
3. Study of an 8-bit Microprocessor

3.1 Introduction
8-bit microprocessors use an 8-bit data bus and a 16-bit address bus, meaning their address
space is limited to 64KB. The first widely adopted 8-bit microprocessor was Intel’s
8080, which was used in many home computers in the late 1970s and early 1980s. The
Zilog Z80 (compatible with the 8080) and the Motorola 6800 were also used in similar
computers, including the MOSTEK 6502 inspired by the 6800 and Z80. When these early
microprocessors reached the limit of their performance, manufacturers produced the new,
more powerful generation of 8-bit processors, such as Motorola’s 6809 and Intel’s 8085.

3.2 8-bit Microprocessor
The table 3.5 summarizes the characteristics of 8-bit microprocessors from various manu-
facturers.

The internal architecture of these microprocessors is directly based on the Von Neu-
mann structure.

3.3 Study of the 8085 Microprocessor
The 8085 microprocessor comes in a 40-pin Dual In-line Package (DIP) package and has
the following characteristics:

✓ Requires only a +5V power supply;

✓ Can operate with a clock speed of 3→ 6.144MHz and performs at 1.5 MIPS;

✓ Capable of addressing 64 KB of memory;

✓ Requires 4 cycles per instruction;

42 Chapter 3. Study of an 8-bit Microprocessor

Table 3.1: 8-bit Microprocessors and Their Manufacturers

Manufacturer Intel Intel Intel Motorola Zilog Mostek Rockwell National
Reference 8008 8080 8085 6800 Z80 6502 PPS8 SC/MP
Number of 48 69 71 71 69 71 90 50
instructions
Memory 16K 64K 64K 64K 64K 64K 32K 64K in
space 4K pages
General-pur 7 7 7 3 17 3 3 6
-pose register
Number of 3300 4000 6200 - - - - -
transistors
Clock 0.3 2-2.67 3.6 or 6 11.5 or 2 - - - -
in MHz
Year 1972 1974 1976 1974 1976 1975 - 1976

3.3.1 External Architecture of the 8085

Figure 3.1 shows the logic pinout of the 8085 microprocessor. All the signals are classified
into six groups: (1) address bus, (2) data bus, (3) control and status signals, (4) power
supply and frequency signals, (5) externally initiated signals, and (6) serial I/O ports.

Figure 3.1: The Pinout and Signals of the 8085 Microprocessor

Les broches du 8085 peuvent être classées en cinq groupes:

a. Address Bus
The 8085 has 16 signal lines (pins) that are used as the address bus; however, these lines
are split into two segments: A15−A8 and AD7−AD0. The eight signal lines, A15−A8,
are unidirectional and used for the most significant bits, called the high-order address, of a
16-bit address. The signal lines AD7−AD0 are used for a dual purpose, as explained in
the next section.

3.3 Study of the 8085 Microprocessor 43

b. Multiplexed Address/Data Bus
The signal lines AD7−AD0 are bidirectional: they serve a dual purpose. They are used as
the low-order address bus as well as the data bus. In executing an instruction, during the
earlier part of the cycle, these lines are used as the low-order address bus. During the later
part of the cycle, these lines are used as the data bus (This is also known as multiplexing
the bus). However, the low-order address bus can be separated from these signals by using
a latch as will be explained later.

c. Control and Status Signals
ALE-Address Latch Enable: This signal indicates that the bits on AD7−AD0 are
address bits and used to latch the low-order address A7−A0 .
RD-Read: This is a Read control signal (active low). It indicates that the selected
I/O or memory device is to be read and data are available on the data bus.
WR-Write: This is a Write control signal (active low). It indicates that the data on
the data bus are to be written into a selected memory or I/O location.
IO/M− Input−Output/Memory : This status signal used to indicate whether the
8085 is addressing memory (IO/M = 0) or input/output (IO/M = 1)."
S0 et S1: Status signals indicating the type of operation in progress on the bus.
Rarely used in small systems.

d. Power Supply and Clock Frequency
Vcc: +5 V power supply.
Vss: 0 V power supply.
X1 et X2: A crystal (or RC, LC network) is connected at these two pins to generate
a periodic square wave signal. To operate at 3 MHz, the crystal should have a
frequency of 6 MHz.
CLK OUT-Clock Output: This signal can be used as the system clock for other
devices.

e. Interrupt Signals
INTR (Interrupt Request): This is used as a general-purpose interrupt; it is sent by
an interface indicating a request for interruption.
INTA (Interrupt Aknowlege): The 8085 responds to INTR by sending "0" on the
INTA signal.
RST 7.5, RST 6.5 and RST 5.5 (Restart Interrupts): These are vectored interrupts
that transfer the program control to specific memory locations.
TRAP: This is a non-maskable interrupt and has the highest priority.

f. Externally Initiated Signals
HOLD : This signal informs the 8085 that an external device, such as a DMA (Direct
Memory Access) controller, is requesting the use of the address and data buses.
HLDA (Hold Acknowledge) : This signal acknowledges the HOLD signal.
READY: This signal is used to delay the microprocessor Read or Write cycles until
a slow-responding peripheral is ready to send or accept data.
RESETIN: When the signal on this pin goes low, the program counter is set to zero,
the buses are tri-stated, and the microprocessor is reset.
RESET OUT: This signal indicates that the CPU is being reset and will reset the
devices connected to it.

44 Chapter 3. Study of an 8-bit Microprocessor

g. Serial I/O Ports

SID (Serial Input Data) / SOD (Serial Output Data) : In serial transmission, data
bits are sent over single line, one bit at a time.

