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Characteristics of Selected Elements

Atomic Density of Crystal Atomic Ionic Most Melting
Atomic Weight Solid, 20�C Structure, Radius Radius Common Point

Element Symbol Number (amu) (g/cm3) 20�C (nm) (nm) Valence (�C)

Aluminum Al 13 26.98 2.71 FCC 0.143 0.053 3� 660.4

Argon Ar 18 39.95 — — — — Inert �189.2

Barium Ba 56 137.33 3.5 BCC 0.217 0.136 2� 725

Beryllium Be 4 9.012 1.85 HCP 0.114 0.035 2� 1278

Boron B 5 10.81 2.34 Rhomb. — 0.023 3� 2300

Bromine Br 35 79.90 — — — 0.196 1� �7.2

Cadmium Cd 48 112.41 8.65 HCP 0.149 0.095 2� 321

Calcium Ca 20 40.08 1.55 FCC 0.197 0.100 2� 839

Carbon C 6 12.011 2.25 Hex. 0.071 �0.016 4� (sublimes at 3367)

Cesium Cs 55 132.91 1.87 BCC 0.265 0.170 1� 28.4

Chlorine Cl 17 35.45 — — — 0.181 1� �101

Chromium Cr 24 52.00 7.19 BCC 0.125 0.063 3� 1875

Cobalt Co 27 58.93 8.9 HCP 0.125 0.072 2� 1495

Copper Cu 29 63.55 8.94 FCC 0.128 0.096 1� 1085

Fluorine F 9 19.00 — — — 0.133 1� �220

Gallium Ga 31 69.72 5.90 Ortho. 0.122 0.062 3� 29.8

Germanium Ge 32 72.64 5.32 Dia. cubic 0.122 0.053 4� 937

Gold Au 79 196.97 19.32 FCC 0.144 0.137 1� 1064

Helium He 2 4.003 — — — — Inert �272 (at 26 atm)

Hydrogen H 1 1.008 — — — 0.154 1� �259

Iodine I 53 126.91 4.93 Ortho. 0.136 0.220 1� 114

Iron Fe 26 55.85 7.87 BCC 0.124 0.077 2� 1538

Lead Pb 82 207.2 11.35 FCC 0.175 0.120 2� 327

Lithium Li 3 6.94 0.534 BCC 0.152 0.068 1� 181

Magnesium Mg 12 24.31 1.74 HCP 0.160 0.072 2� 649

Manganese Mn 25 54.94 7.44 Cubic 0.112 0.067 2� 1244

Mercury Hg 80 200.59 — — — 0.110 2� �38.8

Molybdenum Mo 42 95.94 10.22 BCC 0.136 0.070 4� 2617

Neon Ne 10 20.18 — — — — Inert �248.7

Nickel Ni 28 58.69 8.90 FCC 0.125 0.069 2� 1455

Niobium Nb 41 92.91 8.57 BCC 0.143 0.069 5� 2468

Nitrogen N 7 14.007 — — — 0.01–0.02 5� �209.9

Oxygen O 8 16.00 — — — 0.140 2� �218.4

Phosphorus P 15 30.97 1.82 Ortho. 0.109 0.035 5� 44.1

Platinum Pt 78 195.08 21.45 FCC 0.139 0.080 2� 1772

Potassium K 19 39.10 0.862 BCC 0.231 0.138 1� 63

Silicon Si 14 28.09 2.33 Dia. cubic 0.118 0.040 4� 1410

Silver Ag 47 107.87 10.49 FCC 0.144 0.126 1� 962

Sodium Na 11 22.99 0.971 BCC 0.186 0.102 1� 98

Sulfur S 16 32.06 2.07 Ortho. 0.106 0.184 2� 113

Tin Sn 50 118.71 7.27 Tetra. 0.151 0.071 4� 232

Titanium Ti 22 47.87 4.51 HCP 0.145 0.068 4� 1668

Tungsten W 74 183.84 19.3 BCC 0.137 0.070 4� 3410

Vanadium V 23 50.94 6.1 BCC 0.132 0.059 5� 1890

Zinc Zn 30 65.41 7.13 HCP 0.133 0.074 2� 420

Zirconium Zr 40 91.22 6.51 HCP 0.159 0.079 4� 1852 



Values of Selected Physical Constants

Quantity Symbol SI Units cgs Units

Avogadro’s number NA 6.022 � 1023 6.022 � 1023

molecules/mol molecules/mol

Boltzmann’s constant k 1.38 � 10�23 J/atom K 1.38 � 10�16 erg/atom K

8.62 � 10�5 eV/atom K

Bohr magneton mB 9.27 � 10�24 A m2 9.27 � 10�21 erg/gaussa

Electron charge e 1.602 � 10�19 C 4.8 � 10�10 statcoulb

Electron mass — 9.11 � 10�31 kg 9.11 � 10�28 g

Gas constant R 8.31 J/mol K 1.987 cal/mol K

Permeability of a vacuum m0 1.257 � 10�6 henry/m unitya

Permittivity of a vacuum �0 8.85 � 10�12 farad/m unityb

Planck’s constant h 6.63 � 10�34 J s 6.63 � 10�27 erg s

4.13 � 10�15 eV s

Velocity of light in a vacuum c 3 � 108 m/s 3 � 1010 cm/s

a In cgs-emu units.
b In cgs-esu units.

#
##

##

#
#
##

Unit Abbreviations

A � ampere in. � inch N � newton
� angstrom J � joule nm � nanometer

Btu � British thermal unit K � degrees Kelvin P � poise

C � Coulomb kg � kilogram Pa � Pascal

�C � degrees Celsius lbf � pound force s � second

cal � calorie (gram) lbm � pound mass T � temperature

cm � centimeter m � meter �m � micrometer

eV � electron volt Mg � megagram (micron)

�F � degrees Fahrenheit mm � millimeter W � watt

ft � foot mol � mole psi � pounds per square

g � gram MPa � megapascal inch

Å

SI Multiple and Submultiple Prefixes

Factor by Which
Multiplied Prefix Symbol

109 giga G

106 mega M

103 kilo k

10�2 centia c

10�3 milli m

10�6 micro �
10�9 nano n

10�12 pico p

a Avoided when possible.
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In this ninth edition we have retained the objectives and approaches for teaching 

materials science and engineering that were presented in previous editions. The first, 
and primary, objective is to present the basic fundamentals on a level appropriate for 

university/college students who have completed their freshmen calculus, chemistry, and 

physics courses.

The second objective is to present the subject matter in a logical order, from the 

simple to the more complex. Each chapter builds on the content of previous ones.

The third objective, or philosophy, that we strive to maintain throughout the text is 

that if a topic or concept is worth treating, then it is worth treating in sufficient detail and 

to the extent that students have the opportunity to fully understand it without having to 

consult other sources; in addition, in most cases, some practical relevance is provided.

The fourth objective is to include features in the book that will expedite the learning 

process. These learning aids include the following:

 • Numerous illustrations, now presented in full color, and photographs to help 

visualize what is being presented

 • Learning objectives, to focus student attention on what they should be getting from 

each chapter

 • “Why Study . . .” and “Materials of Importance” items as well as case studies that 

provide relevance to topic discussions

 • “Concept Check” questions that test whether a student understands the subject 

matter on a conceptual level

 • Key terms, and descriptions of key equations, highlighted in the margins for quick 

reference

 • End-of-chapter questions and problems designed to progressively develop 

students’ understanding of concepts and facility with skills

 • Answers to selected problems, so students can check their work

 • A glossary, a global list of symbols, and references to facilitate understanding of the 

subject matter

 • End-of-chapter summary tables of important equations and symbols used in these 

equations

 • Processing/Structure/Properties/Performance correlations and summary concept 

maps for four materials (steels, glass-ceramics, polymer fibers, and silicon 

semiconductors), which integrate important concepts from chapter to chapter

 • Materials of Importance sections that lend relevance to topical coverage by 

discussing familiar and interesting materials and their applications

The fifth objective is to enhance the teaching and learning process by using the newer tech-

nologies that are available to most instructors and today’s engineering students.

Preface

• vii
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New/Revised Content

Several important changes have been made with this Ninth Edition. One of the most signifi-

cant is the incorporation of several new sections, as well as revisions/amplifications of other 

sections. These include the following:

 • Numerous new and revised example problems. In addition, all homework problems 

requiring computations have been refreshed.

 • Revised, expanded, and updated tables

 • Two new case studies: “Liberty Ship Failures” (Chapter 1) and “Use of Composites 

in the Boeing 787 Dreamliner” (Chapter 16)

 • Bond hybridization in carbon (Chapter 2)

 • Revision of discussions on crystallographic planes and directions to include the use 

of equations for the determination of planar and directional indices (Chapter 3)

 • Revised discussion on determination of grain size (Chapter 4)

 • New section on the structure of carbon fibers (Chapter 13)

 • Revised/expanded discussions on structures, properties, and applications of the 

nanocarbons: fullerenes, carbon nanotubes, and graphene (Chapter 13)

 • Revised/expanded discussion on structural composites: laminar composites and 

sandwich panels (Chapter 16)

 • New section on structure, properties, and applications of nanocomposite materials 

(Chapter 16)

 • Tutorial videos. In WileyPLUS, Tutorial Videos help students with their “muddiest 

points” in conceptual understanding and problem-solving.

 • Exponents and logarithms. In WileyPLUS, the exponential functions and natural 

logarithms have been added to the Exponents and Logarithms section of the Math 

Skills Review.

 • Fundamentals of Engineering homework problems and questions for most 

chapters. These appear at the end of Questions and Problems sections and provide 

students the opportunity to practice answering and solving questions and problems 

similar to those found on Fundamentals of Engineering examinations.

Online Learning Resources—Student Companion Site 
at www.wiley.com/college/callister.

Also found on the book’s website is a Students’ Companion page on which is posted several 

important instructional elements for the student that complement the text; these include the 

following:

 • Answers to Concept Check questions, questions which are found in the print book.

 • Library of Case Studies. One way to demonstrate principles of design in an engineering 

curriculum is via case studies: analyses of problem-solving strategies applied to 

real-world examples of applications/devices/failures encountered by engineers. Five 

case studies are provided as follows: (1) Materials Selection for a Torsionally Stressed 

Cylindrical Shaft; (2) Automobile Valve Spring; (3) Failure of an Automobile Rear 

Axle; (4) Artificial Total Hip Replacement; and (5) Chemical Protective Clothing.

 • Mechanical Engineering (ME) Module. This module treats materials science/

engineering topics not covered in the printed text that are relevant to mechanical 

engineering.

 • Extended Learning Objectives. This is a more extensive list of learning objectives 

than is provided at the beginning of each chapter. These direct the student to study 

the subject material to a greater depth.
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 • Student Lecture PowerPoint® Slides. These slides (in both Adobe Acrobat® PDF 

and PowerPoint® formats) are virtually identical to the lecture slides provided to 

an instructor for use in the classroom. The student set has been designed to allow 

for note taking on printouts.

 • Index of Learning Styles. Upon answering a 44-item questionnaire, a user’s 

learning-style preference (i.e., the manner in which information is assimilated and 

processed) is assessed.

Online Resources for Instructors—Instructors Companion Site 
at www.wiley.com/college/callister.

The Instructor Companion Site is available for instructors who have adopted this text. 

Please visit the website to register for access. Resources that are available include the 

following:

 • All resources found on the Student Companion Site. (Except for the Student 

Lecture PowerPoint® Slides.)

 • Instructor Solutions Manual. Detailed solutions for all end-of-chapter questions 

and problems (in both Word® and Adobe Acrobat® PDF formats).

 • Homework Problem Correlation Guide—8th edition to 9th edition. This guide 

notes, for each homework problem or question (by number), whether it appeared 

in the eighth edition and, if so, its number in this previous edition.

 • Virtual Materials Science and Engineering (VMSE). This web-based software 

package consists of interactive simulations and animations that enhance the 

learning of key concepts in materials science and engineering. Included in VMSE 

are eight modules and a materials properties/cost database. Titles of these modules 

are as follows: (1) Metallic Crystal Structures and Crystallography; (2) Ceramic 

Crystal Structures; (3) Repeat Unit and Polymer Structures; (4) Dislocations; (5) 

Phase Diagrams; (6) Diffusion; (7) Tensile Tests; and (8) Solid-Solution 

Strengthening.

 • Image Gallery. Illustrations from the book. Instructors can use them in 

assignments, tests, or other exercises they create for students.

 • Art PowerPoint Slides. Book art loaded into PowerPoints, so instructors can more 

easily use them to create their own PowerPoint Slides.

 • Lecture Note PowerPoints. These slides, developed by the authors and Peter M. 

Anderson (The Ohio State University), follow the flow of topics in the text, and 

include materials taken from the text as well as other sources. Slides are available 
in both Adobe Acrobat® PDF and PowerPoint® formats. [Note: If an instructor 

doesn’t have available all fonts used by the developer, special characters may not 

be displayed correctly in the PowerPoint version (i.e., it is not possible to embed 

fonts in PowerPoints); however, in the PDF version, these characters will appear 

correctly.]

 • Solutions to Case Study Problems.

 • Solutions to Problems in the Mechanical Engineering Web Module.

 • Suggested Course Syllabi for the Various Engineering Disciplines. Instructors 
may consult these syllabi for guidance in course/lecture organization and 
planning.

 • Experiments and Classroom Demonstrations. Instructions and outlines for 

experiments and classroom demonstrations that portray phenomena and/or 

illustrate principles that are discussed in the book; references are also provided 

that give more detailed accounts of these demonstrations.
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WileyPLUS is a research-based online environment for effective teaching and learning.

WileyPLUS builds students’ confidence by taking the guesswork out of studying by 

providing them with a clear roadmap:  what is assigned, what is required for each assign-

ment, and whether assignments are done correctly. Independent research has shown that 

students using WileyPLUS will take more initiative so the instructor has a greater impact 

on their achievement in the classroom and beyond. WileyPLUS also helps students study 

and progress at a pace that’s right for them. Our integrated resources–available 24/7–

function like a personal tutor, directly addressing each student’s demonstrated needs by 

providing specific problem-solving techniques.

What do students receive with WileyPLUS?

 • The complete digital textbook that saves students up to 60% of the cost of the 

in-print text.

 • Navigation assistance, including links to relevant sections in the online textbook.

 • Immediate feedback on performance and progress, 24/7.

 • Integrated, multi-media resources—to include VMSE (Virtual Materials Science & 
Engineering), tutorial videos, a Math Skills Review, flashcards, and much more; 

these resources provide multiple study paths and encourage more active learning.

What do instructors receive with WileyPLUS?

 • The ability to effectively and efficiently personalize and manage their course.

 • The ability to track student performance and progress, and easily identify those 

who are falling behind.

 • Media-rich course materials and assessment resources including—a complete 

Solutions Manual, PowerPoint® Lecture Slides, Extended Learning Objectives, and 

much more. www.WileyPLUS.com

WileyPLUS

We have a sincere interest in meeting the needs of educators and students in the materi-

als science and engineering community, and therefore we solicit feedback on this edition. 

Comments, suggestions, and criticisms may be submitted to the authors via email at the 

following address: billcallister@comcast.net.
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C h a p t e r 3   The Structure of 
Crystalline Solids

(a) X-ray diffraction photo-

graph [or Laue photograph 

(Section 3.16)] for a single 

crystal of magnesium. 

(b) Schematic diagram 

illustrating how the spots (i.e., 

the diffraction pattern) in (a) 

are produced. The lead screen 

blocks out all beams generated 

from the x-ray source, except 

for a narrow beam traveling in 

a single direction. This 

incident beam is diffracted 

by individual crystallographic 

planes in the single crystal 

(having different orientations), 

which gives rise to the various 

diffracted beams that impinge 

on the photographic plate. 

