Chapitre 4

Mesure produit, image d'une mesure : définitions et résultats

Soit $(X_1, \mathcal{A}_1, \mu_1), (X_2, \mathcal{A}_2, \mu_2)$ deux espaces mesurés. On notera π_i la projection de $X_1 \times X_2$ sur X_i (i = 1, 2). Si f est une application de $X_1 \times X_2$ dans $\overline{\mathbb{R}}$, on notera $f(x_1, .)$ l'application $x_2 \mapsto f(x_1, x_2)$ de X_2 dans $\overline{\mathbb{R}}$, appelée section de f suivant x_1 . On définit de même $f(., x_2)$

4.1 Mesure de produit

Rppellons que la tribu de produit $A_1 \otimes A_2$ sur $X_1 \times X_2$ est la tribu engendrée par R, l'ensemble des rectangles de $X_1 \times X_2$ (Voir ch1).

Proposition 4.1. [6]: Les projections π_i (i = 1, 2) sont des applications \mathcal{A}_i — mesurables. De plus si une tribu \mathcal{B} sur $X_1 \times X_2$ rend π_i (i = 1, 2) des applications \mathcal{A}_i — mesurables, alors $\mathcal{A}_1 \otimes \mathcal{A}_2 \subset \mathcal{B}$.

Proposition 4.2. [6]: Soit (Y, \mathcal{B}) un espace mesurable, st soit $f = (f_1, f_2)$ une fonction de $(X_1 \times X_2, A_1 \otimes A_2)$. f est mesurable si et seulemeni si f_1, f_2 sont mesurables.

Proposition 4.3. [6]: Soit $C \in \mathcal{A}_1 \otimes \mathcal{A}_2$ Les sections $C_1 = \{x_2 : (x_1, x_2) \in C\}$, $C_2 = \{x_1 : (x_1, x_2) \in C\}$ sont des ensembles mesurables.

Corollaire 4.1. [6]: Les sections $f(x_1,.), f(.,x_2)$ d'une fonction numérique mesurable f sont des fonctions mesurables.

Définition 4.1. Une mesure μ sur un espace mesurable (X, \mathcal{A}) est σ - fini s'il existe une suite croissante $\{A_n\}_{n=1}^{\infty}$ d'éléments de \mathcal{A} vérifiant :

$$X = \bigcup_{n=1}^{\infty} A_n \qquad \mu(A_n) < +\infty, \forall n \ge 1.$$

Théorème 4.1. [mesureproduit] [6, 16]: Suppposons que $(X_1, A_1, \mu_1), (X_2, A_2, \mu_2)$ sont σ - finis.

1. Il existe un mesure unique σ - fini $\mu_1 \otimes \mu_2$ sur $(X_1 \times X_2, \mathcal{A}_1 \otimes \mathcal{A}_2)$ vérifiant :

$$\forall A_1 \in \mathcal{A}_1, \forall A_2 \in \mathcal{A}_2 : (\mu_1 \otimes \mu_2)(A_1 \times A_2) = \mu_1(A_1).\mu_2(A_2).$$

2. Pour tout
$$C \in A_1 \otimes A_2 : (\mu_1 \otimes \mu_2)(C) = \int_{X_1} \mu_2(C_1) d\mu_1 = \int_{X_2} \mu_1(C_2) d\mu_2$$

Remarque 4.1. [6]

- 1. On peut généraliser la mesure produit sur le des espaces mesurés σ finis (X_i, A_i, μ_i) $(i = 1 \dots n)$, et en remarquant que la tribu prduit, et la mesure produit sont associatives.
- 2. En utilise la méthode précédante pour construire la mesure de Lebesgue sur \mathbb{R}^n comme une prosuit de n mesures de Lebesgues sur \mathbb{R} .

4.2 Théorème de Fubini et conséquences

Il y a deux versions du théorème de Fubini : l'une pour les fonctions positives, et l'autre pour les fonctions intégrables :

Théorème 4.2. [Fubini – Tonelli][6] Soient f une fonction mesurable de $(X_1 \times X_2, A_1 \otimes A_2)$ dans $\overline{\mathbb{R}_+}$. Supposons que μ_1, μ_2 sont σ – finies. Alors :

1. Les fonctions $x_1 \longmapsto \int_{X_2} f(x_1, x_2) d\mu_2, x_2 \longmapsto \int_{X_1} f(x_1, x_2) d\mu_1$ sont respectivement A_1, A_2 mesurables.