3.3.2 Internal Architecture of the 8085

The internal structure of the 8085, as shown in Figure 3.2, essentially comprises of:

Figure 3.2: Functional Block Diagram of the Microprocessor 8085

1. Arithmetic and Logic Unit (ALU)

The Arithmetic and Logic Unit (ALU) performs various computing functions, including ad-
dition (+), subtraction (-), logical operations (AND, OR, NOT, XOR), increment/decrement
(INR/DCR), comparison, left/right shifting, and more. It consists of the accumulator, the
temporary register, the arithmetic and logic circuits, and five flags. The temporary register
holds data during an arithmetic/logic operation, and the result is stored in the accumulator.
The flags (flip-flops) are set or reset based on the outcome of the operation.

3.3 Study of the 8085 Microprocessor 45

2. Timing and Control Unit
This unit synchronizes all the microprocessor operations with the clock and generates the
control signals necessary for communication between the microprocessor and peripherals.
It also controls fetching and decoding of instructions and generates appropriate control
signals for their execution.

3. Instruction Register and Decoder
The instruction register and the decoder are part of the ALU. When an instruction is
fetched from memory, it is loaded in the instruction register. The decoder decodes the
instruction and establishes the sequence of events to follow. The instruction register is not
programmable and cannot be accessed through any instruction.

4. Serial I/O Control Unit
Used to control serial data communication with external devices via SID/SOD lines.

5. Interrupt Control Unit
Used to handle various interrupts that occur via 5 interrupt pins: TRAP, RST7.5, RST6.5,
RST5.5, and INTR.

6. Incrementer/Decrementer Address Latch
It increments/decrements the contents of the Program Counter and Stack Pointer when
instructions related to them are executed.

7. Address and Data Buffers
They are used to temporarily hold Address/Data bits while they are placed on the Ad-
dress/Data bus. They act as an interface between the internal and external buses.

8. Registers
The registers of the 8085 can be classified into three categories:

a. General-Purpose Registers
• B, C, D, E, H, and L: These are 8-bit registers used for general data storage and

manipulation. They can be paired to form register pairs (16-bit), such as BC, DE,
and HL, for certain instructions.

b. Special-Purpose Registers:
• Program Counter (PC): It is a 16-bit register that holds the address of the next

instruction to be executed. It gets automatically incremented (+1) after fetching each
instruction.

• Stack Pointer (SP): It is a 16-bit register which points to the ‘stack’. The stack
is an area in the R/W memory where temporary data or return addresses (in cases
of subroutine CALL) are stored. Stack is a auto-decrement facility provided in the
system. The stack top is initialized by the SP by using the instruction LXI SP.
Figure 3.3 illustrates the auto-increment and auto-decrement functionality for the
PC and SP registers, respectively.

• Instruction Register (IR): It is a non-programmable register that temporarily holds
the opcode of the instruction being fetched from memory. The opcode is a part of
the instruction that specifies the operation to be performed by the microprocessor.

46 Chapter 3. Study of an 8-bit Microprocessor

Figure 3.3: Auto-increment and Auto-decrement Functionality for the PC and SP registers

• Flag Register : It is an 8-bit register in which five bits represent various condition
flags. These flags provide information about the result of the last executed arithmetic
or logic instruction.

Figure 3.4: Five Flags of the Flag Register

The descriptions and conditions of the five flags are as follows:

✓ Sgin (S) Flag : If the most significant bit (MSB) of the result of an operation is 1,
this flag is set to 1; otherwise, it is reset to 0.

✓ Zero (Z) Flag: If the result of an instruction is zero, this flag is set to 1; otherwise,
it is reset to 0.

✓ Auxillary Carry (AC) Flag): If there is a carry out of bit 3 and into bit 4 resulting
from the execution of an arithmetic operation, it is set to 1; otherwise, it is reset to 0.

✓ (Parity (P) Flag): This flag is set to 1 when the result of an operation contains an
even number of 1’s and is reset otherwise.

✓ (Carry (CY) Flag): If an instruction results in a carry (for addition operation) or
borrow (for subtraction or comparison) out of bit D7, then this flag is set; otherwise,
it is reset.

3.3 Study of the 8085 Microprocessor 47

3.3.3 Demultiplexing the Bus AD7−AD0

The demultiplexing of the lower-order address bus A7−A0 from the multiplexed address-
data bus AD7−AD0 is performed by storing the address found on the bus using an external
latch 74LS373 (a set of D flip-flops). The control of this latch is triggered by the ALE
signal (Address Latch Enable) when it transitions from high to low at the end of T1 of each
machine cycle, as shown in Figure 3.5.

Figure 3.5: Demultiplexing the Bus AD7−AD0

Example:
This example illustrates the addressing of a 1KB memory (Figure 3.6) while using a latch
to demultiplex the lower-order address bus A7−A0.

Figure 3.6: Addressing a 1 KB Memory while using Demultiplexing

3.3.4 Instruction Format
An instruction is formed by one, two, or three bytes divided into two fields:

• The first field is the task to be performed, called opcode (Operation Code), which is
always encoded in 8 bits.

• The second field is the data to be operated on, called the operand, which can be an
8-bit (or 16-bit) data, an internal register, or a memory location.

Example:
LDA 1300H
↗ ↖

Operation to be performed Operand (address of 16-bit)

48 Chapter 3. Study of an 8-bit Microprocessor

3.3.5 Instructions Word Size
The instruction set of the 8085 is divided into three groups:

1. Instructions of size 1 byte (no operand; opcode only).
CMA: Complement the A register (opcode is 2FH, Mnemonic: CMA).

2. Instructions of size 2 bytes (opcode + 1 operand of 8 bits)
MVI A, 28H: Write the value 28H into register A.

3. Instructions of size 3 bytes (opcode + 16-bit operand).
LDA 1001H: Load the content of address 1001H into accumulator A. The opcode
for LDA is 3AH, and the operand is a 16-bit address (2 bytes).

The previous three instructions will be written in memory, starting from address 1000H, as
follows:

1000H
1001H
1002H

2FH
3EH
28 H

−→ CMA
−→MVI A

1003H
1004H
1005H

3AH
01H
10H

−→ LDA

3.3.6 Addressing Mode
The addressing mode specifies how the memory address of an operand is calculated or
determined during the execution of an instruction. The 8085 microprocessor has five
addressing modes.

a/ Register Addressing
This addressing mode involves any transfer or operation between two 8-bit registers.