Intersections of these beams 

with the plate appear as spots 

when the film is developed. 

The large spot in the center 

of (a) is from the incident 

beam, which is parallel to a 

[0001] crystallographic direc-

tion. It should be noted that 

the  hexagonal symmetry of 

magnesium’s hexagonal close-

packed crystal structure [shown in (c)] is indicated by the diffraction spot pattern that 

was generated.

(d) Photograph of a single crystal of magnesium that was cleaved (or split) along 

a (0001) plane—the flat surface is a (0001) plane. Also, the direction perpendicular to 

this plane is a [0001] direction.

(e) Photograph of a mag wheel—a lightweight automobile wheel made of 

magnesium.

(e)

(a)

X-ray source

Lead screen
Photographic plate

Diffracted
beams

Incident
beam

Single crystal

(b)

(c) (d)
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[Figure (b) from J. E. Brady and F. Senese, Chemistry: Matter and Its Changes, 4th edition. Copyright © 

2004 by John Wiley & Sons, Hoboken, NJ. Reprinted by permission of John Wiley & Sons, Inc.]
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WHY STUDY The Structure of Crystalline Solids?

The properties of some materials are directly related to 

their crystal structures. For example, pure and unde-

formed magnesium and beryllium, having one crystal 

structure, are much more brittle (i.e., fracture at lower 

degrees of deformation) than are pure and undeformed 

metals such as gold and silver that have yet another 

crystal structure (see Section 7.4).

Furthermore, significant property differences exist 

between crystalline and noncrystalline materials hav-

ing the same composition. For example, noncrystalline 

 ceramics and polymers normally are optically transparent; 

the same materials in crystalline (or semicrystalline) form 

tend to be opaque or, at best, translucent.

Learning Objectives

After studying this chapter, you should be able to do the following:

1.  Describe the difference in atomic/molecular 
structure between crystalline and noncrystalline 
materials.

2.  Draw unit cells for face-centered cubic, body-
centered cubic, and hexagonal close-packed 
crystal structures.

3.  Derive the relationships between unit cell edge 
length and atomic radius for face-centered cubic 
and body-centered cubic crystal structures.

4.  Compute the densities for metals having face-
centered cubic and body-centered cubic crystal 
structures given their unit cell dimensions.

5.  Given three direction index integers, sketch the 
direction corresponding to these indices within a 
unit cell.

6.  Specify the Miller indices for a plane that has 
been drawn within a unit cell.

7.  Describe how face-centered cubic and hexagonal 
close-packed crystal structures may be generated 
by the stacking of close-packed planes of atoms.

8.  Distinguish between single crystals and poly-
crystalline materials.

9.  Define isotropy and anisotropy with respect to 
material properties.

Chapter 2 was concerned primarily with the various types of atomic bonding, which are 

determined by the electron structures of the individual atoms. The present discussion 

is devoted to the next level of the structure of materials, specifically, to some of the 

arrangements that may be assumed by atoms in the solid state. Within this framework, 

concepts of crystallinity and noncrystallinity are introduced. For crystalline solids, the 

notion of crystal structure is presented, specified in terms of a unit cell. The three com-

mon crystal structures found in metals are then detailed, along with the scheme by which 

crystallographic points, directions, and planes are expressed. Single crystals, polycrys-

talline materials, and noncrystalline materials are considered. Another section of this 

chapter briefly describes how crystal structures are determined experimentally using 

x-ray diffraction techniques.

3.1 INTRODUCTION

Solid materials may be classified according to the regularity with which atoms or ions 

are arranged with respect to one another. A crystalline material is one in which the 

atoms are situated in a repeating or periodic array over large atomic distances—that is, 

long-range order exists, such that upon solidification, the atoms will position themselves 

crystalline

3.2 FUNDAMENTAL CONCEPTS

Crystal Structures
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in a repetitive three-dimensional pattern, in which each atom is bonded to its nearest-

neighbor atoms. All metals, many ceramic materials, and certain polymers form crystal-

line structures under normal solidification conditions. For those that do not crystallize, 

this long-range atomic order is absent; these noncrystalline or amorphous materials are 

discussed briefly at the end of this chapter.

Some of the properties of crystalline solids depend on the crystal structure of the 

material, the manner in which atoms, ions, or molecules are spatially arranged. There is 

an extremely large number of different crystal structures all having long-range atomic 

order; these vary from relatively simple structures for metals to exceedingly complex 

ones, as displayed by some of the ceramic and polymeric materials. The present dis-

cussion deals with several common metallic crystal structures. Chapters 12 and 14 are 

devoted to crystal structures for ceramics and polymers, respectively.

When crystalline structures are described, atoms (or ions) are thought of as be-

ing solid spheres having well-defined diameters. This is termed the atomic hard-sphere 
model in which spheres representing nearest-neighbor atoms touch one another. An 

example of the hard-sphere model for the atomic arrangement found in some of the 

common elemental metals is displayed in Figure 3.1c. In this particular case all the atoms 

are identical. Sometimes the term lattice is used in the context of crystal structures; in 

this sense lattice means a three-dimensional array of points coinciding with atom posi-

tions (or sphere centers).

crystal structure

lattice

(a) (b) (c)

Figure 3.1 For the face-centered cubic crystal structure, (a) a hard-sphere unit cell representation, (b) a reduced-

sphere unit cell, and (c) an aggregate of many atoms.
[Figure (c) adapted from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I, Structure, 

p. 51. Copyright © 1964 by John Wiley & Sons, New York.]

The atomic order in crystalline solids indicates that small groups of atoms form a repeti-

tive pattern. Thus, in describing crystal structures, it is often convenient to subdivide the 

structure into small repeat entities called unit cells. Unit cells for most crystal structures 

are parallelepipeds or prisms having three sets of parallel faces; one is drawn within the 

aggregate of spheres (Figure 3.1c), which in this case happens to be a cube. A unit cell is 

unit cell

3.3 UNIT CELLS
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chosen to represent the symmetry of the crystal structure, wherein all the atom positions 

in the crystal may be generated by translations of the unit cell integral distances along 

each of its edges. Thus, the unit cell is the basic structural unit or building block of the 

crystal structure and defines the crystal structure by virtue of its geometry and the atom 

positions within. Convenience usually dictates that parallelepiped corners coincide with 

centers of the hard-sphere atoms. Furthermore, more than a single unit cell may be cho-

sen for a particular crystal structure; however, we generally use the unit cell having the 

highest level of geometrical symmetry.

The atomic bonding in this group of materials is metallic and thus nondirectional in 

nature. Consequently, there are minimal restrictions as to the number and position 

of nearest-neighbor atoms; this leads to relatively large numbers of nearest neighbors 

and dense atomic packings for most metallic crystal structures. Also, for metals, when 

we use the hard-sphere model for the crystal structure, each sphere represents an ion 

core. Table 3.1 presents the atomic radii for a number of metals. Three relatively simple 

crystal structures are found for most of the common metals: face-centered cubic, body-

centered cubic, and hexagonal close-packed.

The Face-Centered Cubic Crystal Structure

The crystal structure found for many metals has a unit cell of cubic geometry, with at-

oms located at each of the corners and the centers of all the cube faces. It is aptly called 

the face-centered cubic (FCC) crystal structure. Some of the familiar metals having this 

crystal structure are copper, aluminum, silver, and gold (see also Table 3.1). Figure 3.1a 

shows a hard-sphere model for the FCC unit cell, whereas in Figure 3.1b the atom cent-

ers are represented by small circles to provide a better perspective on atom positions. 

The aggregate of atoms in Figure 3.1c represents a section of crystal consisting of many 

FCC unit cells. These spheres or ion cores touch one another across a face diagonal; the 

cube edge length a and the atomic radius R are related through

 a = 2R12  (3.1)

This result is obtained in Example Problem 3.1.

face-centered cubic 
(FCC)

Unit cell edge length 
for face-centered 
cubic

3.4 METALLIC CRYSTAL STRUCTURES

Table 3.1

Atomic Radii and 
Crystal Structures for 
16 Metals

 Crystal Atomic Radiusb  Crystal Atomic
Metal Structurea (nm) Metal Structure Radius (nm)

Aluminum FCC 0.1431 Molybdenum BCC 0.1363

Cadmium HCP 0.1490 Nickel FCC 0.1246

Chromium BCC 0.1249 Platinum FCC 0.1387

Cobalt HCP 0.1253 Silver FCC 0.1445

Copper FCC 0.1278 Tantalum BCC 0.1430

Gold FCC 0.1442 Titanium (a) HCP 0.1445

Iron (a) BCC 0.1241 Tungsten BCC 0.1371

Lead FCC 0.1750 Zinc HCP 0.1332

aFCC � face-centered cubic; HCP � hexagonal close-packed; BCC � body-centered cubic.
bA nanometer (nm) equals 10�9 m; to convert from nanometers to angstrom units (Å), 

multiply the nanometer value by 10.
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On occasion, we need to determine the number of atoms associated with each unit 

cell. Depending on an atom’s location, it may be considered to be shared with adjacent 

unit cells—that is, only some fraction of the atom is assigned to a specific cell. For ex-

ample, for cubic unit cells, an atom completely within the interior “belongs” to that unit 

cell, one at a cell face is shared with one other cell, and an atom residing at a corner is 

shared among eight. The number of atoms per unit cell, N, can be computed using the 

following formula:

 N = Ni +

Nf

2
+

Nc

8
 (3.2)

where

 Ni � the number of interior atoms

 Nf � the number of face atoms

 Nc � the number of corner atoms

For the FCC crystal structure, there are eight corner atoms (Nc � 8), six face atoms 

(Nf � 6), and no interior atoms (Ni � 0). Thus, from Equation 3.2,

N = 0 +

6
2

+

8
8
= 4

or a total of four whole atoms may be assigned to a given unit cell. This is depicted in 

Figure 3.1a, where only sphere portions are represented within the confines of the cube. 

The cell is composed of the volume of the cube that is generated from the centers of the 

corner atoms, as shown in the figure.

Corner and face positions are really equivalent—that is, translation of the cube 

corner from an original corner atom to the center of a face atom will not alter the cell 

structure.

Two other important characteristics of a crystal structure are the coordination 
number and the atomic packing factor (APF). For metals, each atom has the same 

number of nearest-neighbor or touching atoms, which is the coordination number. For 

face-centered cubics, the coordination number is 12. This may be confirmed by exami-

nation of Figure 3.1a; the front face atom has four corner nearest-neighbor atoms sur-

rounding it, four face atoms that are in contact from behind, and four other equivalent 

face atoms residing in the next unit cell to the front (not shown).

The APF is the sum of the sphere volumes of all atoms within a unit cell (assuming 

the atomic hard-sphere model) divided by the unit cell volume—that is,

 APF =
volume of atoms in a unit cell

total unit cell volume
 (3.3)

For the FCC structure, the atomic packing factor is 0.74, which is the maximum pack-

ing possible for spheres all having the same diameter. Computation of this APF is also 

included as an example problem. Metals typically have relatively large atomic packing 

factors to maximize the shielding provided by the free electron cloud.

The Body-Centered Cubic Crystal Structure

Another common metallic crystal structure also has a cubic unit cell with atoms located 

at all eight corners and a single atom at the cube center. This is called a body-centered 
cubic (BCC) crystal structure. A collection of spheres depicting this crystal structure is 

shown in Figure 3.2c, whereas Figures 3.2a and 3.2b are diagrams of BCC unit cells with 

the atoms represented by hard-sphere and reduced-sphere models, respectively. Center 

   : VMSE
Crystal Systems and

Unit Cells for Metals

coordination number

atomic packing 
factor (APF)

Definition of atomic 
packing factor

body-centered cubic 
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and corner atoms touch one another along cube diagonals, and unit cell length a and 

atomic radius R are related through

 a =
4R

13
 (3.4)

Chromium, iron, tungsten, and several other metals listed in Table 3.1 exhibit a BCC 

structure.

Each BCC unit cell has eight corner atoms and a single center atom, which is wholly con-

tained within its cell; therefore, from Equation 3.2, the number of atoms per BCC unit cell is

 N = Ni +

Nf

2
+

Nc

8

 = 1 + 0 +

8
8
= 2

The coordination number for the BCC crystal structure is 8; each center atom has as 

nearest neighbors its eight corner atoms. Because the coordination number is less for 

BCC than for FCC, the atomic packing factor is also lower for BCC—0.68 versus 0.74.

It is also possible to have a unit cell that consists of atoms situated only at the cor-

ners of a cube. This is called the simple cubic (SC) crystal structure; hard-sphere and 

reduced-sphere models are shown, respectively, in Figures 3.3a and 3.3b. None of the 

metallic elements have this crystal structure because of its relatively low atomic packing 

factor (see Concept Check 3.1). The only simple-cubic element is polonium, which is 

considered to be a metalloid (or semi-metal).

The Hexagonal Close-Packed Crystal Structure

Not all metals have unit cells with cubic symmetry; the final common metallic crystal 

structure to be discussed has a unit cell that is hexagonal. Figure 3.4a shows a reduced-

sphere unit cell for this structure, which is termed hexagonal close-packed (HCP); an 

assemblage of several HCP unit cells is presented in Figure 3.4b.1 The top and bottom 

Unit cell edge length 
for body-centered 
cubic
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hexagonal close-
packed (HCP)

Figure 3.2 For the body-centered cubic crystal structure, (a) a hard-sphere unit cell representation, (b) a reduced-

sphere unit cell, and (c) an aggregate of many atoms.
[Figure (c) from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I, Structure, p. 51. 

Copyright © 1964 by John Wiley & Sons, New York.]

(a) (b) (c)

1Alternatively, the unit cell for HCP may be specified in terms of the parallelepiped defined by the atoms labeled A 

through H in Figure 3.4a. Thus, the atom denoted J lies within the unit cell interior.

Tutorial Video:
BCC Unit Cell 

Calculations
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faces of the unit cell consist of six atoms that form regular hexagons and surround a 

single atom in the center. Another plane that provides three additional atoms to the unit 

cell is situated between the top and bottom planes. The atoms in this midplane have as 

nearest neighbors atoms in both of the adjacent two planes.

In order to compute the number of atoms per unit cell for the HCP crystal structure, 

Equation 3.2 is modified to read as follows:

 N = Ni +

Nf

2
+

Nc

6
 (3.5)

That is, one-sixth of each corner atom is assigned to a unit cell (instead of 8 as with the 

cubic structure). Because for HCP there are 6 corner atoms in each of the top and bot-

tom faces (for a total of 12 corner atoms), 2 face center atoms (one from each of the 

top and bottom faces), and 3 midplane interior atoms, the value of N for HCP is found, 

using Equation 3.5, to be

N = 3 +

2
2

+

12
6

= 6

Thus, 6 atoms are assigned to each unit cell.
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(b)(a)

Figure 3.3 For the simple cubic crystal 

structure, (a) a hard-sphere unit cell, and 

(b) a reduced-sphere unit cell.

Figure 3.4 For the hexagonal close-packed crystal structure, (a) a reduced-sphere unit cell (a and c represent the 

short and long edge lengths, respectively), and (b) an aggregate of many atoms.
[Figure (b) from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I, Structure, p. 51. 

Copyright © 1964 by John Wiley & Sons, New York.]
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If a and c represent, respectively, the short and long unit cell dimensions of Figure 3.4a, 

the c/a ratio should be 1.633; however, for some HCP metals, this ratio deviates from the 

ideal value.

The coordination number and the atomic packing factor for the HCP crystal struc-

ture are the same as for FCC: 12 and 0.74, respectively. The HCP metals include cad-

mium, magnesium, titanium, and zinc; some of these are listed in Table 3.1.

