LOGIC AND REASONING

1.1 Logic

1.1.1 Assertion (proposition)

Definition 1.1. Proposition (Assertion) is a declarative statement declaring some fact. It is either true or false but not both.

Example 1.2. - The proposition $2+2=5$ is false

- The proposition if $x>4$ then $x>2$ is true. .
- The proposition M'sila is in France is false.
- The expression $x>0$ is not a proposition, because contains a free variable x.

Remark 1.3. Following kinds of statements are not propositions-

- Command, example: Close the door.
- Question, example : Do you speak French?
- Exclamation, example: What a beautiful picture!
- Inconsistent, example : I always tell lie.
- Predicate or Proposition Function, example: $P(x): x+3=5$

1.1.2 Logical Connectives

Logical connectives are the operators used to combine one or more propositions. In propositional logic. there are 5 basic connectives

(1) Negation

Definition 1.4. The negation of a proposition P is the proposition, denoted \bar{P}, defined by :

- \bar{P} is true whenever P is false;
- \bar{P} is false whenever P is true.

Truth Table	
P	\bar{P}
V	F
F	V

(2) Conjunction:

Let P and Q be two propositions. The conjunction of P and Q is the proposition, denoted $P \wedge Q$ (P and $Q)$, defined as follow :

- $P \wedge Q$ is true when both P and Q are true.:
- $P \wedge Q$ is false when at least one of the two propositions is false.

Truth Table:		
P	Q	$P \wedge Q$
V	V	V
V	F	F
F	V	F
F	F	F

(3) Th disjunction:

Let P and Q be two propositions. The disjunction of P and Q is the proposition, denoted $P \vee Q$ (P or $Q)$, defined as follow :

- $P \vee Q$ is true when at least one of the two propositions is true.
$\bullet P \vee Q$ is false when both P and Q are false.

Truth Table :

P	Q	$P \vee Q$
V	V	V
V	F	V
F	V	V
F	F	F

(4) Implication

Definition 1.5. Let P and Q be two propositions.

1. The assertion $P \Longrightarrow Q$ means that if P is true then Q must be true too. the mathematical definition of " $P \Longrightarrow Q Q^{\prime \prime}$ is the assertion $(\bar{P} \vee Q){ }^{\prime \prime}$.

Truth Table :

P	\bar{P}	Q	$P \Longrightarrow Q$
V	F	V	V
V	F	F	F
F	V	V	V
F	V	F	V

2. The contrapositive of the implication " $P \Longrightarrow Q$ " is the implication $\bar{Q} \Longrightarrow \bar{P}$
3. The converse of the implication " $P \Longrightarrow Q$ " is the implication $Q \Longrightarrow P$.
4. The negation of the implication " $Q \Longrightarrow P$ ": is " $P \wedge \bar{Q}$ "

(5) Equivalent

Let P and Q be two propositions. The equivalent $P \Longleftrightarrow Q$ is the assertion $P \Longrightarrow Q$ and $Q \Longrightarrow P$. It is the statement that is true when the implication $P \Longrightarrow Q$ and its converse $Q \Longrightarrow P$ are both true simultaneously. We say that P is equivalent to Q, or in other words, P is true if and only if Q is true.

- $P \Longleftrightarrow Q$ is true when either both P and Q are true or both P and Q are false.
- $P \Longleftrightarrow Q$ is false in all other cases.

Truth Table :

P	Q	$P \Longleftrightarrow Q$
V	V	V
V	F	F
F	V	F
F	F	V

Proposition 1.6. Let P and Q be two propositions then:

- $\overline{P \wedge Q} \Longleftrightarrow \bar{P} \vee \bar{Q}$
- $\overline{P \vee Q} \Longleftrightarrow \bar{P} \wedge \bar{Q}$
- $\overline{P \Longrightarrow Q} \Longleftrightarrow P \wedge \bar{Q}$
- $(P \Longrightarrow Q) \Longleftrightarrow(\bar{Q} \Longrightarrow \bar{P})$

1.1.3 Quantifiers

If $P(x)$ is a predicate, then

1. Existential Quantifier $\exists x: P(x)$ (there is, there exist(s),) means, "There exists at least one element x such that $P(x)$ holds. Example: $\exists x \in \mathbb{R}, x \leq 0$.
2. Universal Quantifiers $\forall x: P(x)$ (for every, for all, for each) means, "For all x, the predicate $P(x)$ holds. Example: $\forall x \in \mathbb{R}, x^{2} \geq 0$.

Remark 1.7. - The negation of $\forall x: P(x)$ is $\exists x: \overline{P(x)}$.

- The negation of $\exists x: P(x)$ is $\forall x: \overline{P(x)}$.