Example:
MOV A, B : This is the transfer of the content from B to A (A←B); it does not involve
any memory address.

b/ Immediate Addressing
In this addressing mode, the operand is data, and there is no operand address.

Example:
MVI A, 50H : The value 50H will be immediately stored in A (A←50H).

c/ Direct Addressing
In this mode, the address of the data in memory is directly specified in the operand.

Example:
LDA 2000H : Load accumulator A with the content of address 2000H (A←[2000H]).

d/ Indirect Addressing
In this mode, accessing data in memory is done through a register that accommodate the
16-bit address of the operand.

Example:
MOV A, M : Load accumulator A with the content of the memory location whose address
is the content of the HL register pair.

3.4 Instruction set of the 8085 49

e/ Implicit Addressing
It refers to a mode where the operand is fully absent but implicitly specified by the
instruction itself or understood based on the opcode.

Example:
CMA , NOP , RAR : These instructions have no operand and mean respectively: Com-
plement Accumulator A, No Operation, Rotate Accumulator Right through Carry.

3.4 Instruction set of the 8085
As the 8085 microprocessor is 8-bit, it can have up to 28 = 256 instructions. However, the
8085 utilizes only 246 combinations, representing 74 instructions. These instructions can
be classified into five functional categories:

▶ Data transfert (copy) operations.

▶ Arithmetic operations.

▶ Logic operations.

▶ Branching operations.

▶ Machine-control operations.

3.4.1 Data Transfer (Copy) Operations
This group of instructions copies data from a location called a source (register, memory, or
I/O interface) to another location, called a destination (register, memory, or I/O interface),
without modifying the contents of the source.

1. MOV: MOVe . Transfer data between two registers or between a register and a
memory location.

Syntax: MOV Rd, Rs or MOV M, Rs or MOV Rd, M

Where: Rs: source register
Rd: destination register
M: address specified by HL

Example:
MOV C, D [C]←[D] or MOV M, B [MHL]←[B]

2. MVI: MoVe Immediate. Load an immediate 8-bit data into a specific register or
memory location

Syntax: MVI Rd, 8-bit data

Example:
MVI A, 14H [A]←14H

3. OUT: OUTput to port. Send the contents of the accumulator (A) to an output port
Syntax: Out address of the output port

50 Chapter 3. Study of an 8-bit Microprocessor

Example:
OUT 08H

4. IN: INput from port. Read data from an input port into the accumulator (A)
Syntax: IN address of the input port

Example:
IN 09H

5. LXI: Load eXtended Immediate. Load a 16-bit immediate value into a register
pair

Syntax: LXI Rp, 16-bit data
Where: Rp: register pair

Example:

LXI B, 1400H [B]=14H and [C]=00H
B C
14 00

6. LDA: LoaD Accumulator. Load an 8-bit data from a memory location into the
accumulator (A)

Syntax: LDA 16-bit address

Example:
LDA 2000H [A]← [M2000]

7. LDAX: Load Accumulator eXtended. Load the accumulator (A) with the 8-bit
data stored at the memory location specified by the BC or DE register pair. It does not
accept the HL

Syntax: LDAX Rp

Example:
LDAX B

8. STA: STore Accumulator. Store the contents of the accumulator (A) into a
specific memory location

Syntax: STA 16-bit address

Example:
STA 3000H [M3000]←[A]

9. STAX: STore Accumulator indirect (by eXtended register). Store the contents of
the accumulator (A) into the memory location specified by the BC or DE register pair.

Syntax: STAX Rp

Example:
STAX D [MDE]←[A]

3.4 Instruction set of the 8085 51

10. LHLD: Load HL register Direct. Load the HL register pair with the contents of
a specific memory address and the next consecutive memory address.

Syntax: LHLD 16-bit address

Example:
LHLD 2000H

11. SHLD: Store HL register Direct. Store the contents of the HL register pair into
a specific memory address and the next consecutive memory address.

Syntax: SHLD 16-bit address

Example:
SHLD 3000H

12. XCHG: eXCHanGe. Exchange the contents of the DE and HL register pairs.
Syntax: XCHG

Example:

Before XCHG
H L
A9 C2

D E
67 89

After XCHG
H L
67 89

D E
A9 C2

13. XTHL: eXchange Top stack with HL. Exchange the content of H and that of L
with the top of the stack.

Syntax: XTHL

14. SPHL: Copy HL registers into the Stack Pointer. Load the stack pointer (SP)
with the contents of the HL register pair.

syntax: SPHL

15. PCHL: Copy HL registers into the Program Counter. Load the program counter
(PC) with the contents of the HL register pair.

Syntax: PCHL

3.4.2 Arithmetic Operations
In arithmetic operations, including addition (ADD or ADI), subtraction (SUB or SUI),
incrementation (8-bit INR or 16-bit INX), and decrementation (8-bit DCR or 16-bit DCX),
the microprocessor assumes that the accumulator (A) is by default one of the two operands,
and the result of the operations will be stored in it. The flags of the status register will also
be affected by the obtained results.