EXAMPLE PROBLEM 3.1

Determination of FCC Unit Cell Volume

Calculate the volume of an FCC unit cell in terms of the atomic radius R.

Solution

In the FCC unit cell illustrated, the atoms touch one another 

across a face-diagonal, the length of which is 4R. Because the 

unit cell is a cube, its volume is a3, where a is the cell edge 

length. From the right triangle on the face,

a2
+ a2 = (4R)2

or, solving for a,

 a = 2R12 (3.1)

The FCC unit cell volume VC may be computed from

 VC = a3 = (2R12)3 = 16R312 (3.6)

a

a

4R

R

EXAMPLE PROBLEM 3.2

Computation of the Atomic Packing Factor for FCC

Show that the atomic packing factor for the FCC crystal structure is 0.74.

Solution

The APF is defined as the fraction of solid sphere volume in a unit cell, or

APF =
volume of atoms in a unit cell

total unit cell volume
=

VS

VC

Both the total atom and unit cell volumes may be calculated in terms of the atomic radius R. 

The volume for a sphere is 43pR3, and because there are four atoms per FCC unit cell, the total 

FCC atom (or sphere) volume is

VS = (4)4
3pR3 = 16

3 pR3

From Example Problem 3.1, the total unit cell volume is

VC = 16R312

Therefore, the atomic packing factor is

APF =
VS

VC
=

(16
3 )pR3

16R312
= 0.74

Tutorial Video

Tutorial Video
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Concept Check 3.1

(a) What is the coordination number for the simple-cubic crystal structure?

(b) Calculate the atomic packing factor for simple cubic.

[The answer may be found at www.wiley.com/college/callister (Student Companion Site).]

EXAMPLE PROBLEM 3.3

Determination of HCP Unit Cell Volume

(a)  Calculate the volume of an HCP unit cell in 

terms of its a and c lattice parameters.

(b)  Now provide an expression for this volume in 

terms of the atomic radius, R, and the c lattice 

parameter.

Solution

(a)  We use the adjacent reduced-sphere HCP unit 

cell to solve this problem.

Now, the unit cell volume is just the prod-

uct of the base area times the cell height, c. 

This base area is just three times the area of 

the parallelepiped ACDE shown below. (This 

ACDE parallelepiped is also labeled in the 

above unit cell.)

The area of ACDE is just the length of CD times 

the height BC. But CD is just a, and BC is equal to

BC = a cos(30�) =
a13

2

Thus, the base area is just

AREA = (3)(CD)(BC) = (3)(a)aa13
2
b =

3a213
2

Again, the unit cell volume VC is just the product of the 

AREA and c; thus,

 VC = AREA(c)

= a3a213
2
b(c)

 =
3a2c13

2
 (3.7a)

(b)  For this portion of the problem, all we need do is realize that the lattice parameter a is 

related to the atomic radius R as

a = 2R

Now making this substitution for a in Equation 3.7a gives

VC =
3(2R)2c13

2

 = 6R2c13 (3.7b)

a = 2R

a = 2R

a = 2R

A

C D

B
E

30º

60º

c

a2

a
1

a3

a

A

EC

z

D
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A knowledge of the crystal structure of a metallic solid permits computation of its theo-

retical density r through the relationship

 r =
nA

VCNA
 (3.8)

where

 n = number of atoms associated with each unit cell

 A = atomic weight

 VC = volume of the unit cell

NA = Avogadro>s number (6.022 * 1023 atoms/mol)

Theoretical density 
for metals

3.5 DENSITY COMPUTATIONS

EXAMPLE PROBLEM 3.4

Theoretical Density Computation for Copper

Copper has an atomic radius of 0.128 nm, an FCC crystal structure, and an atomic weight of 

63.5 g/mol. Compute its theoretical density, and compare the answer with its measured density.

Solution

Equation 3.8 is employed in the solution of this problem. Because the crystal structure is 

FCC, n, the number of atoms per unit cell, is 4. Furthermore, the atomic weight ACu is given 

as 63.5 g/mol. The unit cell volume VC for FCC was determined in Example Problem 3.1 as 

16R312,  where R, the atomic radius, is 0.128 nm.

Substitution for the various parameters into Equation 3.8 yields

  r =
nACu

VCNA
=

nACu

(16R312)NA

 =
(4 atoms/unit cell)(63.5 g/mol)

[1612(1.28 * 10-8 cm)3/unit cell](6.022 * 1023 atoms/mol)

  = 8.89 g/cm3

The literature value for the density of copper is 8.94 g/cm3, which is in very close agreement 

with the foregoing result.

Some metals, as well as nonmetals, may have more than one crystal structure, a 

phenomenon known as polymorphism. When found in elemental solids, the condi-

tion is often termed allotropy. The prevailing crystal structure depends on both the 

temperature and the external pressure. One familiar example is found in carbon: 

graphite is the stable polymorph at ambient conditions, whereas diamond is formed 

at extremely high pressures. Also, pure iron has a BCC crystal structure at room 

temperature, which changes to FCC iron at 912�C (1674�F). Most often a modifica-

tion of the density and other physical properties accompanies a polymorphic trans-

formation.

polymorphism
allotropy

3.6 POLYMORPHISM AND ALLOTROPY
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Tin (Its Allotropic Transformation)

M A T E R I A L  O F  I M P O R T A N C E

Another common metal that experiences an al-

lotropic change is tin. White (or b) tin, having 

a body-centered tetragonal crystal structure at room 

temperature, transforms, at 13.2�C (55.8�F), to gray 

White (�) tin

Cooling

13.2°C

Gray (�) tin

The rate at which this change takes place is extremely 

slow; however, the lower the temperature (below 

13.2�C) the faster the rate. Accompanying this white-

to-gray-tin transformation is an increase in volume 

(27%), and, accordingly, a decrease in density (from 

7.30 g/cm3 to 5.77 g/cm3). Consequently, this volume 

expansion results in the disintegration of the white tin 

metal into a coarse powder of the gray allotrope. For 

normal subambient temperatures, there is no need to 

worry about this disintegration process for tin prod-

ucts because of the very slow rate at which the trans-

formation occurs.

This white-to-gray tin transition produced some 

rather dramatic results in 1850 in Russia. The winter 

that year was particularly cold, and record low tem-

peratures persisted for extended periods of time. The 

uniforms of some Russian soldiers had tin buttons, 

many of which crumbled because of these extreme 

cold conditions, as did also many of the tin church 

organ pipes. This problem came to be known as the 

tin disease.

Specimen of white tin (left). Another specimen disinte-

grated upon transforming to gray tin (right) after it was 

cooled to and held at a temperature below 13.2�C for 

an extended period of time.
(Photograph courtesy of Professor Bill Plumbridge, 

Department of Materials Engineering, The Open University, 

Milton Keynes, England.)

(or a) tin, which has a crystal structure similar to that 

of diamond (i.e., the diamond cubic crystal structure); 

this transformation is represented schematically as 

follows:
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z

y

x

a

�

b

c
�

�

Figure 3.5 A unit cell with x, y, and z coordinate axes, 

showing axial lengths (a, b, and c) and interaxial angles 

(a, b, and g).

2Also called trigonal.

Concept Check 3.2 What is the difference between crystal structure and crystal system?

[The answer may be found at www.wiley.com/college/callister (Student Companion Site).]

It is important to note that many of the principles and concepts addressed in previ-

ous discussions in this chapter also apply to crystalline ceramic and polymeric systems 

(Chapters 12 and 14). For example, crystal structures are most often described in terms 

of unit cells, which are normally more complex than those for FCC, BCC, and HCP. In 

addition, for these other systems, we are often interested in determining atomic pack-

ing factors and densities, using modified forms of Equations 3.3 and 3.8. Furthermore, 

according to unit cell geometry, crystal structures of these other material types are 

grouped within the seven crystal systems.

Because there are many different possible crystal structures, it is sometimes conven-

ient to divide them into groups according to unit cell configurations and/or atomic 

arrangements. One such scheme is based on the unit cell geometry, that is, the shape 

of the appropriate unit cell parallelepiped without regard to the atomic positions 

in the cell. Within this framework, an xyz coordinate system is established with 

its origin at one of the unit cell corners; each of the x, y, and z axes coincides with 

one of the three parallelepiped edges that extend from this corner, as illustrated in 

Figure 3.5. The unit cell geometry is completely defined in terms of six parameters: 

the three edge lengths a, b, and c, and the three interaxial angles a, b, and g. These 

are indicated in Figure 3.5, and are sometimes termed the lattice parameters of a 

crystal structure.

On this basis there are seven different possible combinations of a, b, and c and a, b, 

and g, each of which represents a distinct crystal system. These seven crystal systems are 

cubic, tetragonal, hexagonal, orthorhombic, rhombohedral,2 monoclinic, and triclinic. 

The lattice parameter relationships and unit cell sketches for each are represented in 

Table 3.2. The cubic system, for which a � b � c and a � b � g � 90�, has the greatest 

degree of symmetry. The least symmetry is displayed by the triclinic system, because 

a � b � c and a � b � g.

From the discussion of metallic crystal structures, it should be apparent that both 

FCC and BCC structures belong to the cubic crystal system, whereas HCP falls within 

the hexagonal system. The conventional hexagonal unit cell really consists of three 

 parallelepipeds situated as shown in Table 3.2.
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Table 3.2  Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the 
Seven Crystal Systems

 Axial  Unit
Crystal System Relationships Interaxial Angles Cell Geometry

Cubic a = b = c a = b = g = 90� 

a
a

a

Hexagonal a = b � c a = b = 90�, g = 120�

 
aaa

c

Tetragonal a = b � c a = b = g = 90�

 

a
a

c

Rhombohedral  a = b = c a = b = g � 90�

 

aa
a

�

 (Trigonal)

Orthorhombic a � b � c a = b = g = 90�

 

a
b

c

Monoclinic a � b � c a = g = 90� � b

 

a
b

c
�

Triclinic a � b � c a � b � g � 90�

 
a

b

c
�

�

�
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Sometimes it is necessary to specify a lattice position within a unit cell. This is possible 

using three point coordinate indices: q, r, and s. These indices are fractional multiples of 

a, b, and c unit cell edge lengths—that is, q is some fractional length of a along the x axis, 

r is some fractional length of b along the y axis, and similarly for s; or

 qa = lattice position referenced to the x axis (3.9a)

 rb = lattice position referenced to the y axis (3.9b)

 sc = lattice position referenced to the z axis (3.9c)

To illustrate, consider the unit cell in Figure 3.6, the x-y-z coordinate system with its 

origin located at a unit cell corner, and the lattice site located at point P. Note how the 

location of P is related to the products of its q, r, and s coordinate indices and the unit 

cell edge lengths.3

3.8 POINT COORDINATES

3We have chosen not to separate the q, r, and s indices by commas or any other punctuation marks (which is the 

normal convention).

Figure 3.6 The manner in which the 

q, r, and s coordinates at point P within the 

unit cell are determined. The q coordinate 

(which is a fraction) corresponds to the 

distance qa along the x axis, where a is 

the unit cell edge length. The respective 

r and s coordinates for the y and z axes are 

determined similarly.

z

x

q r s
P

y 

c

rb

qa

sc

a

b

Crystallographic Points, 
Directions, and Planes

When dealing with crystalline materials, it often becomes necessary to specify a particu-

lar point within a unit cell, a crystallographic direction, or some crystallographic plane 

of atoms. Labeling conventions have been established in which three numbers or indices 

are used to designate point locations, directions, and planes. The basis for determining 

index values is the unit cell, with a right-handed coordinate system consisting of three 

(x, y, and z) axes situated at one of the corners and coinciding with the unit cell edges, 

as shown in Figure 3.5. For some crystal systems—namely, hexagonal, rhombohedral, 

monoclinic, and triclinic—the three axes are not mutually perpendicular, as in the famil-

iar Cartesian coordinate scheme.
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EXAMPLE PROBLEM 3.5

EXAMPLE PROBLEM 3.6

Location of Point Having Specified Coordinates

For the unit cell shown in the accompanying sketch (a), locate the point having coordinates 
1
4 1 12.

0.40 nm

0.46 nm

(a)

0.48 nm

z

x

y 

(b)

1

0.46 nm

0.12 nm M

N O

P

1
4

1
2

z

x

y 
0.20 nm

Solution

From sketch (a), edge lengths for this unit cell are as follows: a � 0.48 nm, b � 0.46 nm, and 

c � 0.40 nm. Furthermore, in light of the preceding discussion, the three point coordinate 

indices are q = 1
4, r � 1, and s = 1

2. We use Equations 3.9a through 3.9c to determine lattice 

positions for this point as follows:

lattice position referenced to the x axis � qa

 = (1
4)a = 1

4(0.48 nm) = 0.12 nm

lattice position referenced to the y axis � rb

 � (1)b � (1)(0.46 nm) � 0.46 nm

lattice position referenced to the z axis � sc

 = (1
2)c = (1

2)(0.40 nm) = 0.20 nm

To locate the point having these coordinates within the unit cell, first use the x lattice position 

and move from the origin (point M) 0.12 nm units along the x axis (to point N), as shown in 

(b). Similarly, using the y lattice position, proceed 0.46 nm parallel to the y axis, from point 

N to point O. Finally, move from this position 0.20 nm units parallel to the z axis to point P 

(per the z lattice position), as noted again in (b). Thus, point P corresponds to the 1
4 1 12 point 

coordinates.

Specification of Point Coordinate Indices

Specify coordinate indices for all numbered points of the unit cell in the illustration on the next 

page.

Solution

For this unit cell, coordinate points are located at all eight corners with a single point at the 

center position.
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Point 1 is located at the origin of the coordinate system, and, 

therefore, its lattice position indices referenced to the x, y, and 

z axes are 0a, 0b, and 0c, respectively. And from Equations 3.9a 

through 3.9c,

lattice position referenced to the x axis � 0a � qa

lattice position referenced to the y axis � 0b � rb

lattice position referenced to the z axis � 0c � sc

Solving the above three expressions for values of the q, r, and s 

indices leads to

q =
0a
a

= 0

r =
0b
b

= 0

s =
0c
c

= 0

Therefore this is the 0 0 0 point

 Because point number 2, lies one unit cell edge length along the x axis, its lattice position 

indices referenced to the x, y, and z axes are a, 0b, and 0c, and

lattice position index referenced to the x axis � a � qa

lattice position index referenced to the y axis � 0b � rb

lattice position index referenced to the z axis � 0c � sc

Thus we determine values for the q, r, and s indices as follows:

q = 1  r = 0 s = 0

Hence, point 2 is 1 0 0.

 This same procedure is carried out for the remaining seven points in the unit cell. Point 

indices for all nine points are listed in the following table.

x

y

a

b

c

z

1
5

87

6 9

4

32

Point Number q r s

 1 0 0 0

 2 1 0 0

 3 1 1 0

 4 0 1 0

 5 1
2 1

2 1
2

 6 0 0 1

 7 1 0 1

 8 1 1 1

 9 0 1 1
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A crystallographic direction is defined as a line directed between two points, or a vector. 

The following steps are used to determine the three directional indices:

 1. A right-handed x-y-z coordinate system is first constructed. As a matter of con-

venience, its origin may be located at a unit cell corner.

 2. The coordinates of two points that lie on the direction vector (referenced to the 

coordinate system) are determined—for example, for the vector tail, point 1: x1, 

y1, and z1; whereas for the vector head, point 2: x2, y2, and z2.

 3. Tail point coordinates are subtracted from head point components—that is, 

x2 � x1, y2 � y1, and z2 � z1.

 4. These coordinate differences are then normalized in terms of (i.e., divided by) 

their respective a, b, and c lattice parameters—that is,

x2 - x1

a
 

y2 - y1

b
 

z2 - z1

c
  which yields a set of three numbers.