2.
$$\int_{X_1 \times X_2} f(x_1, x_2) d\mu_1 \otimes \mu_2 = \int_{X_1} \left(\int_{X_2} f(x_1, x_2) d\mu_2 \right) d\mu_1 = \int_{X_2} \left(\int_{X_2} f(x_1, x_2) d\mu_1 \right) d\mu_2.$$

Exemple 4.1. [2, 6] Soit f une fonction intéfrable de \mathbb{R} dans \mathbb{R}_+ , et soit F la fonction définie par :

$$F(x) = \int_0^x f(t)dt.$$

Alors, pour tout a > 0:

$$\int_0^{+\infty} \frac{F(ax) - F(x)}{x} = \ln a \int_0^{+\infty} f(x) dx$$

Théorème 4.3. [Fubini – Lebesgue][2, 6, 16] Soient f une fonction intégrable de $(X_1 \times X_2, A_1 \otimes A_2)$ dans \mathbb{R} . Supposons que μ_1, μ_2 sont σ – finies. Alors:

- 1. Les fonctions $f(x_1, .), f(.n, x_2)$ sont intégrables respectivement μ_1 ppt, μ_2 ppt.
- 2. Les fonctions $x_1 \mapsto \int_{X_2} f(x_1, x_2) d\mu_2, x_2 \mapsto \int_{X_1} f(x_1, x_2) d\mu_1$ sont définies respectivement μ_1 - $ppt, \ \mu_2 ppt, \ et \ intégrables.$

3.
$$\int_{X_1 \times X_2} f(x_1, x_2) d\mu_1 \otimes \mu_2 = \int_{X_1} \left(\int_{X_2} f(x_1, x_2) d\mu_2 \right) d\mu_1 = \int_{X_2} \left(\int_{X_2} f(x_1, x_2) d\mu_1 \right) d\mu_2.$$

Remarque 4.2. [6] L'hypothèse d'intégrabilité de la fonction f dans le théorème précédant est crucial. **Par exemple :** $f(x,y) = 2e^{-2xy} - e^{-xy}$ de $\mathbb{R}_+ \times [0,1]$ dans \mathbb{R} .

$$\int_{0}^{+\infty} f(x,y)dx = 0 \qquad \int_{0}^{1} f(x,y)dy = \frac{e^{-x} - e^{-2x}}{x}.$$

$$\int_{0}^{1} \left(\int_{0}^{+\infty} f(x,y)dx \right) dy = 0 \qquad \int_{0}^{+\infty} \left(\int_{0}^{1} f(x,y)dy \right) dx > 0.$$

$$Donc: \int_{0}^{1} \left(\int_{0}^{+\infty} f(x,y)dx \right) dy \neq \int_{0}^{+\infty} \left(\int_{0}^{1} f(x,y)dy \right) dx.$$

4.3 Image d'une mesure, changement de variable

Soit $(X, \mathcal{A}), (Y, \mathcal{B})$ deux espaces mesurables, μ une mesure sur (X, \mathcal{A}) , et T une application mesurable de (X, \mathcal{A}) dans (Y, \mathcal{B}) .

Proposition 4.4. [2] L'application $B \in \mathcal{B} \longmapsto \mu(T^{-1}(B))$ est une mesure sur (Y,\mathcal{B}) , appelée la mesure image par T de la mesure μ , on la note par μ ou $\mu(T)$.

Théorème 4.4. [Transfert] [2]

- 1. Si f est une fonction mesurable, positive de (Y, \mathcal{B}) dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, alors $f \circ T$ est mesurable.
- 2. Si $f \in \mathcal{L}(Y, \mathcal{B}, \mu_T)$, alors $f \circ T \in \mathcal{L}(X, \mathcal{A}, \mu)$.

De plus, on a:

$$\int_{Y} f(y)d\mu_{T} = \int_{X} f(T(x))d\mu$$

Théorème 4.5. [Changement de variable dans \mathbb{R}^n] [2] Soit U un ouvert de \mathbb{R}^n , T un difféomorphisme de classe C^1 de U sur T(U), et f une application mesurable de \mathbb{R}^n dans $\overline{\mathbb{R}}$. Notons par $J_{T^{-1}}(v)$ la valeur de Jaccobien de T^{-1} au point $v \in T(U)$.

- 1. Si f est une fonction positive, alors $f \circ T^{-1}$ est mesurables sur T(U).
- 2. Si f est intégrable sur U, alors $f \circ T^{-1}$ est intégrable sur T(U).

De plus, on a:

$$\int_{U} f(u)du = \int_{T(U)} f(T^{-1}(v))|J_{T^{-1}}(v)|dv$$

Corollaire 4.2. citeAncel Soit T un difféomorphisme de classe C^1 de \mathbb{R}^n sur \mathbb{R}^n . Alors, pour tout partie mesurable $A \subset \mathbb{R}^n$, on a:

$$\lambda_T(A) = \int_{\mathbb{R}^n} f(T^{-1}(v)) |J_{T^{-1}}(x)| \chi_A(x) dx$$

Proposition 4.5. [2] Soit (X, A, μ) un espace mesuré, et ρ une application positive, μ - intégrable. Pour toute fonction $f(\rho.\mu)$ - intégrable, $f\rho$ est μ - intégrable et σ :

$$\int_X f d(\rho.\mu) = \int_X f \rho d\mu$$