1. ADD: ADDition. Add the contents of accumulator A to the contents of the register
or memory location.

Syntax: ADD R or ADD M
Where: R: 8-bit register , M: Address of a memory location

52 Chapter 3. Study of an 8-bit Microprocessor

Example:
MVI A, 04H
MVI B, 03H
ADD B [A]←−[A] + [B]

07H= 04H + 03H
Flags: S=0, Z=0, CY=0

2. ADI: ADdition Immediate. Add an immediate 8-bit data to the accumulator (A).
Syntax: ADI 8-bit data

Example:
MVI A, FFH
ADI 01H [A]←−[A] + 01H

00H= FFH + 01H
Flags: S=0, Z=1, CY=1

3. SUB: SUBstraction. Subtract the contents of a register or memory location from
the accumulator (A).

Syntax: SUB R or SUB M

Example:
MVI A, FFH

MVI B, 03H
SUB B [A]←−[B] - [A]

FCH= 03H - FFH
Flags: S=1, Z=0, CY=0

4. SUI: SUbstraction Immediate. Subtract an immediate 8-bit data from the accu-
mulator (A).

Syntax: SUI 8-bit data

Example:
MVI A, 05H
SUI 02H [A]←−05H - [A]

03H= 02H - 05H
Flags: S=0, Z=0, CY=0

5. INR: INcRementation . Increment the contents of a specified 8-bit register or
memory location (+1).

Syntax: INR R or INR M

Example:
MVI A, 05H
INR A [A]←−1 + [A]

3.4 Instruction set of the 8085 53

06H= 01H + 05H
Flags: S=0, Z=0

6. INX: INcrement eXtended register . Increment the contents of a register pair or
the stack pointer (SP).

Syntax: INX Rp

Example:
LXI SP, 2000H
INX SP SP←−1 + SP

2001H= 1H + 2000H
Flags: S=0, Z=0

7. DCR: DeCRementation . Decrement the contents of a specified 8-bit register or
memory location (-1).

Syntax: DCR R or DCR M

Example:
MVI A, 01H
DCR A [A]←−1 - [A]

0H= 1H - 01H
Flags: S=0, Z=1

8. DCX: DeCrement eXtended register . Decrement the contents of a register pair
or the stack pointer (SP).

Syntax: DCX Rp

Example:
LXI B, 3000H
DCX B BC←−1 - BC

2FFFH= 1H - 3000H
Flags: S=0, Z=0

9. ADC: ADd with Carry . Add the contents of a specified 8-bit register or memory
location along with CY to the accumulator (A).

Syntax: ADC R or ADC M

Example:
MVI A, 30H
MVI B, F0H
ADD B [A]←−[A] + [B]

CY=1 / 20H= 30H + F0H
ADC B [A]←−CY + [A] + [B]

11H= 1H + 20H + F0H

54 Chapter 3. Study of an 8-bit Microprocessor

10. ACI: Add with Carry Immediate . Add an immediate 8-bit data along with CY
to the accumulator (A).

syntax: ACI 8-bit data

Example:
MVI A, 30H
MVI B, F0H
ADD B [A]←−[A] + [B]

20H= 30H + F0H
ACI 34H [A]←−CY + 34H + [A]

55H= 1H + 34H + 20H

11. SBB: SuBtract with Borrow . Subtract an immediate 8-bit data and the contents
of CY from the accumulator (A).

syntax: SBB R or SBB M

Example:
MVI A, 30H
MVI B, 20H
ADI FFH [A]←−FFH + [A]

CY=1 / 2FH= FFH + 30H
SBB B [A]←−CY - [B] - [A]

0EH= 1 - 20H - 2FH

12. SBI: SuBtract Immediate with borrow . Subtract an immediate 8-bit data and
CY from the contents of the accumulator (A).

Syntax: SBI 8-bit data

Example:
MVI A, 30H
ADI FF [A]←−FF + [A]

CY=1 / 2FH= FFH + 30H
SBI 20H [A]←−CY - 20H - [A]

0EH= 1H - 20H - 2FH

13. DAA: Decimal Ajust Accumulator . Converts the content of the accumulator
into two BCD values.

Syntax: DAA

Example:
MVI A, 38H [A]←−38H
MVI B, 45H [B]←−45H
ADD B [A]←−[B] + [A]

7DH= 38H + 45H
DAA [A]←−83H

| 38 BCD 0011 1000
| +45 BCD 0100 0101
|= 83 01111101
| 7 D

0111 1101
+ 0110

10000011
8 3

3.4 Instruction set of the 8085 55

3.4.3 Logic Operations
These instructions perform logical operations on the contents of the accumulator. These
operations will result in clearing the CY (Carry) flag.

1. ANA: ANd with Accumulator . Performs a logical AND operation between the
accumulator (A) and the specified register or memory location.

Syntax: ANA R or ANA M

Example:

MVI A, 81H
MVI B,77H
ANA B [A]←−[B] AND [A]

01H= 77HH AND 81H

2. ANI: ANd Immediate. Performs a logical AND operation between the accumula-
tor (A) and an immediate 8-bit data.

Syntax: ANI 8-bit data

Example:
MVI A, 55H
ANI 01H [A]←−01H AND [A]

01H= 01H AND 55H

3. ORA: OR with Accumulator . Performs a logical OR operation between the
accumulator (A) and the specified register or memory location.

Syntax: ORA R or ORA M

Example:
MVI A, 81H
MVI B, 7EH
ORA B [A]←−[B] OR [A]

FFH= 7EH OR 81H

4. ORI: OR Immediate. Performs a logical OR operation between the accumulator
(A) and an immediate 8-bit data.

Syntax: ORI 8-bit data

Example:
MVI A, 55H
ORI 02H [A]←−02H OR [A]

57H= 02H OR 55H

5. XRA: XoR with Accumulator . Performs a logical XOR operation between the
accumulator (A) and the specified register or memory location..

Syntax: XRA R or XRA M

56 Chapter 3. Study of an 8-bit Microprocessor

Example:
MVI A, 80H
MVI B, 7EH
XRA B [A]←−[B] XOR [A]

FEH= 7EH XOR 80H

6. XRI: XoR Immediate. Performs a logical XOR operation between the accumula-
tor (A) and an immediate 8-bit data.

Syntax: XRI 8-bit data

Example:
MVI A, 55H
XRI 02H [A]←−02H XOR [A]

57H= 02H XOR 55H

7. CMA: CoMplement the Accumulator. Complements all the bits of the accumula-
tor (A) (using 1’s complement).

Syntax: CMA

Example:
MVI A, 55H
CMA 1010 1010 ←− 0101 0101

A A 5 5

3.4.4 Additional Logic Operations
A. Rotate Instructions
These are operations that rotate the bits of the accumulator to the left or right, with or
without CY (RLC, RAL, RRC, RAR)

1. RLC: Rotate accumulator Left . Rotates all the bits of the accumulator to the left.
The MSB (Most Significant Bit) (A7) is shifted into the Carry flag CY and into the LSB
(Least Significant Bit) (A0) of the accumulator.