 5. If necessary, these three numbers are multiplied or divided by a common factor to 

reduce them to the smallest integer values.

 6. The three resulting indices, not separated by commas, are enclosed in square 

brackets, thus: [uvw]. The u, v, and w integers correspond to the normalized 

coordinate differences referenced to the x, y, and z axes, respectively.

In summary, the u, v, and w indices may be determined using the following equations:

 u = nax2 - x1

a
b  (3.10a)

 v = nay2 - y1

b
b  (3.10b)

 w = naz2 - z1

c
b  (3.10c)

In these expressions, n is the factor that may be required to reduce u, v, and w to integers.

For each of the three axes, there are both positive and negative coordinates. Thus, 

negative indices are also possible, which are represented by a bar over the appropri-

ate index. For example, the [111] direction has a component in the �y direction. Also, 

changing the signs of all indices produces an antiparallel direction; that is, [111] is di-

rectly opposite to [111]. If more than one direction (or plane) is to be specified for a 

particular crystal structure, it is imperative for maintaining consistency that a positive–

negative convention, once established, not be changed.

The [100], [110], and [111] directions are common ones; they are drawn in the unit 

cell shown in Figure 3.7.

   : VMSE
Crystallographic 
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Figure 3.7 The [100], [110], and [111] directions within a 

unit cell.
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Directions
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EXAMPLE PROBLEM 3.7

Determination of Directional Indices

Determine the indices for the direction shown in 

the accompanying figure.

Solution

It is first necessary to take note of the vector tail 

and head coordinates. From the illustration, tail 

coordinates are as follows:

x1 = a  y1 = 0b z1 = 0c

For the head coordinates,

x2 = 0a  y2 = b z2 = c/2

Now taking point coordinate differences,

 x2 - x1 = 0a - a = -a

 y2 - y1 = b - 0b = b

 z2 - z1 = c/2 - 0c = c/2

It is now possible to use Equations 3.10a through 3.10c to compute values of u, v, and w. 

However, because the z2 � z1 difference is a fraction (i.e., c/2), we anticipate that in order to 

have integer values for the three indices, it is necessary to assign n a value of 2. Thus,

 u = nax2 - x1

a
b = 2a -a

a
b = -2

 v = nay2 - y1

b
b = 2ab

b
b = 2

 w = naz2 - z1

c
b = 2a c>2

c
b = 1

And, finally enclosure of the �2, 2, and 1 indices in brackets leads to [221] as the direction 

designation.4

 This procedure is summarized as follows:

z

y

x

a

b

O
c

x
2
 = 0a

y
2
 = b

z
2
 = c/2 

x
1
 = a

y
1
 = 0b

z
1
 = 0c

4If these u, v, and w values are not integers, it is necessary to choose another value for n.

 x y z

Head coordinates (x2, y2, z2,) 0a b c/2

Tail coordinates (x1, y1, z1,) a 0b 0c

Coordinate differences �a b c/2

Calculated values of u, v, and w u � �2 v � 2 w � 1

Enclosure  [221]
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EXAMPLE PROBLEM 3.8

Construction of a Specified Crystallographic Direction

Within the following unit cell draw a [110] direction with its tail 

located at the origin of the coordinate system, point O.

Solution

This problem is solved by reversing the procedure of the preced-

ing example. For this [110] direction,

 u = 1

 v = -1
 w = 0

Because the tail of the direction vector is positioned at the origin, its coordinates are as 

follows:

 x1 = 0a

 y1 = 0b

 z1 = 0c

We now want to solve for the coordinates of the vector head—that is, x2, y2, and z2. This is 

possible using rearranged forms of Equations 3.10a through 3.10c and incorporating the above 

values for the three direction indices (u, v, and w) and vector tail coordinates. Taking the value 

of n to be 1 because the three direction indices are all integers leads to

 x2 = ua + x1 = (1)(a) + 0a = a

 y2 = vb + y1 = (-1)(b) + 0b = -b

 z2 = wc + z1 = (0)(c) + 0c = 0c

The construction process for this direction vec-

tor is shown in the following figure.

 Because the tail of the vector is positioned 

at the origin, we start at the point labeled O 

and then move in a stepwise manner to locate 

the vector head. Because the x head coordinate 

(x2) is a, we proceed from point O, a units along 

the x axis to point Q. From point Q, we move b 

units parallel to the �y axis to point P, because 

the y head coordinate (y2) is �b. There is no z 

component to the vector inasmuch as the z head 

coordinate (z2) is 0c. Finally, the vector corre-

sponding to this [110] direction is constructed by 

drawing a line from point O to point P, as noted 

in the illustration.

z

y

x

a

b

O
c

z

x

y

a

b

O

Q

c

y
2
 = –b

x
2
 = a

–y

P

[110] Direction

For some crystal structures, several nonparallel directions with different indices are 

crystallographically equivalent, meaning that the spacing of atoms along each direction 

is the same. For example, in cubic crystals, all the directions represented by the follow-

ing indices are equivalent: [100], [100], [010], [010], [001], and [001]. As a convenience, 

equivalent directions are grouped together into a family, which is enclosed in angle 

Tutorial Video
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brackets, thus: �100�. Furthermore, directions in cubic crystals having the same indices 

without regard to order or sign—for example, [123] and [213]—are equivalent. This is, 

in general, not true for other crystal systems. For example, for crystals of tetragonal sym-

metry, the [100] and [010] directions are equivalent, whereas the [100] and [001] are not.

Directions in Hexagonal Crystals

A problem arises for crystals having hexagonal symmetry in that some equivalent crys-

tallographic directions do not have the same set of indices. For example, the [111] direc-

tion is equivalent to [101] rather than to a direction with indices that are combinations of 

1s and �1s. This situation is addressed using a four-axis, or Miller–Bravais, coordinate 

system, which is shown in Figure 3.8. The three a1, a2, and a3 axes are all contained 

within a single plane (called the basal plane) and are at 120� angles to one another. The 

z axis is perpendicular to this basal plane. Directional indices, which are obtained as 

described earlier, are denoted by four indices, as [uytw]; by convention, the u, y, and t 
indices relate to vector coordinate differences referenced to the respective a1, a2, and a3 

axes in the basal plane; the fourth index pertains to the z axis.

Conversion from the three-index system to the four-index system as

[UVW]S [uytw]

is accomplished using the following formulas5:

  u =
1
3

 (2U - V) (3.11a)

  y =
1
3

 (2V - U) (3.11b)

  t = -(u + y)  (3.11c)

  w = W  (3.11d)

Here, uppercase U, V, and W indices are associated with the three-index scheme (in-

stead of u, y, and w as previously), whereas lowercase u, y, t, and w correlate with the 

Miller–Bravais four-index system. For example, using these equations, the [010] direc-

tion becomes [1210]. Several directions have been drawn in the hexagonal unit cell of 

Figure 3.9.

When plotting crystallographic directions for hexagonal crystals it is sometimes 

more convenient to modify the four-axis coordinate system shown in Figure 3.8 to that 

of Figure 3.10; here, a grid has been constructed on the basal plane that consists of sets 

of lines parallel to each of the a1, a2, and a3 axes. The intersections of two sets of parallel 

Figure 3.8 Coordinate axis system for a hexagonal unit cell 

(Miller–Bravais scheme).

a1

a2

a3

z

120°

5Reduction to the lowest set of integers may be necessary, as discussed earlier.
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lines (e.g., those for a2, and a3) lie on and trisect the other axis (i.e., divide a1 into thirds) 

within the hexagonal unit cell. In addition, the z axis of Figure 3.10 is also apportioned 

into three equal lengths (at trisection points m and n). This scheme is sometimes re-

ferred to as a ruled-net coordinate system.

Construction of a direction specified by four indices is carried out using a procedure 

similar to the one used for other crystal systems—by the subtraction of vector tail point 

coordinates from head point coordinates. For the four coordinate axes of Figure 3.10, 

we use the following designations for head and tail coordinates:

Figure 3.9 For the 

hexagonal crystal system, 

the [0001], [1100], and [1120] 
directions.

[0001]

[1120]

[1100]
a1

a2

a3

z

Figure 3.10 Ruled-net coordinate axis 

system for hexagonal unit cells that may be 

used to plot crystallographic directions.

a1

n

m a2

a3

z

 Head Tail
Axis Coordinate Coordinate

 a1 a1� a1�

 a2 a2� a2�

 a3 a3� a3�

 z z� z�

Using this scheme, the u, y, t, and w hexagonal index equivalents of Equations 3.10a 

through 3.10c are as follows:

  u = 3naa1� - a1�

a
b  (3.12a)

  y = 3naa2� - a2�

a
b  (3.12b)

  t = 3naa3� - a3�

a
b  (3.12c)

  w = 3naz� - z�

c
b  (3.12d)

In these expressions, the parameter n is included to facilitate, if necessary, reduction of 

the u, y, t, and w to integer values.
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EXAMPLE PROBLEM 3.9

Conversion and Construction of Directional Indices 
for a Hexagonal Unit Cell

(a) Convert the [111] direction into the four-index system for hexagonal crystals.

(b) Draw this direction within a ruled-net coordinate system (per Figure 3.10).

(c)  Now draw the [111] direction within a hexagonal unit cell that utilizes a three-axis (a1, a2, z) 

coordinate scheme.

Solution

(a) This conversion is carried out using Equations 3.11a–3.11d, in which

U = 1  V = 1  W = 1

Thus,

 u =
1
3

 (2U - V) =
1
3

 [(2)(1) - 1] =
1
3

 y =
1
3

 (2V - U) =
1
3

 [(2)(1) - 1] =
1
3

 t = -(u + y) = - a1
3

+

1
3
b = -

2
3

 w = W = 1

Multiplication of the preceding indices by 3 reduces them to the lowest set, which yields values 

for u, y, t, and w of 1, 1, �2, and 3, respectively. Hence, the [111] direction becomes [1123].

(b)  The following sketch (a) shows a hexagonal unit cell in which the ruled-net coordinate 

system has been drawn.

(a)
a1

n

C

B

A

D

m
a2

a3

z

E

a

a

a

c

o
r

p

q

s

a1

P

a2

z

R

O Q

(b)

Also, one of the three parallelepipeds that makes up the hexagonal cell is delineated—its 

corners are labeled with letters o-A-r-B-C-D-E-s, with the origin of the a1-a2-a3-z axis 

coordinate system located at the corner labeled o. It is within this unit cell that we draw the 

[1123] direction. For the sake of convenience, let us position the vector tail at the origin of 

the coordinate system, which means that a1� = a2� = a3� = 0a and z� = 0c. Coordinates for 
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the vector head (a1�, a2�, a3�, and z�) may be determined using rearranged forms of Equations 

3.12a–3.12d, taking the value of n to be unity. Thus,

 a1� =
ua
3n

+ a1� =
(1)(a)

(3)(1)
+ 0a =

a
3

 a2� =
va
3n

+ a2� =
(1)(a)

(3)(1)
+ 0a =

a
3

 a3� =
ta
3n

+ a3� =
(-2)(a)

(3)(1)
+ 0a =

-2a
3

 z� =
wc
3n

+ z� =
(3)(c)

(3)(1)
+ 0c = c

In constructing this direction vector, we begin at the origin (point o), and first proceed a3 

units along the a1 axis to point p; next, from this point parallel to the a2 axis a
3 units to point 

q; then parallel to the a3 axis -
2a
3  units to point r; and finally we continue parallel to the z 

axis c units to point s. Thus, the [1123] direction is represented by the vector that is directed 

from point o to point s, as noted in the sketch.

(c)  Of course, it is possible to draw the equivalent [111] direction using a three-coordinate-axis 

(a1-a2-z) technique, as shown in (b). In this case, we modify Equations 3.10a–3.10c to read 

as follows:

  U = naa1� - a1�

a
b  (3.13a)

  V = naa2� - a2�

a
b  (3.13b)

  W = naz� - z�

c
b  (3.13c)

where again, single and double primes for a1, a2, and z denote head and tail coordinates, 

respectively. When we locate tail coordinates at the origin (i.e., take a�1 = a�2 = 0a and 

z� = 0c) and make the vector head (i.e., single-primed) coordinates of the above equations 

dependent parameters (while assuming n � 1), the following result:

 a1� =
Ua
n

+ a1� =
(1)(a)

(1)
+ 0a = a

 a2� =
Va
n

+ a2� =
(1)(a)

(1)
+ 0a = a

 z� =
Wc
n

+ z� =
(1)(c)

(1)
+ 0c = c

To locate the vector head, we begin at the origin (point O), then proceed a units along 

the a1 axis (to point P), next parallel to the a2 axis a units (to point Q), and finally parallel 

to the z axis c units (to point R). Hence, the [111] direction is represented by the vector that 

passes from O to R, as shown.

It may be noted that this [111] direction is identical to [1123] from part (b).

The alternative situation is to determine the indices for a direction that has been drawn 

within a hexagonal unit cell. For this case, it is convenient to use the a1-a2-z three-coordinate-

axis system and then convert these indices into the equivalent set for the four-axis scheme. 

The following example problem demonstrates this procedure.
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EXAMPLE PROBLEM 3.10

Determination of Directional Indices for a Hexagonal Unit Cell

Determine the indices (four-index system) for the direction 

shown in the accompanying figure.

Solution

The first thing we need to do is determine U, V, and W indices 

for the vector referenced to the three-axis scheme represented in 

the sketch; this is possible using Equations 3.13a through 3.13c. 

Because the vector passes through the origin, a�1 = a�2 = 0a and 

z� = 0c. Furthermore, from the sketch, coordinates for the vector 

head are as follows:

a1� = 0a

a2� = -a

z� =
c
2

Because the denominator in z� is 2, we assume that n � 2. 

Therefore,

 U = naa1� - a1�

a
b = 2a0a - 0a

a
b = 0

 V = naa2� - a2�

a
b = 2a -a - 0a

a
b = -2

 W = naz� - z�

c
b = 2a c/2 - 0c

c
b = 1

This direction is represented by enclosing the above indices in brackets—namely, [021].
Now it becomes necessary to convert these indices into an index set referenced to the four-

axis scheme. This requires the use of Equations 3.11a–3.11d. For this [021] direction,

U = 0  V = -2  W = 1

and

 u =
1
3

 (2U - V) =
1
3

 [(2)(0) - (-2)] =
2
3

 y =
1
3

 (2V - U) =
1
3

 [(2)(-2) - 0] = -

4
3

 t = -(u + y) = - a2
3

-

4
3
b =

2
3

 w = W = 1

Multiplication of the preceding indices by 3 reduces them to the lowest set, which yields values 

for u, y, t, and w of 2, �4, 2, and 3, respectively. Hence, the direction vector shown in the figure 

is [2423].

a1

a2

z

a

a

c
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The orientations of planes for a crystal structure are represented in a similar manner. 

Again, the unit cell is the basis, with the three-axis coordinate system as represented in 

Figure 3.5. In all but the hexagonal crystal system, crystallographic planes are specified 

by three Miller indices as (hkl). Any two planes parallel to each other are equivalent and 

have identical indices. The procedure used to determine the h, k, and l index numbers 

is as follows:

 1. If the plane passes through the selected origin, either another parallel plane must 

be constructed within the unit cell by an appropriate translation, or a new origin 

must be established at the corner of another unit cell.6

 2. At this point, the crystallographic plane either intersects or parallels each of the three 

axes. The coordinate for the intersection of the crystallographic plane with each of 

the axes is determined (referenced to the origin of the coordinate system). These in-

tercepts for the x, y, and z axes will be designed by A, B, and C, respectively.

 3. The reciprocals of these numbers are taken. A plane that parallels an axis is con-

sidered to have an infinite intercept and therefore a zero index.

