solution 91 
(a) Comparing the sin2θ term for the first two angles: 
 
 

2θ θ sin θ sin2 θ 
 

40.663º 
 

20.3315º 
 

0.34745 
 

0.12072 
47.314º 23.657º 0.40126 0.16101 

    
2

1
2

2

sin 0.12072   
0.16101sin

θ
θ

= = ⇒0.75 FCC  

 
(b) The lattice constant also depends upon the first sin2θ term, as well as, the Miller indices of the first set 

of FCC principal diffracting planes, {111}. 
 

2 2 2 2 2 2

2
1

0.15405 nm 1 1 1
2 2 0.12072sin

h k la λ
θ

+ + + += = =0.38397 nm  

 
(c) From Appendix I, the FCC metal whose lattice constant is closest to 0.38397 nm is  

iridium (Ir) which has a lattice constant of 0.38389 nm. 
 
 
 