Note: The left rotation of A results in multiplying the value of A by 2 (provided that the
A7 bit is 0).

Example:

Before RLC [A]=AEH, CY=0

After RLC [A]=5DH, CY=1

2. RAL: Rotate Accumulator Left through carry . Rotate accumulator A left through
carry with the previous content of the carry flag (CY). Each bit of A is shifted to the left by
one position. The MSB (A7) is shifted into the Carry flag, and the previous content of CY
is shifted into the LSB (A0) of the accumulator.

3.4 Instruction set of the 8085 57

Example:

Before RAL [A]=(93)H, CY=1

After RAL [A]=26H, CY=0

3. RRC: Rotate accumulator Right . Rotate accumulator A right. Each bit of A is
shifted to the right by one position. The LSB (A0) becomes the MSB (A7). The shifted-out
LSB is also copied into the CY (Carry) flag.

Note: Rotating A to the right results in dividing the value of A by 2 (provided that bit
A0 is 0).

Example:

Before RRC [A]=93H, CY=0

After RRC [A]=C9H, CY=1

4. RAR: Rotate Accumulator Right through carry . Right rotation of accumulator
A through carry. Each bit of A is shifted to the right by one position. The content of CY
becomes the MSB (A7), and the LSB (A0) is stored in CY.

Example:

Before RAR [A]=76H, CY=1

After RAR [A]=BBH, CY=0

B. Compare Instructions
The 8085 has two comparison instructions, namely CMP and CPI.

1. CMP: CoMPare register . Compare the contents of the accumulator (A) with a
specified register or memory location. It performs a subtraction internally but does not
store the result.

syntax: CMP R or CMP M
If [A]=[R/M]→ Z=1 otherwise Z=0
If [A]<[R/M]→ CY=1 otherwise CY=0

Example:
MVI B, 00H
MVI A, 09H

58 Chapter 3. Study of an 8-bit Microprocessor

CMP B [A]>[B]−→CY=0, Z=0

2. CPI: ComPare Immediat. Compare the accumulator (A) with an immediate 8-bit
data.

syntax: CPI 8-bit data
If [A]=8-bit data→ Z=1 otherwise Z=0
If [A]<8-bit data→ CY=1 otherwise CY=0

Example:
MVI A, 09H
CPI 10H [A]<10H−→CY=1, Z=0

3.4.5 Branching Operations
The branching instructions change the flow of program execution. They are divided into
two types:

a. Unconditional branch (jump) instructions
Unconditional jump instructions alter the flow of program execution without any conditions
to a specified memory address.

1. JMP: JuMP . Jump to a specified address.
syntax: JMP 16-bit address

Example:
MVI B, 68H
MVI C, 5AH
INR B
JMP FINISH
DCR C

FINISH: MOV A, B
ADD C

2. CALL: Calls the addressed subroutine program.

• Subroutine is a group of instructions written separately from the main program to
perform a task that will be used repeatedly in different locations of the main program.

A subroutine is a group of instructions the program
syntax: CALL 16-bit address of the subroutine

The execution of this instruction allows:
- Save the content of the PC in the stack and copy the

address of the subroutine into the PC.

- Decrement SP by 2.

[SP−1]←− [PCH]
[SP−2]←− [PCL]

[PC]←−Adresse 16-bit

3.4 Instruction set of the 8085 59

2. RET: RETurn. Unconditional return to the main program.
syntax: RET

The execution of this instruction allows:
- Retrieve the initial value of the PC from the stack.

- Increment SP by 2.

[PCL]←− [MSP]
[PCH]←− [MSP+1]

Example:

b. Conditional Branch Instructions
Conditional branch instructions alter the flow of program execution based on certain
conditions. These conditions are typically determined by the states of the status register
flags.
The branching instructions are summarized as follows:

• JZ Adresse (Jump on Zero)
- Jump to the specified address if the result is zero (Z=1)

• JNZ Adresse (Jump on Not Zero)
- Jump to the specified address if Z=0.

• JC Adresse (Jump on Carray)
- Jump to the specified address if CY=1.

• JNC Adresse (Jump on No Carray)
- Jump to the specified address if CY=0.

60 Chapter 3. Study of an 8-bit Microprocessor

• JP Adresse (Jump on Plus)
- Jump to the specified address if S=0.

• JM Adresse (Jump on Minus)
- Jump to the specified address if S=1.

• JPE Adresse (Jump if Parity is Even)
- Jump to the specified address if P=1.

• JPO Adresse (Jump if Parity is Odd)
- Jump to the specified address if P=0.

Note
There are two instructions for manipulating the CY flag, namely:

1. STC (SeT Carry) : Setting the Carry Flag to 1 CY←−1
2. CMC (CoMplement the Carry flag) : Complementing CY to 1 de CY←− CY

Subroutine Instructions
In addition to the call instruction and the unconditional subroutine return instruction, there
are other conditional call and return instructions.