 4. The reciprocals of the intercepts are then normalized in terms of (i.e., multiplied 

by) their respective a, b, and c lattice parameters. That is,

a
A
  

b
B

    
c
C

 5. If necessary, these three numbers are changed to the set of smallest integers by 

multiplication or by division by a common factor.7

 6. Finally, the integer indices, not separated by commas, are enclosed within paren-

theses, thus: (hkl). The h, k, and l integers correspond to the normalized intercept 

reciprocals referenced to the x, y, and z axes, respectively.

In summary, the h, k, and l indices may be determined using the following equations:

 h =
na
A

 (3.14a)

 k =
nb
B

 (3.14b)

 l =
nc
C

 (3.14c)

In these expressions, n is the factor that may be required to reduce h, k, and l to integers.

An intercept on the negative side of the origin is indicated by a bar or minus sign 

positioned over the appropriate index. Furthermore, reversing the directions of all indi-

ces specifies another plane parallel to, on the opposite side of, and equidistant from the 

origin. Several low-index planes are represented in Figure 3.11.

Miller indices

   : VMSE
Crystallographic 

Planes

3.10 CRYSTALLOGRAPHIC PLANES

6When selecting a new origin, the following procedure is suggested:

If the crystallographic plane that intersects the origin lies in one of the unit cell faces, move the origin one unit 

cell distance parallel to the axis that intersects this plane.

If the crystallographic plane that intersects the origin passes through one of the unit cell axes, move the origin 

one unit cell distance parallel to either of the two other axes.

For all other cases, move the origin one unit cell distance parallel to any of the three unit cell axes.
7On occasion, index reduction is not carried out (e.g., for x-ray diffraction studies described in Section 3.16); for 

example, (002) is not reduced to (001). In addition, for ceramic materials, the ionic arrangement for a reduced-index 

plane may be different from that for a nonreduced one.
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One interesting and unique characteristic of cubic crystals is that planes and direc-

tions having the same indices are perpendicular to one another; however, for other crys-

tal systems there are no simple geometrical relationships between planes and directions 

having the same indices.

Figure 3.11
Representations of a 

series each of the 

(a) (001), (b) (110), 

and (c) (111) 

crystallographic 

planes.

z

x

y

z

x

y

z

x

y

(b)

(c)

(a)

O

(001) Plane referenced to
the origin at point O

(111) Plane referenced to
the origin at point O

(110) Plane referenced to the
origin at point O

Other equivalent
(001) planes

Other equivalent
(111) planes

Other equivalent
(110) planes

O

O

EXAMPLE PROBLEM 3.11

Determination of Planar (Miller) Indices

Determine the Miller indices for the plane shown in the accompanying sketch (a).

z

y

x

a

b

Oc

(a)  

z

y

x
(b)

x�

C = c/2B = –b

(012) Plane

z�

O O�
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Solution

Because the plane passes through the selected origin O, a new origin must be chosen at the 

corner of an adjacent unit cell. In choosing this new unit cell, we move one unit-cell distance 

parallel to the y-axis, as shown in sketch (b). Thus x�-y-z� is the new coordinate axis system 

having its origin located at O�. Because this plane is parallel to the x� axis its intercept is 

�a—that is, A � �a. Furthermore, from illustration (b), intersections with the y and z� axes 

are as follows:

B = -b  C = c>2
It is now possible to use Equations 3.14a–3.14c to determine values of h, k, and l. At this point, 

let us choose a value of 1 for n. Thus,

 h =
na
A

=
1a
�a

= 0

 k =
nb
B

=
1b
-b

= -1

 l =
nc
C

=
1c

c>2 = 2

And finally, enclosure of the 0, �1, and 2 indices in parentheses leads to (012) as the designa-

tion for this direction.8

This procedure is summarized as follows:

8If h, k, and l are not integers, it is necessary to choose another value for n.

 x y z

Intercepts (A, B, C) �a �b c/2

Calculated values of h, k, and l h � 0 k � �1 l � 2

(Equations 3.14a–3.14c)

Enclosure  (012)

EXAMPLE PROBLEM 3.12

Construction of a Specified Crystallographic Plane

Construct a (101) plane within the following unit cell.

Solution

To solve this problem, carry out the procedure used in the preced-

ing example in reverse order. For this (101) direction,

h = 1

k = 0

l = 1

z

y

x

a

b

O

c

(a)
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Atomic Arrangements

The atomic arrangement for a crystallographic plane, which is often of interest, depends 

on the crystal structure. The (110) atomic planes for FCC and BCC crystal structures 

are represented in Figures 3.12 and 3.13, respectively. Reduced-sphere unit cells are 

also included. Note that the atomic packing is different for each case. The circles repre-

sent atoms lying in the crystallographic planes as would be obtained from a slice taken 

through the centers of the full-size hard spheres.

A “family” of planes contains all planes that are crystallographically equivalent—
that is, having the same atomic packing; a family is designated by indices enclosed in 

braces—such as �100�. For example, in cubic crystals, the (111), (1 1 1), (111), (1 1 1), (111), 

(1 1 1), (111), and (111) planes all belong to the �111� family. However, for tetragonal 

   : VMSE
Planar Atomic 

Arrangements

Using these h, k, and l indices, we want to solve for the values of A, B, and C using rearranged 

forms of Equations 3.14a–3.14c. Taking the value of n to be 1—because these three Miller in-

dices are all integers—leads to the following:

 A =
na
h

=
(1)(a)

1
= a

 B =
nb
k

=
(1)(b)

0
= �b

 C =
nc
l

=
(1)(c)

1
= c

Thus, this (101) plane intersects the x axis at a (be-

cause A � a), it parallels the y axis (because B � �b), 

and intersects the z axis at c. On the unit cell shown 

next are noted the locations of the intersections for 

this plane.

The only plane that parallels the y axis and in-

tersects the x and z axes at axial a and c coordinates, respectively, 

is shown next.

Note that the representation of a crystallographic plane ref-

erenced to a unit cell is by lines drawn to indicate intersections of 

this plane with unit cell faces (or extensions of these faces). The 

following guides are helpful with representing crystallographic 

planes:

 • If two of the h, k, and l indices are zeros [as with (100)], the 

plane will parallel one of the unit cell faces (per Figure 3.11a).

 • If one of the indices is a zero [as with (110)], the plane will 

be a parallelogram, having two sides that coincide with 

opposing unit cell edges (or edges of adjacent unit cells) 

(per Figure 3.11b).

 • If none of the indices is zero [as with (111)], all intersections will pass through unit cell faces 

(per Figure 3.11c).

z

y

x

a

b

O

c

(b)

Intersection with
x axis (value of A)

Intersection with
z axis (value of C)
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x
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b

O

c

(c)

Tutorial Video
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Figure 3.12 (a) Reduced-sphere FCC unit cell with the (110) plane. (b) Atomic packing of an FCC (110) plane. 

Corresponding atom positions from (a) are indicated.

A A B C

D E F

B

C

F

D

E

(a) (b)

crystal structures, the �100� family contains only the (100), (100), (010), and (010) 

planes because the (001) and (001) planes are not crystallographically equivalent. 

Also, in the cubic system only, planes having the same indices, irrespective of or-

der and sign, are equivalent. For example, both (123) and (312) belong to the �123� 
family.

Hexagonal Crystals

For crystals having hexagonal symmetry, it is desirable that equivalent planes have 

the same indices; as with directions, this is accomplished by the Miller–Bravais system 

shown in Figure 3.8. This convention leads to the four-index (hkil) scheme, which is 

favored in most instances because it more clearly identifies the orientation of a plane 

in a hexagonal crystal. There is some redundancy in that i is determined by the sum of 

h and k through

 i = -(h + k) (3.15)

Otherwise, the three h, k, and l indices are identical for both indexing systems.

We determine these indices in a manner analogous to that used for other crystal sys-

tems as described previously—that is, taking normalized reciprocals of axial intercepts, 

as described in the following example problem.

Figure 3.14 presents several of the common planes that are found for crystals having 

hexagonal symmetry.

A�

B�

C �

E �

D �

(a) (b)

A� B�

D � E�

C �

Figure 3.13 (a) Reduced-sphere BCC unit cell with the (110) plane. (b) Atomic packing of a BCC (110) plane. 

Corresponding atom positions from (a) are indicated.
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EXAMPLE PROBLEM 3.13

Determination of the Miller–Bravais Indices for a Plane within a 
Hexagonal Unit Cell

Determine the Miller–Bravais indices for the plane shown in the 

hexagonal unit cell.

Solution

These indices may be determined in the same manner that was used 

for the x-y-z coordinate situation and described in Example Problem 

3.11. However, in this case the a1, a2, and z axes are used and corre-

late, respectively, with the x, y, and z axes of the previous discussion. 

If we again take A, B, and C to represent intercepts on the respective 

a1, a2, and z axes, normalized intercept reciprocals may be written as

a
A
  

a
B

    
c
C

Now, because the three intercepts noted on the above unit cell are

A = a  B = -a  C = c

values of h, k, and l, may be determined using Equations 3.14a–3.14c, as follows (assuming n � 1):

 h =
na
A

=
(1)(a)

a
= 1

 k =
na
B

=
(1)(a)

-a
= -1

 l =
nc
C

=
(1)(c)

c
= 1

And, finally, the value of i is found using Equation 3.15, as follows:

i = -(h + k) = -[1 + (-1)] = 0

Therefore, the (hkil) indices are (1101).
Notice that the third index is zero (i.e., its reciprocal � �), which means this plane parallels 

the a3 axis. Inspection of the preceding figure shows that this is indeed the case.

a1

a
a

ca2

a3

z

C = c

B = –a A = a

(0001)

(1010)

(1011)

a1

a3

zFigure 3.14 For the hexagonal crystal system, the 

(0001), (1011), and (1010)  planes.

This concludes our discussion on crystallographic points, directions, and planes. 

A review and summary of these topics is found in Table 3.3.
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Table 3.3 Summary of Equations Used to Determine Crystallographic Point, Direction, and Planar Indices

Coordinate Type Index Symbols Representative Equationa Equation Symbols

Point q r s qa � lattice position —

  referenced to x axis

Direction

 Non-hexagonal [uyw], [UVW] u = nax2 - x1

a
b  

x1 � tail coordinate—x axis

   
x2 � head coordinate—x axis

 
Hexagonal [uytw] u = 3naa�1 - a�1

a
b  a�1 = head coordinate—a1 axis

   a�1 = tail coordinate—a1 axis

  u =
1
3

(2U - V) —

Plane

 Non-hexagonal (hkl) h =
na
A

 A � plane intercept—x axis

 Hexagonal (hkil) i = -(h + k) —

aIn these equations a and n denote, respectively, the x-axis lattice parameter, and a reduction-to-integer parameter.

The two previous sections discussed the equivalency of nonparallel crystallographic 

directions and planes. Directional equivalency is related to linear density in the sense 

that, for a particular material, equivalent directions have identical linear densities. The 

corresponding parameter for crystallographic planes is planar density, and planes having 

the same planar density values are also equivalent.

Linear density (LD) is defined as the number of atoms per unit length whose cent-

ers lie on the direction vector for a specific crystallographic direction; that is,

 LD =
number of atoms centered on direction vector

length of direction vector
 (3.16)

The units of linear density are reciprocal length (e.g., nm�1, m�1).

For example, let us determine the linear density of the [110] direction for the FCC 

crystal structure. An FCC unit cell (reduced sphere) and the [110] direction therein are 

shown in Figure 3.15a. Represented in Figure 3.15b are the five atoms that lie on the bot-

tom face of this unit cell; here, the [110] direction vector passes from the center of atom 

X, through atom Y, and finally to the center of atom Z. With regard to the numbers of 

atoms, it is necessary to take into account the sharing of atoms with adjacent unit cells 

(as discussed in Section 3.4 relative to atomic packing factor computations). Each of the 

X and Z corner atoms is also shared with one other adjacent unit cell along this [110] 

direction (i.e., one-half of each of these atoms belongs to the unit cell being considered), 

whereas atom Y lies entirely within the unit cell. Thus, there is an equivalence of two 

atoms along the [110] direction vector in the unit cell. Now, the direction vector length is 

equal to 4R (Figure 3.15b); thus, from Equation 3.16, the [110] linear density for FCC is

 LD110 =
2 atoms

4R
=

1
2R

 (3.17)

3.11 LINEAR AND PLANAR DENSITIES
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In an analogous manner, planar density (PD) is taken as the number of atoms per 

unit area that are centered on a particular crystallographic plane, or

 PD =
number of atoms centered on a plane

area of plane
 (3.18)

The units for planar density are reciprocal area (e.g., nm�2, m�2).

For example, consider the section of a (110) plane within an FCC unit cell as rep-

resented in Figures 3.12a and 3.12b. Although six atoms have centers that lie on this 

plane (Figure 3.12b), only one-quarter of each of atoms A, C, D, and F and one-half of 

atoms B and E, for a total equivalence of just 2 atoms, are on that plane. Furthermore, 

the area of this rectangular section is equal to the product of its length and width. From 

Figure 3.12b, the length (horizontal dimension) is equal to 4R, whereas the width (verti-

cal dimension) is equal to 2R12 because it corresponds to the FCC unit cell edge length 

(Equation 3.1). Thus, the area of this planar region is (4R)(2R12) = 8R212, and the 

planar density is determined as follows:

 PD110 =
2 atoms

8R212
=

1

4R212
 (3.19)

Linear and planar densities are important considerations relative to the process of slip—

that is, the mechanism by which metals plastically deform (Section 7.4). Slip occurs on 

the most densely packed crystallographic planes and, in those planes, along directions 

having the greatest atomic packing.

Figure 3.15 (a) Reduced-sphere FCC unit cell 

with the [110] direction indicated. (b) The bottom 

face-plane of the FCC unit cell in (a) on which is 

shown the atomic spacing in the [110] direction, 

through atoms labeled X, Y, and Z.

(a)

Z[110]

Z
Y

Y

X

X

(b)

R

You may remember from the discussion on metallic crystal structures (Section 3.4) that 

both face-centered cubic and hexagonal close-packed crystal structures have atomic 

packing factors of 0.74, which is the most efficient packing of equal-size spheres or 

atoms. In addition to unit cell representations, these two crystal structures may be de-

scribed in terms of close-packed planes of atoms (i.e., planes having a maximum atom or 

sphere-packing density); a portion of one such plane is illustrated in Figure 3.16a. Both 

crystal structures may be generated by the stacking of these close-packed planes on top 

of one another; the difference between the two structures lies in the stacking sequence.

Let the centers of all the atoms in one close-packed plane be labeled A. Associated 

with this plane are two sets of equivalent triangular depressions formed by three adja-

cent atoms, into which the next close-packed plane of atoms may rest. Those having the 

triangle vertex pointing up are arbitrarily designated as B positions, whereas the remain-

ing depressions are those with the down vertices, which are marked C in Figure 3.16a.

   : VMSE
Close-Packed 

Structures (Metals)

3.12 CLOSE-PACKED CRYSTAL STRUCTURES
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A second close-packed plane may be positioned with the centers of its atoms over 

either B or C sites; at this point, both are equivalent. Suppose that the B positions are ar-

bitrarily chosen; the stacking sequence is termed AB, which is illustrated in Figure 3.16b. 

The real distinction between FCC and HCP lies in where the third close-packed layer is 

positioned. For HCP, the centers of this layer are aligned directly above the original A 

positions. This stacking sequence, ABABAB . . . , is repeated over and over. Of course, 

the ACACAC . . . arrangement would be equivalent. These close-packed planes for HCP 

are (0001)-type planes, and the correspondence between this and the unit cell representa-

tion is shown in Figure 3.17.

