I. Objectif du TP

L'objectif de ce TP est de relever les principales caractéristiques d'une génératrice fonctionnant sous tension constante.

II. Différents mode d'excitation:

Le type de la machine à courant continu dépend du mode de branchement de la partie inducteur, dans la pratique on distingue les modes suivants :

II. 1. Génératrice à courant continu à excitation séparée :

Les deux enroulements induit et inducteur sont alimentés avec des sources de tensions indépendantes. Il faut, donc, deux alimentations : une pour l'inducteur et l'autre pour l'induit.

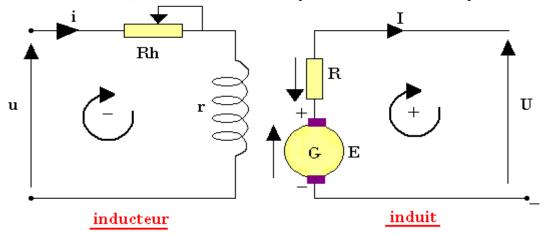


Figure 1. Schéma de montage de la Génératrice à excitation séparée

II. 2. Génératrice à courant continu auto-excitées :

Le flux magnétique est créé par la machine elle-même. On distingue les machine a excitation shunt, série. $\begin{array}{c} I = i \\ R \\ I = i \\ R \\ I = i \\ R \\ I = i \\$

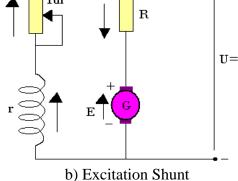


Figure 2. Schéma de montage de la Génératrice

III. Bute de la manipulation: Etude de la génératrice à courant continu à vide et en charge pour les trois modes d'excitations:

• Caractéristique à vide

Ε

 $E = f(I_{ex})$, a une vitesse de rotation constante N=constante, Avec :

E: f.e.m induite à vide en [V];

 I_{ex} : Courant d'excitation en [A];

N : Vitesse de rotation en [tr/min]

• Caractéristique en charge

U = f(I), a une vitesse de rotation constante N=constante, Avec :

U: la tension aux borne de la charge (aux borne de $R_h + r_e$);

I : courant débite par la génératrice, dans la charge.

VI. Expérimentations

IV. 1. Génératrice à courant continu à excitation séparée

• Essai à vide

- ✓ Réaliser le montage suivant le schéma de la figure 1.a.
- ✓ Entraine la génératrice à une vitesse $N = N_n$ maintenue constante, varie I_{ex} à l'aide de R_h et pour chaque variation mesure la f.é.m. E aux borne de l'induit grâce au voltmètre.

En effet la tension aux bornes de l'induit de la génératrice est de la forme : U = E - R.I à vide I = 0, soit $U_{\nu} = E$.

Caractéristique à vide $E = f(I_{ex})$ à N= 1700 tr/mn											
$I_{ex}(A)$	0	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20	0.22
$E(V) \uparrow$											
$E(V) \downarrow$											

On peut relever aussi E = f(N), varier la vitesse de rotation du moteur, et pour chaque valeur de N, mesure E avec $I_{ex} = 0.18$ A

Caractéristique à vide $E = f(N)$ et $I_{ex} = 0.18 A$										
N(tr/mn)	200	400	600	800	1000	1200	1400	1600	1800	2000
E(V)										

• Essai en charge

Pour $N = N_n$ constante et maintenus constante, varier le courant de charge I à l'aide de rhéostat de charge R et pour chaque valeur de I, mesurer U.

Caractéristique en charge $U = f(I)$, N= 1700 tr/mn et $I_{ex} = 0.18 A$										
I(A)	1.00	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	
U(V)										

IV. 2. Travail à effectuer :

- 1. Mesurer les résistances des enroulements avant le fonctionnement à l'aide de l'ohmmètre.
- 2. Tracer les caractéristique av vide $E = f(I_{ex})$, et E = f(N) commentez ? justifiez ?
- 3. Tracer la droite des inducteurs $(R_h + r_e).I_{ex} = E$ et déterminer les coordonnées du point de fonctionnement à vide pour N=1700 tr/min.
- 4. Tracer la caractéristique de charge U = f(I) à N =constante, commentez ?
- 5. Comment déterminer le pointe de fonctionnement en charge. Tracer $I_{ex} = f(I)$, interprétez ?
- 6. Citez quelque applications de la génératrice à excitation séparée.
- 7. Conclusion générale.