Example 1.8. - There is an integer x for which $5^{〔} x=2$

- $2 n$ is an even number for all natural numbers n.

The existential quantifier is used in the first sentence, indicating that at least one integer x fulfills the equation $5^{\breve{\prime}} x=2$. The second statement uses the universal quantifier, which states that $2 n$ is an even integer for every natural number n.

Remark 1.9. "We sometimes encounter the symbol \exists !, which means 'there exists a unique.' For example: $\exists!x \in$ $\mathbb{R}, x^{3}=1 . "$ This symbol is used to indicate that there is one and only one element satisfying a particular condition. In the given example, it means "there exists a unique real number x such that $x^{3}=1$." The unique real number satisfying this equation is 1 , since $1^{3}=1$.

1.2 Modes of reasoning

1.2.1 Direct reasoning

A direct proof is one of the most familiar forms of proof. We use it to prove statements of the form "if p then q " or " p implies q, " which we can write as $p \Rightarrow q$. The method of the proof is to take an original statement p, which we assume to be true, and use it to show directly that another statement q is true. So, a direct proof has the following steps:

- Assume the statement p is true.
- Use what we know about p and other facts as necessary to deduce that another statement q is true, that is, show $p \Rightarrow q$ is true.

Example 1.10. Directly prove that if n is an odd integer, then n^{2} is also an odd integer.
Solution: Let p be the statement that n is an odd integer, and q be the statement that n^{2} is an odd integer. Assume that n is an odd integer, then by definition, $n=2 k+1$ for some integer k. We will now use this to show that n^{2} is also an odd integer.

$$
\begin{aligned}
n^{2} & =(2 k+1)^{2} \text { sincen }=2 k+1 \\
& =4 k^{2}+4 k+1 \\
& =2\left(2 k^{2}+2 k\right)+1
\end{aligned}
$$

Hence we have shown that n^{2} has the form of an odd integer since $2 k^{2}+2 k$ is an integer. Therefore, we have shown that $p \Rightarrow q$, and so we have completed our proof.

1.2.2 Proof by Cases:

If one wishes to verify a statement $P(x)$ for all x in a set E, they show the statement for all x in a subset A of E and then for x not belonging to A. This is the proof by cases.

Example 1.11. Prove by cases that, for alln $\in \mathbb{N}, n^{2}+3 n+7$ is odd.
Solution If $n \in \mathbb{N}$, then either n is even or n is odd.
Case 1: If n is even, then $n=2 k$ for some $k \in \mathbb{N}$. Thus,

$$
n^{2}+3 n+7=(2 k)^{2}+3(2 k)+7=2\left(2 k^{2}+3 k\right)+7=2 p+7
$$

where $p=2 k^{2}+3 k$. So since $2 k^{2}+3 k \in \mathbb{N}$, we have $n^{2}+3 n+7$ is odd.
Case 2: Similarly, if n is odd, then $n=2 k+1$ for some $k \in \mathbb{Z}$. Thus,

$$
n^{2}+3 n+7=(2 k+1)^{2}+3(2 k+1)+7=2\left(2 k^{2}+5 k\right)+1+7=2 p+1
$$

where $p=2 k^{2}+5 k$. So since $2 k^{2}+5 k \in \mathbb{N}$, we have $n^{2}+3 n+7$ is odd.

1.2.3 Proof by Contrapositive

The reasoning by Contrapositive is based on the following equivalence:

$$
\text { The statement " } P \Longrightarrow Q \text { " is equivalent to " } \bar{Q} \Longrightarrow \bar{P} \text { ". }
$$

So, if we want to prove the statement " $P \Longrightarrow Q^{\prime \prime \prime}$ ", we actually show that if " \bar{Q} " is true, then " \bar{P} " is true.
Example 1.12. Let $n \in \mathbb{N}$. Show that if n^{2} is even, then n is even.
Solution: we assume that n is not even. We want to show that in this case, n^{2} is not even. Since n is not even, it is odd, and therefore, there exists $k \in \mathbb{N}$ such that $n=2 k+1$. Then $n^{2}=(2 k+1)^{2}=$ $4 k^{2}+4 k+1=2 m+1$, where $m=2 k^{2}+2 k \in \mathbb{N}$. Thus, n^{2} is odd. Conclusion: We have shown that if n is odd, then n^{2} is odd. By Contrapositive, this is equivalent to: if n^{2} is even, then n is even.

1.2.4 Proof by Contradiction

In this method, you assume the negation of the statement you want to prove and then show that this assumption leads to a contradiction. Since a contradiction cannot be true, it follows that the original statement must be true.