For the face-centered crystal structure, the centers of the third plane are situated 

over the C sites of the first plane (Figure 3.18a). This yields an ABCABCABC . . . 
stacking sequence; that is, the atomic alignment repeats every third plane. It is more 

difficult to correlate the stacking of close-packed planes to the FCC unit cell. However, 

this relationship is demonstrated in Figure 3.18b. These planes are of the (111) type; an 

FCC unit cell is outlined on the upper left-hand front face of Figure 3.18b to provide 

perspective. The significance of these FCC and HCP close-packed planes will become 

apparent in Chapter 7.

The concepts detailed in the previous four sections also relate to crystalline ce-

ramic and polymeric materials, which are discussed in Chapters 12 and 14. We may 

Figure 3.16 (a) A portion of a close-packed plane of atoms; A, B, and C positions are indicated. (b) The AB 

stacking sequence for close-packed atomic planes.
(Adapted from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. I, Structure, p. 50. Copy-

right © 1964 by John Wiley & Sons, New York.)

C C C C C
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(a)
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Figure 3.17 Close-packed plane stacking 

sequence for the hexagonal close-packed 

structure.
(Adapted from W. G. Moffatt, G. W. Pearsall, and 

J. Wulff, The Structure and Properties of Materials, 

Vol. I, Structure, p. 51. Copyright © 1964 by John 

Wiley & Sons, New York.)
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Crystalline and Noncrystalline Materials

specify crystallographic planes and directions in terms of directional and Miller indi-

ces; furthermore, on occasion it is important to ascertain the atomic and ionic arrange-

ments of particular crystallographic planes. Also, the crystal structures of a number 

of ceramic materials may be generated by the stacking of close-packed planes of ions 

(Section 12.2).

(a) (b)

B

A

C

B

A

C

B

A

Figure 3.18 (a) Close-packed 

stacking sequence for the 

face-centered cubic structure. 

(b) A corner has been removed 

to show the relation between the 

stacking of close-packed planes 

of atoms and the FCC crystal 

structure; the heavy triangle 

outlines a (111) plane.
[Figure (b) from W. G. Moffatt, 

G. W. Pearsall, and J. Wulff, The 
Structure and Properties of 
Materials, Vol. I, Structure, p. 51. 

Copyright © 1964 by John Wiley & 

Sons, New York.]

For a crystalline solid, when the periodic and repeated arrangement of atoms is perfect 

or extends throughout the entirety of the specimen without interruption, the result is 

a single crystal. All unit cells interlock in the same way and have the same orientation. 

Single crystals exist in nature, but they can also be produced artificially. They are ordi-

narily difficult to grow because the environment must be carefully controlled.

If the extremities of a single crystal are permitted to grow without any external con-

straint, the crystal assumes a regular geometric shape having flat faces, as with some of 

the gemstones; the shape is indicative of the crystal structure. A garnet single crystal is 

shown in Figure 3.19. Within the past few years, single crystals have become extremely 

important in many modern technologies, in particular electronic microcircuits, which 

employ single crystals of silicon and other semiconductors.

single crystal

3.13 SINGLE CRYSTALS

Most crystalline solids are composed of a collection of many small crystals or grains; 
such materials are termed polycrystalline. Various stages in the solidification of a 

polycrystalline specimen are represented schematically in Figure 3.20. Initially, small 

grain

polycrystalline

3.14 POLYCRYSTALLINE MATERIALS
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(a) (b)

(c) (d)

Figure 3.20 Schematic diagrams of the various stages in the solidification of a polycrystalline material; the square 

grids depict unit cells. (a) Small crystallite nuclei. (b) Growth of the crystallites; the obstruction of some grains that 

are adjacent to one another is also shown. (c) Upon completion of solidification, grains having irregular shapes have 

formed. (d) The grain structure as it would appear under the microscope; dark lines are the grain boundaries.
(Adapted from W. Rosenhain, An Introduction to the Study of Physical Metallurgy, 2nd edition, Constable & Company Ltd., 

London, 1915.)

Figure 3.19 A garnet single crystal that was found in Tongbei, Fujian Province, China.
(Photograph courtesy of Irocks.com, Megan Foreman photo.)
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crystals or nuclei form at various positions. These have random crystallographic 

orientations, as indicated by the square grids. The small grains grow by the succes-

sive addition from the surrounding liquid of atoms to the structure of each. The 

extremities of adjacent grains impinge on one another as the solidification process 

approaches completion. As indicated in Figure 3.20, the crystallographic orientation 

varies from grain to grain. Also, there exists some atomic mismatch within the region 

where two grains meet; this area, called a grain boundary, is discussed in more detail 

in Section 4.6.

grain boundary

The physical properties of single crystals of some substances depend on the crystallo-

graphic direction in which measurements are taken. For example, the elastic modulus, 

the electrical conductivity, and the index of refraction may have different values in the 

[100] and [111] directions. This directionality of properties is termed anisotropy, and it 

is associated with the variance of atomic or ionic spacing with crystallographic direction. 

Substances in which measured properties are independent of the direction of measure-

ment are isotropic. The extent and magnitude of anisotropic effects in crystalline ma-

terials are functions of the symmetry of the crystal structure; the degree of anisotropy 

increases with decreasing structural symmetry—triclinic structures normally are highly 

anisotropic. The modulus of elasticity values at [100], [110], and [111] orientations for 

several metals are presented in Table 3.4.

For many polycrystalline materials, the crystallographic orientations of the indi-

vidual grains are totally random. Under these circumstances, even though each grain 

may be anisotropic, a specimen composed of the grain aggregate behaves isotropically. 

Also, the magnitude of a measured property represents some average of the directional 

values. Sometimes the grains in polycrystalline materials have a preferential crystallo-

graphic orientation, in which case the material is said to have a “texture.”

The magnetic properties of some iron alloys used in transformer cores are 

anisotropic—that is, grains (or single crystals) magnetize in a �100�-type direction 

easier than any other crystallographic direction. Energy losses in transformer cores 

are minimized by utilizing polycrystalline sheets of these alloys into which have been 

introduced a magnetic texture: most of the grains in each sheet have a �100�-type 

crystallographic direction that is aligned (or almost aligned) in the same direction, 

which is oriented parallel to the direction of the applied magnetic field. Magnetic 

textures for iron alloys are discussed in detail in the Material of Importance box in 

Chapter 20 following Section 20.9.

anisotropy

isotropic

3.15 ANISOTROPY

Table 3.4

Modulus of Elasticity 
Values for Several 
Metals at Various 
Crystallographic 
Orientations

 Modulus of Elasticity (GPa)

Metal [100] [110] [111]

Aluminum 63.7 72.6 76.1

Copper 66.7 130.3 191.1

Iron 125.0 210.5 272.7

Tungsten 384.6 384.6 384.6

Source: R. W. Hertzberg, Deformation and Fracture 
Mechanics of Engineering Materials, 3rd edition. 

Copyright © 1989 by John Wiley & Sons, New York. 

Reprinted by permission of John Wiley & Sons, Inc.
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Historically, much of our understanding regarding the atomic and molecular arrange-

ments in solids has resulted from x-ray diffraction investigations; furthermore, x-rays are 

still very important in developing new materials. We now give a brief overview of the 

diffraction phenomenon and how, using x-rays, atomic interplanar distances and crystal 

structures are deduced.

The Diffraction Phenomenon

Diffraction occurs when a wave encounters a series of regularly spaced obstacles that 

(1) are capable of scattering the wave, and (2) have spacings that are comparable in 

magnitude to the wavelength. Furthermore, diffraction is a consequence of specific 

phase relationships established between two or more waves that have been scattered 

by the obstacles.

Consider waves 1 and 2 in Figure 3.21a, which have the same wavelength (l) 

and are in phase at point O–O�. Now let us suppose that both waves are scattered 

3.16  X-RAY DIFFRACTION: DETERMINATION 
OF CRYSTAL STRUCTURES
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Figure 3.21 (a) Demonstration of how two waves (labeled 1 and 2) that have the same wavelength l and remain 

in phase after a scattering event (waves 1� and 2�) constructively interfere with one another. The amplitudes of the 

scattered waves add together in the resultant wave. (b) Demonstration of how two waves (labeled 3 and 4) that have 

the same wavelength and become out of phase after a scattering event (waves 3� and 4�) destructively interfere with 

one another. The amplitudes of the two scattered waves cancel one another.
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in such a way that they traverse different paths. The phase relationship between the 

scattered waves, which depends upon the difference in path length, is important. 

One possibility results when this path length difference is an integral number of 

wavelengths. As noted in Figure 3.21a, these scattered waves (now labeled 1� and 2�) 

are still in phase. They are said to mutually reinforce (or constructively interfere 

with) one another; when amplitudes are added, the wave shown on the right side of 

the figure results. This is a manifestation of diffraction, and we refer to a diffracted 
beam as one composed of a large number of scattered waves that mutually reinforce 

one another.

Other phase relationships are possible between scattered waves that will not 

lead to this mutual reinforcement. The other extreme is that demonstrated in 

Figure 3.21b, in which the path length difference after scattering is some integral 

number of half-wavelengths. The scattered waves are out of phase—that is, corre-

sponding amplitudes cancel or annul one another, or destructively interfere (i.e., the 

resultant wave has zero amplitude), as indicated on the right side of the figure. Of 

course, phase relationships intermediate between these two extremes exist, resulting 

in only partial reinforcement.

X-Ray Diffraction and Bragg’s Law

X-rays are a form of electromagnetic radiation that have high energies and short 

wavelengths—wavelengths on the order of the atomic spacings for solids. When a beam 

of x-rays impinges on a solid material, a portion of this beam is scattered in all direc-

tions by the electrons associated with each atom or ion that lies within the beam’s path. 

Let us now examine the necessary conditions for diffraction of x-rays by a periodic 

arrangement of atoms.

Consider the two parallel planes of atoms A–A� and B–B� in Figure 3.22, which 

have the same h, k, and l Miller indices and are separated by the interplanar spacing dhkl. 

Now assume that a parallel, monochromatic, and coherent (in-phase) beam of x-rays 

of wavelength l is incident on these two planes at an angle u. Two rays in this beam, 

labeled 1 and 2, are scattered by atoms P and Q. Constructive interference of the scat-

tered rays 1� and 2� occurs also at an angle u to the planes if the path length difference 

between 1–P–1� and 2–Q–2� (i.e., SQ + QT) is equal to a whole number, n, of wave-

lengths—that is, the condition for diffraction is

 nl = SQ + QT (3.20)

diffraction

� �
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Incident
beam
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Figure 3.22 Diffraction of 

x-rays by planes of atoms 

(A–A� and B–B�).
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or

 nl = dhkl sin u + dhkl sin u

  = 2dhkl sin u  (3.21)

Equation 3.21 is known as Bragg’s law; n is the order of reflection, which may be 

any integer (1, 2, 3, . . .) consistent with sin u not exceeding unity. Thus, we have a simple 

expression relating the x-ray wavelength and interatomic spacing to the angle of the dif-

fracted beam. If Bragg’s law is not satisfied, then the interference will be nonconstruc-

tive so as to yield a very low-intensity diffracted beam.

The magnitude of the distance between two adjacent and parallel planes of atoms 

(i.e., the interplanar spacing dhkl) is a function of the Miller indices (h, k, and l) as well 

as the lattice parameter(s). For example, for crystal structures that have cubic symmetry,

 dhkl =
a

2h2
+ k2

+ l2
 (3.22)

in which a is the lattice parameter (unit cell edge length). Relationships similar to 

Equation 3.22, but more complex, exist for the other six crystal systems noted in Table 3.2.

Bragg’s law, Equation 3.21, is a necessary but not sufficient condition for diffrac-

tion by real crystals. It specifies when diffraction will occur for unit cells having atoms 

positioned only at cell corners. However, atoms situated at other sites (e.g., face and in-

terior unit cell positions as with FCC and BCC) act as extra scattering centers, which can 

produce out-of-phase scattering at certain Bragg angles. The net result is the absence of 

some diffracted beams that, according to Equation 3.21, should be present. Specific sets 

of crystallographic planes that do not give rise to diffracted beams depend on crystal 

structure. For the BCC crystal structure, h � k � l must be even if diffraction is to occur, 

whereas for FCC, h, k, and l must all be either odd or even; diffracted beams for all sets 

of crystallographic planes are present for the simple cubic crystal structure (Figure 3.3). 

These restrictions, called reflection rules, are summarized in Table 3.5.9

Bragg’s law—
relationship among 
x-ray wavelength, 
interatomic spacing, 
and angle of 
diffraction for 
constructive 
interference

Bragg’s law

Interplanar spacing 
for a plane having 
indices h, k, and l

9Zero is considered to be an even integer.

Table 3.5

X-Ray Diffraction 
Reflection Rules and 
Reflection Indices 
for Body-Centered 
Cubic, Face-Centered 
Cubic, and Simple 
Cubic Crystal 
Structures

  Reflection Indices
Crystal Structure Reflections Present for First Six Planes

BCC (h � k � l) even 110, 200, 211, 

   220, 310, 222

FCC h, k, and l either 111, 200, 220, 

  all odd or all even 311, 222, 400

Simple cubic All 100, 110, 111, 

   200, 210, 211

Concept Check 3.3 For cubic crystals, as values of the planar indices h, k, and l increase, 

does the distance between adjacent and parallel planes (i.e., the interplanar spacing) increase 

or decrease? Why?

[The answer may be found at www.wiley.com/college/callister (Student Companion Site).]
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Diffraction Techniques

One common diffraction technique employs a powdered or polycrystalline specimen 

consisting of many fine and randomly oriented particles that are exposed to monochro-

matic x-radiation. Each powder particle (or grain) is a crystal, and having a large number 

of them with random orientations ensures that some particles are properly oriented such 

that every possible set of crystallographic planes will be available for diffraction.

The diffractometer is an apparatus used to determine the angles at which diffraction 

occurs for powdered specimens; its features are represented schematically in Figure 3.23. 

A specimen S in the form of a flat plate is supported so that rotations about the axis 

labeled O are possible; this axis is perpendicular to the plane of the page. The mono-

chromatic x-ray beam is generated at point T, and the intensities of diffracted beams are 

detected with a counter labeled C in the figure. The specimen, x-ray source, and counter 

are coplanar.

The counter is mounted on a movable carriage that may also be rotated about the 

O axis; its angular position in terms of 2u is marked on a graduated scale.10 Carriage and 

specimen are mechanically coupled such that a rotation of the specimen through u is 

accompanied by a 2u rotation of the counter; this ensures that the incident and reflection 

angles are maintained equal to one another (Figure 3.23). Collimators are incorporated 

within the beam path to produce a well-defined and focused beam. Utilization of a filter 

provides a near-monochromatic beam.

As the counter moves at constant angular velocity, a recorder automatically plots 

the diffracted beam intensity (monitored by the counter) as a function of 2u; 2u is 

termed the diffraction angle, which is measured experimentally. Figure 3.24 shows a dif-

fraction pattern for a powdered specimen of lead. The high-intensity peaks result when 

the Bragg diffraction condition is satisfied by some set of crystallographic planes. These 

peaks are plane-indexed in the figure.

Other powder techniques have been devised in which diffracted beam intensity and 

position are recorded on a photographic film instead of being measured by a counter.

Figure 3.23 Schematic diagram 

of an x-ray diffractometer; T � x-ray 

source, S � specimen, C � detector, 

and O � the axis around which the 

specimen and detector rotate.
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10Note that the symbol u has been used in two different contexts for this discussion. Here, u represents the angular 

locations of both x-ray source and counter relative to the specimen surface. Previously (e.g., Equation 3.21), it 

denoted the angle at which the Bragg criterion for diffraction is satisfied.
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One of the primary uses of x-ray diffractometry is for the determination of crystal 

structure. The unit cell size and geometry may be resolved from the angular positions 

of the diffraction peaks, whereas the arrangement of atoms within the unit cell is associ-

ated with the relative intensities of these peaks.