a. Conditional Subroutine Calls
▶ CZ Adresse (Call if Zero) ; Call subroutine if Z=1.
▶ CNZ Adresse (Call if Not Zero) ; Call subroutine if Z=0.
▶ CC Adresse (Call if Carry) ; Call subroutine if CY=1.
▶ CNC Adresse (Call if Not Carry) ; Call subroutine if CY=0.
▶ CP Adresse (Call if Positive) ; Call subroutine if S=0.
▶ CM Adresse (Call if Minus) ; Call subroutine if S=1.
▶ CPE Adresse (Call if Parity is Even) ; Call subroutine if P=1.
▶ CPO Adresse (Call if Parity is Odd) ; Call subroutine if P=0

b. Conditional Subroutine Returns
▷ RZ Adresse (Return if Zero) ; Return from subroutine if Z=1.
▷ RNZ Adresse (Return if No Zero) ; Return from subroutine if Z=0.
▷ RC Adresse (Return if Carry) ; Return from subroutine if CY=1.
▷ RNC Adresse (Return if No Carry) ; Return from subroutine if CY=0.
▷ RP Adresse (Return if Positive) ; Return from subroutine if S=0.
▷ RM Adresse (Return if Minus) ; Return from subroutine if S=1.
▷ RPE Adresse (Return if Parity is Even) ; Return from subroutine if P=1.
▷ RPO Adresse (Return if Parity is Odd) ; Return from subroutine if P=0

3.4.6 Stack Instructions

The stack is a section of the RAM memory designated by the stack pointer (SP), typically
located towards the end of memory, used to temporarily store bytes during the execution
of a program. The SP points to the top of the stack, and data is stored at addresses lower
than the address pointed to by SP.

3.5 Op-code and mnemonic of 8085 instructions 61

Example:

LXI SP, 2500H

Besides storing the return address of the main program on the stack after the execution
of the CALL instruction, the contents of pair registers can also be stored/restored on/from
the stack by the PUSH/POP instruction.

syntax: PUSH Rp and POP Rp

As Rp: represents one of the registers pair B, D, or H or the PSW register (Program
Status Word), which is the combination of the accumulator A and the flag register.

Example:

Address Instruction
2000H LXI SP, 2099H
2003H LXI H, 42F2H
2006H PUSH H
2007H POP H

3.4.7 I/O and Machine-control Operations

The machine-control instructions are summarized in the following table.

3.5 Op-code and mnemonic of 8085 instructions
The table 3.5 below gathers the op-codes and mnemonics of all 8085 instructions..

62 Chapter 3. Study of an 8-bit Microprocessor

Mnemonic Operand Operation Explanation
NOP No

operand
No operation No operation is performed

HLT No
operand

Halt and enter
wait state

The microprocessor completes the execution of the
current instruction and stops execution

DI No
operand

Disable
Interrupts

All interrupts are disabled except TRAP.

EI No
operand

Enable
Interrupts

All interrupts are enabled

RIM No
operand

Read Interrupt
Mask

It is used to check the status of interrupts 7.5, 6.5, 5.5
and to read the serial input bit

SIM No
operand

Set Interrupt
Mask

It is used to implement interrupts 7.5, 6.5, 5.5, and
serial data output

3.6 The 8085 Machine Cycles
The 8085 microprocessor is designed to execute 74 different instruction types. Instructions
can have opcode only or opcode and operand. To execute an instruction, the 8085 needs
to perform one or more machine cycles, and each machine cycle is divided into T-states.
Basically the microprocessor external communications functions can be divided into three
categories:

• Memory Read and Write
• I/O Read and Write
• Interrupt Request Acknowledge

In this section, we will focus on Opcode Fetch, Memory Read and Memory Write.

3.6.1 Opcode Fetch Machine Cycle
To fetch the opcode byte, the CPU needs four T-states to perform the following steps:

Step 1: During the first clock period T1, the microprocessor places the high-order
memory address on the address lines A15−A8, the low-order memory address on
the bus AD7−AD0, increments the program counter and the ALE signal goes
high. To differentiate an opcode from a data byte, the status signals will be
(IO/M = 0, S1 = 1, S0 = 1).
Step 2: During the second clock period T2, the control unit sends the control signal
RD to enable the memory chip (it is active during two clock periods).
Step 3: During the third T-state T3, the opcode is sent via the data bus to the
instruction register (IR).
Step 4: During T4, the opcode is placed in the instruction decoder to be decoded,
and then executed.

3.6.2 Memory Read Machine Cycle
The memory read machine cycle is needed to execute a 2-byte or a 3-byte instruction. In
this section, a case of a 2-byte instruction is examined. During T4 (previous Steps 4), the
8085 determines that a second byte needs to be read, which will be performed in three
T-states.

