I. Objectif du TP

L'objectif de ce TP est d'étudier les deux modes de fonctionnements du moteur à courant continu :

- Induit sous tension constante et charge variable.
- Induit sous tension variable et charge constante.

III. Principe de fonctionnement du moteur à courant continu

Le principe du moteur à courant continu repose sur l'application de forces de Laplace sur des conducteurs solidaires de **l'induit** et baignées dans une induction magnétique.

Un champ magnétique B est crée par **l'inducteur** (soit par des enroulements fixes soit par des aimants permanents). La machine peut donc fonctionner, selon le phénomène exploité :

III. 1. Moteur à courant continu à excitation séparée :

Les deux enroulements induit et inducteur sont alimentés avec des sources de tensions indépendantes. Il faut, donc, deux alimentations : une pour l'inducteur et l'autre pour l'induit.

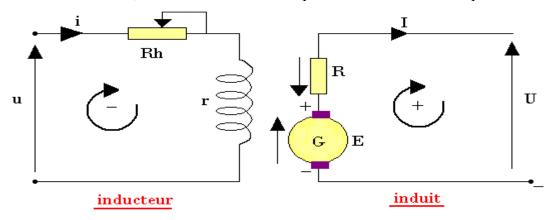


Figure 1. Schéma de montage de la moteur à excitation séparée

VI. Expérimentations

VI. 1. Fonctionnement sous tension d'induit constante et charge variable

- ✓ Réaliser le montage suivant le schéma de la figure 1.
- ✓ Faire varier manuellement la valeur T_u du couple résistant en relevant le courant d'alimentation du moteur I(A), et la vitesse de rotation N.

$U = 80 V, I_{ex} = 0.16 A,$											
$T_u(N.m)$	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	
I(A)											
N(tr/mn)											
$P_{abs}(W)$											
$P_u(W)$											
$\eta(Rendement)$											

VI. 2. Fonctionnement sous tension d'induit variable

✓ Réaliser le montage suivant le schéma de la figure 1.

✓ Faire varier la tension U(V) en relevant le courant d'alimentation du moteur I(A), et la vitesse de rotation N.

$T_u = 1.2 N. m, I_{ex} = 0.16 A,$											
U(V)	0	20	40	60	80	90	100	110	120	130	
I(A)											
N(tr/mn)											

VI.3. Travail à effectuer :

- 1. Mesurer les résistances des enroulements avant le fonctionnement à l'aide de l'ohmmètre.
- 2. Tracer $T_u = f(I)$, et $T_u = f(N)$, commentez ? justifiez ?
- 3. Tracer N = f(U), commentez ? justifiez ?.
- 4. A partir de $T_u = f(N)$ déterminer :
 - la vitesse de rotation à vide N_0 .
- 5. A partir de N = f(U):
 - Justifier les valeurs relevées du courant d'induit dans la série de mesure.
- 6. Calculer le bilan du moteur puis son rendement, commentez ?
- 7. Citez quelque applications du moteur à excitation séparée.
- 8. Conclusion générale.