X-rays, as well as electron and neutron beams, are also used in other types of mate-

rial investigations. For example, crystallographic orientations of single crystals are possi-

ble using x-ray diffraction (or Laue) photographs. The chapter-opening photograph (a) 

was generated using an incident x-ray beam that was directed on a magnesium crystal; 

each spot (with the exception of the darkest one near the center) resulted from an x-ray 

beam that was diffracted by a specific set of crystallographic planes. Other uses of x-rays 

include qualitative and quantitative chemical identifications and the determination of 

residual stresses and crystal size.

Figure 3.24
Diffraction pattern 

for powdered lead. 
(Courtesy of Wesley 

L. Holman.)

EXAMPLE PROBLEM 3.14

Interplanar Spacing and Diffraction Angle Computations

For BCC iron, compute (a) the interplanar spacing and (b) the diffraction angle for the (220) 

set of planes. The lattice parameter for Fe is 0.2866 nm. Assume that monochromatic radiation 

having a wavelength of 0.1790 nm is used, and the order of reflection is 1.

Solution

(a)  The value of the interplanar spacing dhkl is determined using Equation 3.22, with a � 0.2866 nm, 

and h � 2, k � 2, and l � 0 because we are considering the (220) planes. Therefore,

 dhkl =
a

2h2
+ k2

+ l2

 =
0.2866 nm

2(2)2
+ (2)2

+ (0)2
= 0.1013 nm

(b)  The value of u may now be computed using Equation 3.21, with n � 1 because this is a first-

order reflection:

  sin u =
nl

2dhkl
=

(1)(0.1790 nm)

(2)(0.1013 nm)
= 0.884

  u =  sin -1(0.884) = 62.13�

The diffraction angle is 2u, or

2u = (2)(62.13�) = 124.26�
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EXAMPLE PROBLEM 3.15

Interplanar Spacing and Lattice Parameter Computations for Lead

Figure 3.24 shows an x-ray diffraction pattern for lead taken using a diffractometer and mono-

chromatic x-radiation having a wavelength of 0.1542 nm; each diffraction peak on the pattern 

has been indexed. Compute the interplanar spacing for each set of planes indexed; also, de-

termine the lattice parameter of Pb for each of the peaks. For all peaks, assume the order of 

diffraction is 1.

Solution

For each peak, in order to compute the interplanar spacing and the lattice parameter we must 

employ Equations 3.21 and 3.22, respectively. The first peak of Figure 3.24, which results from 

diffraction by the (111) set of planes, occurs at 2u � 31.3�; the corresponding interplanar spacing 

for this set of planes, using Equation 3.21, is equal to

d111 =
nl

2 sin u
=

(1)(0.1542 nm)

(2) c sin a31.3�

2
b d

= 0.2858 nm

And, from Equation 3.22, the lattice parameter a is determined as

a = dhkl2h2
+ k2

+ l2

= d1112(1)2
+ (1)2

+ (1)2

= (0.2858 nm)13 = 0.4950 nm

Similar computations are made for the next four peaks; the results are tabulated below:

Peak Index 2U dhkl(nm) a(nm)

 200 36.6 0.2455 0.4910

 220 52.6 0.1740 0.4921

 311 62.5 0.1486 0.4929

 222 65.5 0.1425 0.4936

It has been mentioned that noncrystalline solids lack a systematic and regular arrange-

ment of atoms over relatively large atomic distances. Sometimes such materials are also 

called amorphous (meaning literally “without form”), or supercooled liquids, inasmuch 

as their atomic structure resembles that of a liquid.

An amorphous condition may be illustrated by comparison of the crystalline and 

noncrystalline structures of the ceramic compound silicon dioxide (SiO2), which may ex-

ist in both states. Figures 3.25a and 3.25b present two-dimensional schematic diagrams 

for both structures of SiO2. Even though each silicon ion bonds to three oxygen ions 

for both states, beyond this, the structure is much more disordered and irregular for the 

noncrystalline structure.

Whether a crystalline or an amorphous solid forms depends on the ease with which 

a random atomic structure in the liquid can transform to an ordered state during so-

lidification. Amorphous materials, therefore, are characterized by atomic or molecular 

structures that are relatively complex and become ordered only with some difficulty. 

noncrystalline

amorphous

3.17 NONCRYSTALLINE SOLIDS
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Figure 3.25 Two-dimensional schemes of the structure of (a) crystalline silicon dioxide and (b) noncrystalline 

silicon dioxide.

(a) (b)

Silicon atom
Oxygen atom

Furthermore, rapidly cooling through the freezing temperature favors the formation of 

a noncrystalline solid, because little time is allowed for the ordering process.

Metals normally form crystalline solids, but some ceramic materials are crystalline, 

whereas others—the inorganic glasses—are amorphous. Polymers may be completely 

noncrystalline or semicrystalline consisting of varying degrees of crystallinity. More 

about the structure and properties of amorphous ceramics and polymers is contained in 

Chapters 12 and 14.

Concept Check 3.4 Do noncrystalline materials display the phenomenon of allotropy (or 

polymorphism)? Why or why not?

[The answer may be found at www.wiley.com/college/callister (Student Companion Site).]

SUMMARY

• Atoms in crystalline solids are positioned in orderly and repeated patterns that are in 

contrast to the random and disordered atomic distribution found in noncrystalline or 

amorphous materials.

• Crystal structures are specified in terms of parallelepiped unit cells, which are charac-

terized by geometry and atom positions within.

• Most common metals exist in at least one of three relatively simple crystal structures:

Face-centered cubic (FCC), which has a cubic unit cell (Figure 3.1).

Body-centered cubic (BCC), which also has a cubic unit cell (Figure 3.2).

Hexagonal close-packed, which has a unit cell of hexagonal symmetry, [Figure 3.4(a)].

• Unit cell edge length (a) and atomic radius (R) are related according to

Equation 3.1 for face-centered cubic, and

Equation 3.4 for body-centered cubic.

Fundamental 
Concepts

Unit Cells

Metallic Crystal 
Structures
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• Two features of a crystal structure are

Coordination number—the number of nearest-neighbor atoms, and

Atomic packing factor—the fraction of solid sphere volume in the unit cell.

• The theoretical density of a metal (r) is a function of the number of equivalent atoms per 

unit cell, the atomic weight, unit cell volume, and Avogadro’s number (Equation 3.8).

• Polymorphism is when a specific material can have more than one crystal structure. 

Allotropy is polymorphism for elemental solids.

• The concept of a crystal system is used to classify crystal structures on the basis of unit 

cell geometry—that is, unit cell edge lengths and interaxial angles. There are seven 

crystal systems: cubic, tetragonal, hexagonal, orthorhombic, rhombohedral (trigonal), 

monoclinic, and triclinic.

• Crystallographic points, directions, and planes are specified in terms of indexing 

schemes. The basis for the determination of each index is a coordinate axis system 

defined by the unit cell for the particular crystal structure.

The location of a point within a unit cell is specified using coordinates that are 

fractional multiples of the cell edge lengths (Equations 3.9a–3.9c).

Directional indices are computed in terms of differences between vector head 

and tail coordinates (Equations 3.10a–3.10c).

Planar (or Miller) indices are determined from the reciprocals of axial intercepts 

(Equations 3.14a–3.14c).

• For hexagonal unit cells, a four-index scheme for both directions and planes is found 

to be more convenient. Directions may be determined using Equations 3.11a–3.11d 

and 3.12a–3.12d.

• Crystallographic directional and planar equivalencies are related to atomic linear and 

planar densities, respectively.

Linear density (for a specific crystallographic direction) is defined as the number 

of atoms per unit length whose centers lie on the vector for this direction 

(Equation 3.16).

Planar density (for a specific crystallographic plane) is taken as the number of 

atoms per unit area that are centered on the particular plane (Equation 3.18).

• For a given crystal structure, planes having identical atomic packing yet different 

Miller indices belong to the same family.

• Both FCC and HCP crystal structures may be generated by the stacking of close-

packed planes of atoms on top of one another. With this scheme A, B, and C denote 

possible atom positions on a close-packed plane.

The stacking sequence for HCP is ABABAB. . . .
The stacking sequence for FCC is ABCABCABC. . . .

• Close-packed planes for FCC and HCP are �111� and �0001�, respectively.

• Single crystals are materials in which the atomic order extends uninterrupted over 

the entirety of the specimen; under some circumstances, single crystals may have flat 

faces and regular geometric shapes.

• The vast majority of crystalline solids, however, are polycrystalline, being composed 

of many small crystals or grains having different crystallographic orientations.

• A grain boundary is the boundary region separating two grains where there is some 

atomic mismatch.

Density 
Computations

Polymorphism and 
Allotropy

Crystal Systems

Point Coordinates

Crystallographic 
Directions

Crystallographic 
Planes

Linear and Planar 
Densities

Close-Packed 
Crystal Structures

Single Crystals

Polycrystalline 
Materials
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• Anisotropy is the directionality dependence of properties. For isotropic materials, 

properties are independent of the direction of measurement.

• X-ray diffractometry is used for crystal structure and interplanar spacing determina-

tions. A beam of x-rays directed on a crystalline material may experience diffraction 

(constructive interference) as a result of its interaction with a series of parallel atomic 

planes.

• Bragg’s law specifies the condition for diffraction of x-rays—Equation 3.21.

• Noncrystalline solid materials lack a systematic and regular arrangement of atoms or 

ions over relatively large distances (on an atomic scale). Sometimes the term amor-
phous is also used to describe these materials.

Anisotropy

X-Ray Diffraction: 
Determination of 
Crystal Structures

Noncrystalline Solids

Equation Summary

Equation   Page
Number Equation Solving For Number

 3.1 a = 2R12 Unit cell edge length, FCC 54

 3.3 APF =
volume of atoms in a unit cell

total unit cell volume
=

VS

VC
 Atomic packing factor 55

 3.4 a =
4R

13
 Unit cell edge length, BCC 56

 3.8 r =
nA

VCNA
 Theoretical density of a metal 60

 3.9a q =
lattice position referenced to the x axis

a
 Point coordinate referenced 64

   to x axis 

 3.10a u = nax2 - x1

a
b  Direction index referenced 67

   to x axis

 3.11a u =
1
3

(2U - V) Direction index conversion 70

   to hexagonal

 3.12a u = 3naa�1 - a�1

a
b  Hexagonal direction index 71

   referenced to a1 axis 

 3.14a h =
na
A

 Planar (Miller) index referenced 75

   to x axis

 3.16 LD =
number of atoms centered on direction vector

length of direction vector
 Linear density 81

 3.18 PD =
number of atoms centered on a plane

area of plane
 Planar density 82

 
3.21 nl = 2dhkl sin u

 Bragg’s law; wavelength–interplanar 89

   spacing–angle of diffracted beam

 3.22 dhkl =
a

2h2
+ k2

+ l2
 Interplanar spacing for crystals 89

   having cubic symmetry
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Processing/Structure/Properties/Performance Summary

In this chapter, we discussed crystal structure, the body-centered cubic crystal structure, 

and the ability of a metal to experience a change in its crystal structure (polymorphism). 

A knowledge of these concepts helps us understand the transformation of BCC iron 

to martensite (which has another crystal structure) in Chapter 10. This relationship is 

represented by the following concept map:

Symbol Meaning

 a Unit cell edge length for cubic structures; unit cell x-axial length

 a�1 Vector head coordinate, hexagonal

 a�1 Vector tail coordinate, hexagonal

 A Atomic weight

 A Planar intercept on x axis

 dhkl Interplanar spacing for crystallographic planes having indices h, k, and l

 n Order of reflection for x-ray diffraction

 n Number of atoms associated with a unit cell

 n Normalization factor—reduction of directional/planar indices to integers

 NA Avogadro’s number (6.022 	 1023 atoms/mol)

 R Atomic radius

 VC Unit cell volume

 x1 Vector tail coordinate

 x2 Vector head coordinate

 l X-ray wavelength

 r Density; theoretical density

List of Symbols

Iron–Carbon Alloys
(Steels) (Structure)

Crystal structure
for Fe (BCC)
(Chapter 3)

Crystal structure
for martensite
(Chapter 10)

c

a
a

Also discussed was the notion of a noncrystalline material. Glass–ceramics 

(Chapter 13) are formed as noncrystalline silica glasses (Chapter 12), which are then 



Questions and Problems  •  97

Glass–Ceramics
 (Structure)

Structure of
  noncrystalline solids
  (Chapter 3)

Structure of
  silica glasses
  (Chapter 12)

Structure of glass–ceramics
  (fine-grained,
  polycrystalline)
  (Chapter 13)

0.5 
m0.5 
m

Important Terms and Concepts

allotropy

amorphous

anisotropy

atomic packing factor (APF)

body-centered cubic (BCC)

Bragg’s law

coordination number

crystalline

crystal structure

crystal system

diffraction

face-centered cubic (FCC)

grain

grain boundary

hexagonal close-packed (HCP)

isotropic

lattice

lattice parameters

Miller indices

noncrystalline

polycrystalline

polymorphism

single crystal

unit cell
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QUESTIONS AND PROBLEMS

Fundamental Concepts
3.1 What is the difference between atomic structure 

and crystal structure?

Unit Cells

Metallic Crystal Structures
3.2 If the atomic radius of lead is 0.175 nm, calculate 

the volume of its unit cell in cubic meters.

3.3 Show for the body-centered cubic crystal struc-
ture that the unit cell edge length a and the atomic 
radius R are related through a = 4R>13.

3.4 For the HCP crystal structure, show that the ideal 
c/a ratio is 1.633.

3.5 Show that the atomic packing factor for BCC is 
0.68.

3.6 Show that the atomic packing factor for HCP is 0.74.

heat-treated so as to become crystalline in nature. The following concept map notes 

this relationship:

 Problem available (at instructor’s discretion) in WileyPLUS
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 Atomic   Atomic
 Weight Density Radius
Alloy (g/mol) (g/cm3) (nm)

 A 43.1 6.40 0.122

 B 184.4 12.30 0.146

 C 91.6 9.60 0.137

3.17 The unit cell for uranium (U) has orthorhombic 
symmetry, with a, b, and c lattice parameters of 
0.286, 0.587, and 0.495 nm, respectively. If its den-
sity, atomic weight, and atomic radius are 19.05 
g/cm3, 238.03 g/mol, and 0.1385 nm, respectively, 
compute the atomic packing factor.

3.18 Indium (In) has a tetragonal unit cell for which 
the a and c lattice parameters are 0.459 and 0.495 
nm, respectively.

 (a) If the atomic packing factor and atomic radius 
are 0.693 and 0.1625 nm, respectively, determine 
the number of atoms in each unit cell.

 (b) The atomic weight of In is 114.82 g/mol; com-
pute its theoretical density.

3.19 Beryllium (Be) has an HCP unit cell for which 
the ratio of the lattice parameters c/a is 1.568. If 
the radius of the Be atom is 0.1143 nm, (a) deter-
mine the unit cell volume, and (b) calculate the 
theoretical density of Be and compare it with the 
literature value.

3.20 Magnesium (Mg) has an HCP crystal structure, 
a c/a ratio of 1.624, and a density of 1.74 g/cm3. 
Compute the atomic radius for Mg.

3.21 Cobalt (Co) has an HCP crystal structure, an 
atomic radius of 0.1253 nm, and a c/a ratio of 
1.623. Compute the volume of the unit cell for Co.