Example 1.13. Prove by Contradiction that $\sqrt{2}$ is not rational
To prove that the square root of 2 is not rational by contradiction, we assume the opposite: suppose that $\sqrt{2}$ is rational. By definition, a rational number can be expressed as a fraction $\frac{a}{b}$, where a and b are integers, and $b \neq 0$. So, we can express $\sqrt{2}$ as a fraction: $\sqrt{2}=\frac{a}{b}$ where a and b are integers with $\operatorname{pcd}(a, b)=1$. Now, we square both sides of the equation: $(\sqrt{2})^{2}=\left(\frac{a}{b}\right)^{2} \Longrightarrow 2=\frac{a^{2}}{b^{2}} \Longrightarrow a^{2}=$ $2 \cdot b^{2}=$. Since a^{2} is equal to $2 \cdot b^{2}$, it means that a^{2} is even, because $2 \cdot b^{2}$ is even. and by example ?? we deduce that a is even, that is $a=2 k, k \in \mathbb{N}$. Substituting this into the equation $a^{2}=2 \cdot b^{2}$, we get $b^{2}=2 k^{2}$, so by Example (??) b is even. Therefore, both a and b are even, which contradicts our initial assumption that a and b have no common factors other than 1 . So our initial assumption that $\sqrt{2}$ is rational must be false. Therefore, the square root of 2 is not rational.

1.2.5 Counterexample

In some cases, you can disprove a statement by providing a counterexample that shows the statement is false for at least one instance.

Example 1.14. Consider real-valued functions defined on the interval $0 \leq x \leq 1$. Give a counterexample to disprove the following statement: "If the product of two functions is the zero function, then one of the functions is the zero function."
(The zero function is the function which produces 0 for all inputs - i.e. the constant function $f=0$.)
Here are two functions whose product is the zero function, neither of which is the zero function:

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{1}{2}-x & \text { if } 0 \leq x \leq \frac{1}{2} \\
0 & \text { if } \frac{1}{2}<x \leq 1\end{cases} \\
& g(x)= \begin{cases}0 & \text { if } 0 \leq x \leq \frac{1}{2} \\
x-\frac{1}{2} & \text { if } \frac{1}{2}<x \leq 1\end{cases}
\end{aligned}
$$

Remark 1.15. (a) A single example can't prove a universal statement (unless the universe consists of only one case!).
(b) A single counterexample can disprove a universal statement.

1.2.6 Induction

: Let $P(n)$ be a given statement involving the natural number $n \geq n_{0}$ such that
i) The statement is true for $n=n_{0}$, i.e., $P\left(n_{0}\right)$ is true
ii) If the statement is true for $n=k$ (where k is a particular but arbitrary natural number), then the statement is also true for $n=k+1$, i.e, truth of $P(k)$ implies the truth of $P(k+1)$. Then $P(n)$ is true for all natural numbers n.

Example 1.16. Let's prove by induction that

$$
\sum_{k=1}^{n} k^{2}=1^{3}+2^{3}+\ldots+n^{3}
$$

Let $P(n)$ be the property: $(1+2+\ldots+n)^{2}=1^{3}+2^{3}+\ldots+n^{3}$. The property $P(1)$ is true because $1^{2}=1^{3}$. Now, let n be a nonzero natural number. We will show that the implication $P(n) \Rightarrow P(n+1)$ is true.

Assume that the property is true for the rank n (this is the induction hypothesis) and let's prove that it is also true for the rank $n+1$, i.e., we want to show that

$$
(1+2+\ldots+n+1)^{2}=1^{3}+2^{3}+\ldots+(n+1)^{3} .
$$

Let's start from the left-hand side and arrive at the right-hand side (it's simpler this way). Let $S=1+2+\ldots+n$. Then, we have:

$$
(1+2+\ldots+n+1)^{2}=(S+(n+1))^{2}=S^{2}+2(n+1) S+(n+1)^{2}
$$

Now, S, which is the sum of the first n integers, is equal to $n(n+1) / 2$. Also, according to the induction hypothesis, $S^{2}=1^{3}+2^{3}+\ldots+n^{3}$. Therefore, we get:

$$
(1+2+\ldots+n+1)^{2}=1^{3}+2^{3}+\ldots+n^{3}+n(n+1)^{2}+(n+1)^{2}=1^{3}+2^{3}+\ldots+(n+1)^{3} .
$$

Thus, we have shown that for any nonzero natural number n, the implication $P(n) \Rightarrow P(n+1)$ is true. The principle of mathematical induction then allows us to conclude that the equality
$(1+2+\ldots+n)^{2}=1^{3}+2^{3}+\ldots+n^{3}$ holds true for all nonzero natural numbers n.