3.6 The 8085 Machine Cycles 63

Hex Mnémonique Hex Mnémonique Hex Mnémonique Hex Mnémonique

CE ACI 8-bit 2B DCX H 52 MOV D,D E5 PUSH H
8F ADC A 3B DCX SP 53 MOV D,E F5 PUSH PSW
88 ADC B F3 DI 54 MOV D,H 17 RAL
89 ADC C FB EI 55 MOV D,L 1F RAR
8A ADC D 76 HLT 56 MOV D,M D8 RC
8B ADC E BD IN 8-Bit 5F MOV E,A C9 RET
8C ADC H 3C INR A 58 MOV E,B 20 RIM
8D ADC L 04 INR B 59 MOV E,C 07 RLC
8E ADC M 0C INR C 5A MOV E,D F8 RM
87 ADD A 14 INR D 5B MOV E,E D0 RNC
80 ADD B 1C INR E 5C MOV E,H C0 RNZ
81 ADD C 24 INR H 5D MOV E,L F0 RP
82 ADD D 2C INR L 5E MOV E,M E8 RPE
83 ADD E 34 INR M 67 MOV H,A E0 RPO
84 ADD H 03 INX B 60 MOV H,B 0F RRC
85 ADD L 13 INX D 61 MOV H,C C7 RST 0
86 ADD M 23 INX H 62 MOV H,D CF RST 1
C6 ADI 8-Bit 33 INX SP 63 MOV H,E D7 RST 2
A7 ANA A DA JC 16-Bit 64 MOV H,H DF RST 3
A0 ANA B FA JM 16-Bit 65 MOV H,L E7 RST 4
A1 ANA C C3 JMP 16-Bit 66 MOV H,M EF RST 5
A2 ANA D D2 JNC 16-Bit 6F MOV L,A F7 RST 6
A3 ANA E C2 JNZ 16-Bit 68 MOV L,B FF RST 7
A4 ANA H F2 JP 16-Bit 69 MOV L,C C8 RZ
A5 ANA L EA JPE 16-Bit 6A MOV L,D 9F SBB A
A6 ANA M E2 JPO 16-Bit 6B MOV L,E 98 SBB B
E6 ANI 8-Bit CA JZ 16-Bit 6C MOV L,H 99 SBB C
CD CALL 16-Bit 3A LDA 16-Bit 6D MOV L,L 9A SBB D
DC CC 16-Bit 0A LDAX B 6E MOV L,M 9B SBB E
FC CM 16-Bit 1A LDAX D 77 MOV M,A 9C SBB H
2F CMA 2A LHLD 16-Bit 70 MOV M,B 9D SBB L
3F CMC 01 LXI B,16-Bit 71 MOV M,C 9E SBB M
BF CMP A 11 LXI D,16-Bit 72 MOV M,D DE SBI 8-Bit
B8 CMP B 21 LXI H,16-Bit 73 MOV M,E 22 SHLD 16-Bit
B9 CMP C 31 LXI SP,16-Bit 74 MOV M,H 30 SIM
BA CMP D 7F MOV A,A 75 MOV M,L F9 SPHL
BB CMP E 78 MOV A,B 3E MVI A,8-Bit 32 STA 16-Bit
BC CMP H 79 MOV A,C 06 MVI B,8-Bit 02 STAX B
BD CMP L 7A MOV A,D 0E MVI C,8-Bit 12 STAX D
BE CMP M 7B MOV A,E 16 MVI D,8-Bit 37 STC
D4 CNC 16-Bit 7C MOV A,H 1E MVI E,8-Bit 97 SUB A
C4 CNZ 16-Bit 7D MOV A,L 26 MVI H,8-Bit 90 SUB B
F4 CP 16-Bit 7E MOV A,M 2E MVI L,8-Bit 91 SUB C
EC CPE 16-Bit 47 MOV B,A 36 MVI M,8-Bit 92 SUB D
FE CPI 8-Bit 40 MOV B,B 00 NOP 93 SUB E
E4 CPO 16-Bit 41 MOV B,C B7 ORA A 94 SUB H
CC CZ 16-Bit 42 MOV B,D B0 ORA B 95 SUB L
27 DAA 43 MOV B,E B1 ORA C 96 SUB M
09 DAD B 44 MOV B,H B2 ORA D D6 SUI 8-Bit
19 DAD D 45 MOV B,L B3 ORA E EB XCHG
29 DAD H 46 MOV B,M B4 ORA H AF XRA A
39 DAD SP 4F MOV C,A B5 ORA L A8 XRA B
3D DCR A 48 MOV C,B B6 ORA M A9 XRA C
05 DCR B 49 MOV C,C F6 ORI 8-Bit AA XRA D
0D DCR C 4A MOV C,D D3 OUT 8-Bit AB XRA E
15 DCR D 4B MOV C,E E9 PCHL AC XRA H
1D DCR E 4C MOV C,H C1 POP B AD XRA L
25 DCR H 4D MOV C,L E1 POP D AE XRA M
2D DCR L 4E MOV C,M E1 POP H EE XRI 8-Bit
35 DCR M 57 MOV D,A F1 POP PSW E3 XTHL
0B DCX B 50 MOV D,B C5 PUSH B
1B DCX D 51 MOV D,C D5 PUSH D

64 Chapter 3. Study of an 8-bit Microprocessor

Step 1: During T1, the new address is placed on the address bus, and the program
counter is incremented. Status signals will become (IO/M = 0, S1 = 1, S0 = 0),
and the ALE goes high.
Step 2: During T2, the control signal RD becomes active to enable the memory chip,
and the memory places the data byte on the data bus.
Step 3: During T3, the 8085 reads the byte and performs the operation instructed by
the instruction.

Note I/O Read and Write machine cycles are almost similar to Memory Read and Write
machine cycles respectively. The difference here is in the IO/M signal status which remains
1 indicating that these machine cycles are related to I/O operations. These machine cycles
take 3T states.

Example
The following 2-byte instruction is considered:

Address Machine code Instruction

2000H 0 0 1 1 1 1 1 0 → 3EH MV I A︸ ︷︷ ︸,32H︸︷︷︸ ; Load 32H in A

2001H 0 0 1 1 0 0 1 0 → 32H Opcode Operand
M.C. M.C.
4 C.C. 3 C.C.

As : M.C. stands for Machine Cycle
C.C. stands for Clock Cycle

Figure 3.7 illustrates the timing diagram for execution of the instruction (MVI A,
32H)."

3.7 Execution Time of an Instruction
The execution time of an instruction is related to the number of its machine cycles (1, 2,
or 3 machine cycles). Similarly, each machine cycle is related to the number of its clock
cycles; consequently, the execution time of an instruction (Tins) is calculated according to
the following equation:

Tins =
∑(Clock Cycle)

Clock Frequncey
(3.1)

If the instruction from the previous example (MVI A, 32H) is taken and the clock
frequency is assumed to be 2MHz, it is found that:

□ T-state = clock period(1/f) T = 1/f = 1/2MHz = 0.5µs
□ Execution time for Opcode Fetech: 4CC = 4x0.5µs = 2µs
□ Execution time for Memory Read: = 3CC = 3x0.5µs = 1.5µs
□ Execution time for Instruction Tins = 7CC = 7x0.5µs = 3.5µs

3.8 Loops and Counters in Assembly Language 65

Figure 3.7: Timing Diagram for Execution of the Instruction: MVI A, 32H

3.8 Loops and Counters in Assembly Language
The programming technique used to instruct the microprocessor to repeat tasks is called
looping. A loop is set up by instructing the microprocessor to change the sequence
of execution and perform the task again. This process is accomplished by using Jump
instructions. In addition, techniques such as counting and indexing are used in setting up a
loop. Loops can be classified into two groups:

□ Continuous loop
□ Conditional loop

3.8.1 Continuous Loop
A continuous loop repeats a task continuously and is set up using an unconditional Jump
instruction, as shown in the flowchart in Figure 3.8. Typical examples of such a program
include a continuous counter or a continuous monitor system.