Polymorphism and Allotropy
3.22 Iron (Fe) undergoes an allotropic transformation 

at 912�C: upon heating from a BCC (a phase) to an 
FCC (g phase). Accompanying this transformation 

is a change in the atomic radius of Fe—from RBCC � 

0.12584 nm to RFCC � 0.12894 nm—and, in addition, 
a change in density (and volume). Compute the per-
centage volume change associated with this reaction. 
Does the volume increase or decrease?

Crystal Systems
3.23 The accompanying figure shows a unit cell for a 

hypothetical metal.

 (a) To which crystal system does this unit cell 
belong?

 (b) What would this crystal structure be called?

Density Computations
3.7 Molybdenum (Mo) has a BCC crystal structure, 

an atomic radius of 0.1363 nm, and an atomic 
weight of 95.94 g/mol. Compute and compare its 
theoretical density with the experimental value 
found inside the front cover of the book.

3.8 Strontium (Sr) has an FCC crystal structure, an 
atomic radius of 0.215 nm, and an atomic weight 
of 87.62 g/mol. Calculate the theoretical density 
for Sr.

3.9 Calculate the radius of a palladium (Pd) atom, 
given that Pd has an FCC crystal structure, a 
 density of 12.0 g/cm3, and an atomic weight of 
106.4 g/mol.

3.10 Calculate the radius of a tantalum (Ta) atom, 
given that Ta has a BCC crystal structure, a 
 density of 16.6 g/cm3, and an atomic weight of 
180.9 g/mol.

3.11 A hypothetical metal has the simple cubic crystal 
structure shown in Figure 3.3. If its atomic weight 
is 74.5 g/mol and the atomic radius is 0.145 nm, 
compute its density.

3.12 Titanium (Ti) has an HCP crystal structure and a 
density of 4.51 g/cm3.

 (a) What is the volume of its unit cell in cubic 
meters?

 (b) If the c/a ratio is 1.58, compute the values of c 
and a.

3.13 Magnesium (Mg) has an HCP crystal structure 
and a density of 1.74 g/cm3.

 (a) What is the volume of its unit cell in cubic 
centimeters?

 (b) If the c/a ratio is 1.624, compute the values of 
c and a.

3.14 Using atomic weight, crystal structure, and 
atomic radius data tabulated inside the front 
cover of the book, compute the theoretical densi-
ties of aluminum (Al), nickel (Ni), magnesium 
(Mg), and tungsten (W), and then compare these 
values with the measured densities listed in this 
same table. The c/a ratio for Mg is 1.624.

3.15 Niobium (Nb) has an atomic radius of 0.1430 nm 
and a density of 8.57 g/cm3. Determine whether it 
has an FCC or a BCC crystal structure.

3.16 The atomic weight, density, and atomic radius 
for three hypothetical alloys are listed in the fol-
lowing table. For each, determine whether its 
crystal structure is FCC, BCC, or simple cubic and 
then justify your determination.
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 (c) Calculate the density of the material, given 
that its atomic weight is 141 g/mol.

Crystallographic Directions
3.31 Draw an orthorhombic unit cell, and within that 

cell, a [2 1 1] direction.

3.32 Sketch a monoclinic unit cell, and within that 
cell, a [1 0 1] direction.

3.33 What are the indices for the directions indicated 
by the two vectors in the following sketch?

+z

+y
O

+x

0.45 nm

0.35 nm

0.35 nm

90°

90°

90°

3.24 Sketch a unit cell for the face-centered orthorhom-
bic crystal structure.

Point Coordinates
3.25 List the point coordinates for all atoms that are 

associated with the FCC unit cell (Figure 3.1).

3.26 List the point coordinates of both the sodium 
(Na) and chlorine (Cl) ions for a unit cell of the 
NaCl crystal structure (Figure 12.2).

3.27 List the point coordinates of both the zinc (Zn) 
and sulfur (S) atoms for a unit cell of the zinc 
blende (ZnS) crystal structure (Figure 12.4).

3.28 Sketch a tetragonal unit cell, and within that 
cell indicate locations of the 1 12 12 and 1

2 14 12 point 
coordinates.

3.29 Sketch an orthorhombic unit cell, and within that 
cell indicate locations of the 0 12 1 and 1

3 14 14 point 
coordinates.

3.30 Using the Molecule Definition Utility found in the 
“Metallic Crystal Structures and Crystallography” 
and “Ceramic Crystal Structures” modules of VMSE 
located on the book’s web site [www.wiley.com/
college/callister (Student Companion Site)], generate 
(and print out) a three-dimensional unit cell for b tin 
(Sn), given the following: (1) the unit cell is tetrago-

nal with a � 0.583 nm and c � 0.318 nm, and (2) Sn 
atoms are located at the following point coordinates:

 0 0 0 0 1 1

 1 0 0 1
2 0 3

4

 1 1 0 1
2 1 3

4

 0 1 0 1 1
2 1

4

 0 0 1 0 1
2 1

4

 1 0 1 1
2 1

2 1
2

 1 1 1

0.5 nm

+y

0.4 nm

+z

0.3 nm

+x

Direction 1

Direction 2

3.34 Within a cubic unit cell, sketch the following 
directions:

 (a) [101] (e) [111]

 (b) [211] (f) [212]

 (c) [102] (g) [312]

 (d) [313] (h) [301]

3.35 Determine the indices for the directions shown 
in the following cubic unit cell:

A

1
2

1
2

B

C

D

1
2

1
2

,

+x

+y

+z
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3.42 Sketch the [0110] and [2 2 4 3] directions in a hex-
agonal unit cell.

3.43 Using Equations 3.11a–3.11d, derive expressions 
for each of the three U, V, and W indices in terms 
of the four u, y, t, and w indices.

Crystallographic Planes
3.44 (a) Draw an orthorhombic unit cell, and within 

that cell, a (021) plane.

  (b) Draw a monoclinic unit cell, and within that 
cell, a (200) plane.

3.45 What are the indices for the two planes drawn in 
the following sketch?

3.36 Determine the indices for the directions shown 
in the following cubic unit cell:

3.37 (a) What are the direction indices for a vector 
that passes from point 14 0 12 to point 34 12 12 in a cubic 
unit cell?

  (b) Repeat part (a) for a monoclinic unit cell.

3.38 (a) What are the direction indices for a vec-
tor that passes from point 1

3 12 0 to point 2
3 34 12 in a 

tetragonal unit cell?

  (b) Repeat part (a) for a rhombohedral unit cell.

3.39 For tetragonal crystals, cite the indices of direc-
tions that are equivalent to each of the following 
directions:

 (a) [011]

 (b) [100]

3.40 Convert the [110] and [001] directions into the 
four-index Miller–Bravais scheme for hexagonal 
unit cells.

3.41 Determine the indices for the directions shown 
in the following hexagonal unit cells:

a1

a2

a3

z

(a)
a1

a2

a3

z

(b)

a1

a2

a3

z

(c)
a1

a2

a3

z

(d)

3.46 Sketch within a cubic unit cell the following 
planes:

 (a) (101) (e) (111)

 (b) (211) (f) (212)

 (c) (012) (g) (312)

 (d) (313) (h) (301)
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3.47 Determine the Miller indices for the planes 
shown in the following unit cell:

3.50 Cite the indices of the direction that results from 
the intersection of each of the following pairs of 
planes within a cubic crystal:

 (a) The (110) and (111) planes

 (b) The (110) and (110) planes

 (c) The (111) and (001) planes

3.51 Sketch the atomic packing of the following:

 (a) The (100) plane for the FCC crystal structure

 (b) The (111) plane for the BCC crystal structure 
(similar to Figures 3.12b and 3.13b).

3.52 Consider the reduced-sphere unit cell shown in 
Problem 3.23, having an origin of the coordinate 
system positioned at the atom labeled O. For the 
following sets of planes, determine which are 
equivalent:

 (a) (100), (010), and (001)

 (b) (110), (101), (011), and (101)

 (c) (111), (111), (111), and (111)

3.53 The accompanying figure shows three different 
crystallographic planes for a unit cell of a hypo-
thetical metal. The circles represent atoms.

3.48 Determine the Miller indices for the planes 
shown in the following unit cell:

3.49 Determine the Miller indices for the planes 
shown in the following unit cell:

 (a) To what crystal system does the unit cell be-
long?

 (b) What would this crystal structure be called?

3.54 The accompanying figure shows three different 
crystallographic planes for a unit cell of some 
hypothetical metal. The circles represent atoms.

 (a) To what crystal system does the unit cell belong?

 (b) What would this crystal structure be called?

 (c) If the density of this metal is 18.91 g/cm3, de-
termine its atomic weight.



102  •  Chapter 3  /  The Structure of Crystalline Solids

3.55 Convert the (111) and (012) planes into the four-
index Miller–Bravais scheme for hexagonal unit 
cells.

3.56 Determine the indices for the planes shown in 
the following hexagonal unit cells:

3.61 (a) Derive planar density expressions for BCC 
(100) and (110) planes in terms of the atomic 
radius R.

 (b) Compute and compare planar density values 
for these same two planes for molybdenum (Mo).

3.62 (a) Derive the planar density expression for the 
HCP (0001) plane in terms of the atomic radius R.

 (b) Compute the planar density value for this 
same plane for titanium (Ti).

Polycrystalline Materials
3.63 Explain why the properties of polycrystalline 

materials are most often isotropic.

X-Ray Diffraction: Determination 
of Crystal Structures
3.64 The interplanar spacing dhkl for planes in a unit 

cell having orthorhombic geometry is given by

1

d2
hkl

=
h2

a2 +

k2

b2 +

l2

c2

  where a, b, and c are the lattice parameters.

 (a) To what equation does this expression reduce 
for crystals having cubic symmetry?

 (b) For crystals having tetragonal symmetry?

3.65 Using the data for aluminum in Table 3.1, com-
pute the interplanar spacing for the (110) set of 
planes.

3.66 Using the data for a-iron in Table 3.1, compute 
the interplanar spacings for the (111) and (211) 
sets of planes.

3.67 Determine the expected diffraction angle for the 
first-order reflection from the (310) set of planes 
for BCC chromium (Cr) when monochromatic 
radiation of wavelength 0.0711 nm is used.

3.68 Determine the expected diffraction angle for the 
first-order reflection from the (111) set of planes 
for FCC nickel (Ni) when monochromatic radia-
tion of wavelength 0.1937 nm is used.

3.69 The metal rhodium (Rh) has an FCC crystal struc-
ture. If the angle of diffraction for the (311) set of 
planes occurs at 36.12� (first-order reflection) when 
monochromatic x-radiation having a wavelength of 
0.0711 nm is used, compute the following:

 (a) The interplanar spacing for this set of planes

 (b) The atomic radius for a Rh atom

3.70 The metal niobium (Nb) has a BCC crystal 
structure. If the angle of diffraction for the (211) 
set of planes occurs at 75.99� (first-order reflec-
tion) when monochromatic x-radiation having 

(a)

(b)

(c)

(d)

3.57 Sketch the (0111) and (21 10) planes in a hexago-
nal unit cell.

Linear and Planar Densities
3.58 (a) Derive linear density expressions for FCC 

[100] and [111] directions in terms of the atomic 
radius R.

 (b) Compute and compare linear density values 
for these same two directions for copper (Cu).

3.59 (a) Derive linear density expressions for BCC 
[110] and [111] directions in terms of the atomic 
radius R.

 (b) Compute and compare linear density values 
for these same two directions for iron (Fe).

3.60 (a) Derive planar density expressions for FCC 
(100) and (111) planes in terms of the atomic 
radius R.

 (b) Compute and compare planar density values 
for these same two planes for aluminum (Al).
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a wavelength of 0.1659 nm is used, compute the 
following:

 (a) The interplanar spacing for this set of planes

 (b) The atomic radius for the Nb atom

3.71 For which set of crystallographic planes will a first-
order diffraction peak occur at a diffraction angle 
of 44.53� for FCC nickel (Ni) when monochromatic 
radiation having a wavelength of 0.1542 nm is used?

3.72 For which set of crystallographic planes will a 
first-order diffraction peak occur at a diffraction 
angle of 44.53� for BCC tantalum (Ta) when 
monochromatic radiation having a wavelength of 
0.1937 nm is used?

3.73 Figure 3.26 shows the first five peaks of the x-ray 
diffraction pattern for tungsten (W), which has a 
BCC crystal structure; monochromatic x-radia-
tion having a wavelength of 0.1542 nm was used.

 (a) Index (i.e., give h, k, and l indices) each of 
these peaks.

 (b) Determine the interplanar spacing for each of 
the peaks.

 (c) For each peak, determine the atomic radius 
for W, and compare these with the value pre-
sented in Table 3.1.

3.74 The following table lists diffraction angles for the 
first four peaks (first-order) of the x-ray diffrac-
tion pattern for platinum (Pt), which has an FCC 
crystal structure; monochromatic x-radiation hav-
ing a wavelength of 0.0711 nm was used.

Plane Indices Diffraction Angle (2U)

 (111) 18.06�

 (200) 20.88�

 (220) 26.66�

 (311) 31.37�

 (a) Determine the interplanar spacing for each of 
the peaks.

 (b) For each peak, determine the atomic radius 
for Pt, and compare these with the value pre-
sented in Table 3.1.

3.75 The following table lists diffraction angles for the 
first three peaks (first-order) of the x-ray diffrac-
tion pattern for some metal. Monochromatic x-ra-
diation having a wavelength of 0.1397 nm was used.

 (a) Determine whether this metal’s crystal struc-
ture is FCC, BCC, or neither FCC or BCC, and 
explain the reason for your choice.

 (b) If the crystal structure is either BCC or FCC, 
identify which of the metals in Table 3.1 gives this 
diffraction pattern. Justify your decision.

Peak Number Diffraction Angle (2U)

 1 34.51�

 2 40.06�

 3 57.95�

3.76 The following table lists diffraction angles for the 
first three peaks (first-order) of the x-ray diffrac-
tion pattern for some metal. Monochromatic x-ra-
diation having a wavelength of 0.0711 nm was used.

 (a) Determine whether this metal’s crystal struc-
ture is FCC, BCC, or neither FCC or BCC, and 
explain the reason for your choice.

 (b) If the crystal structure is either BCC or FCC, 
identify which of the metals in Table 3.1 gives this 
diffraction pattern. Justify your decision.

Peak Number Diffraction Angle (2U)

 1 18.27�

 2 25.96�

 3 31.92�

Figure 3.26 Diffraction pattern 

for powdered tungsten. 
(Courtesy of Wesley L. Holman.)
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Noncrystalline Solids
3.77 Would you expect a material in which the atomic 

bonding is predominantly ionic in nature to be 
more likely or less likely to form a noncrystalline 
solid upon solidification than a covalent material? 
Why? (See Section 2.6.)

Spreadsheet Problem
3.1SS For an x-ray diffraction pattern (having all 

peaks plane-indexed) of a metal that has a unit 
cell of cubic symmetry, generate a spreadsheet 
that allows the user to input the x-ray wave-
length, and then determine, for each plane, the 
following:

 (a) dhkl

 (b) The lattice parameter, a

FUNDAMENTALS OF ENGINEERING QUESTIONS 
AND PROBLEMS
3.1FE A hypothetical metal has the BCC crystal 

structure, a density of 7.24 g/cm3, and an atomic 
weight of 48.9 g/mol. The atomic radius of this 
metal is

 (A) 0.122 nm

 (B) 1.22 nm

 (C) 0.0997 nm

 (D) 0.154 nm

3.2FE In the following unit cell, which vector repre-
sents the [121] direction?

B
D

A

C ,1
2

1
2

1
4

1
2

2
3

+z

+x

+y

z

y

x a

a

1
2

3.3FE What are the Miller indices for the plane 
shown in the following cubic unit cell?

 (A) (201) (C) (10 12)
 (B) (1�1

2) (D) (102)
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