Figure 3.8: Flowchart of Continuous Loop

66 Chapter 3. Study of an 8-bit Microprocessor

3.8.2 Conditional Loop
A conditional loop is set up by the conditional Jump instructions. These instructions check
flags (S, Z, CY, P) and repeat the specified tasks if the conditions are satisfied. These loops
usually include counting and indexing.

3.8.3 Conditional Loop and Counter
A counter is a typical application of the conditional loop, and this can be accomplished
by setting up a counter. The counter is configured by loading a general-purpose reg-
ister (B, C, D, E, H, L) or a pair register (for a value > 255) with a specific value.
Then, the DCR/DCX or INR/INX instructions are used to decre-
ment/increment the content of this register. Conditional branch-
ing is established until the required value (either ’0’ or the
maximum value) is reached.

Example:

- By using a general-purpose register :

MVI C, 15H
loop: DCR C

JNZ loop

- By using a pair register :

LXI B, 1000H ; Load BC with 1000H
loop: DCX B

MOV A, C
ORA B ; OR between B and A (C)
JNZ loop

Note: The two instructions MOV and ORA have been added to test the final value of
the counter since DCX and INX work with pair registers and do not affect the flags.

3.8.4 Generation of delays
The generation of delays and pauses is in great demand and proves to be very beneficial
in programming. Delays are used in various applications, including data display, process
control, etc.

The delay time is determined by calculating the number of machine cycles required for
each instruction inside the loop, and each instruction has a certain number of clock cycles
(CC). The sum of all instructions’ clock cycles within the loop will give the total number
of clock cycles required to execute the loop once. Then, this number will be multiplied
by how many times this loop is repeated to obtain the global number of cycles. This final
number of CC will be divided by the clock frequency to obtain the delay time, as given in
the following formula:

Delay =
Number o f CC

Clock Frequency
(3.2)

3.8 Loops and Counters in Assembly Language 67

⋆ A loop can also be used to create a delay time in a program.

Example:

In this example, an 8-bit register is used

Label Opcode Operand Comment Number of cycles
MVI C, FFH ;Load C with FFH 7

loop: DCR C ;Decrement C 4
JNZ loop ;If Z ̸= 0, jump to loop 10/7

The number of cycles generating the delay for this loop is calculated by the following
relationship:

Tdelay = T0 +TL (3.3)

As: T0 is the number of cycles outside the loop
TL is the number of cycles within the loop.

We have: T0 = 7 and TL = (4×255)+(10×254)+7
So: Tdelay = 7+3567 = 3574 cycles

and Delay = 3574/2MHz = 3574×0.5µs

Delay = 1787µs = 1.787ms

⋆ To achieve a longer delay time, it is necessary to switch to using a register pair.

Example:

In this example, a register pair is used.
Label Opcode Operand Comment Number of cycles

LXI B, 1000H 10
loop: DCX B 4

MVI C, A ;Load the content of C 4
ORA B ; OR between A and B to set Z flag 4
JNZ loop 10/7

As: T0 = 10
and TL = (6×4096)+(4×4096)+(4×4096)+(10×4095)+7 = 98301
So: Tdelay = 10+98301 = 98311 cycles

and Delay = 98311/2MHz = 491555.5µs

Delay≈ 0.5s

3.8.5 Generating Delay Using Nested Loops

Nested loops can be created using two registers, one for the inner loop and one for the
outer loop.

68 Chapter 3. Study of an 8-bit Microprocessor

Example:

Program
MVI B, 10H 7T

loop_2: MVI C, FFH 7T
loop_1: DCR C 4T

JNZ loop_1 10/7T
loop_1 : DCR B 4T

JNZ loop_2 10/7T

Generated delay
T01 = 7T
TB1 = (4×255)+(10×254)+7 = 3567T
TB2 = (7×16)+(3567×16)+(4×16)+(10×15)+7 = 57405T
Tdelay = 7+57405 = 57412T
Delay = 57412×0.5 µs = 28706 µs = 28,706ms

Flowchart

3.9 Interrupts
3.9.1 Introduction

A microprocessor-based system can communicate with an external device or a peripheral
(mouse, keyboard, ADC, ...) in two ways:

• Periodic Polling: The microprocessor cyclically checks or reads the status or data
from the input/output ports of the peripherals.

• Interrupt: The microprocessor temporarily suspends its normal operation when a
device or peripheral requires immediate attention.

So, an interrupt is an event that temporarily halts the normal execution of a program to
respond promptly to an external event triggered by a peripheral device (hardware interrupt)
that requires immediate attention, such as having new data to be processed, as the interrupt
can be initiated by a signal generated internal to the processor (software interrupt). It
directs the microprocessor to a specific subroutine called the ’interrupt service routine’.

Figure 3.9 illustrates the principle of communication between a microprocessor and a
peripheral interface through interrupt.

Interrupt Process and Interrupt Handling by the 8085
If the ability to handle interrupts by the 8085 was enabled by writing the EI (Enable
Interrupt) instruction in the main program, the interrupt process can be described by the
following steps:

1. In the second T-state of the last machine cycle of every instruction, the 8085 processor
checks the interrupt signal from the peripheral to know whether an interrupt request
is made or not.

	Part II — Second Part
	3 Study of an 8-bit Microprocessor
	3.1 Introduction
	3.2 8-bit Microprocessor
	3.3 Study of the 8085 Microprocessor
	3.4 Instruction set of the 8085
	3.5 Op-code and mnemonic of 8085 instructions
	3.6 The 8085 Machine Cycles
	3.7 Execution Time of an Instruction
	3.8 Loops and Counters in Assembly Language
	3.9 Interrupts

