CHAPTER 1

LOGIC AND REASONING

1.1 Logic

1.1.1 Assertion (proposition)

Definition 1.1. *Proposition (Assertion) is a declarative statement declaring some fact. It is either true or false but not both.*

Example 1.2. • *The proposition* 2 + 2 = 5 *is false*

- The proposition if x > 4 then x > 2 is true.
- *The proposition M'sila is in France is false.*
- The expression x > 0 is not a proposition, because contains a free variable x.

Remark 1.3. Following kinds of statements are not propositions-

- *Command*, example: Close the door.
- Question, example : Do you speak French?
- Exclamation, example: What a beautiful picture!
- Inconsistent, example : I always tell lie.
- **Predicate or Proposition Function**, example: P(x) : x + 3 = 5

1.1.2 Logical Connectives

Logical connectives are the operators used to combine one or more propositions. In propositional logic. there are 5 basic connectives

1 Negation

Definition 1.4. *The negation of a proposition* P *is the proposition, denoted* \overline{P} *, defined by :*

- \overline{P} is true whenever P is false ;
- \overline{P} is false whenever P is true.

Truth Table		
P	\overline{P}	
V	F	
F	V	

⁽²⁾ Conjunction:

Let *P* and *Q* be two propositions. The conjunction of *P* and *Q* is the proposition, denoted $P \land Q$ (*P* and *Q*), defined as follow :

- $P \land Q$ is true when both P and Q are true.:
- $P \land Q$ is false when at least one of the two propositions is false.

P	<u>Truth Table</u>	$P \wedge Q$
V	V	V
V	F	F
F	V	F
F	F	F

③ Th disjunction:

Let *P* and *Q* be two propositions. The disjunction of *P* and *Q* is the proposition, denoted $P \lor Q$ (*P* or

Q), defined as follow :

- $P \lor Q$ is true when at least one of the two propositions is true.
- $P \lor Q$ is false when both P and Q are false.

Truth Table :				
P	Q	$P \lor Q$		
V	V	V		
V	F	V		
F	V	V		
F	F	F		

④ Implication

Definition 1.5. *Let P and Q be two propositions.*

1. The assertion $P \implies Q$ means that if P is true then Q must be true too. the mathematical definition of " $P \implies Q$ " is the assertion $(\overline{P} \lor Q)$ ".

Truth Table :				
P	\overline{P}	Q	$P \implies Q$	
V	F	V	V	
V	F	F	F	
F	V	V	V	
F	V	F	V	

- 2. The contrapositive of the implication " $P \implies Q$ " is the implication $\overline{Q} \implies \overline{P}$
- 3. The converse of the implication " $P \implies Q$ " is the implication $Q \implies P$.
- 4. The negation of the implication " $Q \implies P$ ": is " $P \land \overline{Q}$ "

5 Equivalent

Let *P* and *Q* be two propositions. The equivalent $P \iff Q$ is the assertion $P \implies Q$ and $Q \implies P$. It is the statement that is true when the implication $P \implies Q$ and its converse $Q \implies P$ are both true simultaneously. We say that *P* is equivalent to *Q*, or in other words, *P* is true if and only if *Q* is true.

- $P \iff Q$ is true when either both *P* and *Q* are true or both *P* and *Q* are false.
- $P \iff Q$ is false in all other cases.

Truth Table :			
P	Q	$P \iff Q$	
V	V	V	
V	F	F	
F	V	F	
F	F	V	

Proposition 1.6. *Let P and Q be two propositions then:*

- $\overline{P \wedge Q} \iff \overline{P} \vee \overline{Q}$
- $\overline{P \lor Q} \iff \overline{P} \land \overline{Q}$
- $\bullet \ \overline{P \implies Q} \iff P \land \overline{Q}$
- $\bullet \ (P \implies Q) \iff (\overline{Q} \implies \overline{P})$

1.1.3 Quantifiers

If P(x) is a predicate, then

- 1. Existential Quantifier $\exists x : P(x)$ (there is, there exist(s),) means, "There exists at least one element x such that P(x) holds. Example: $\exists x \in \mathbb{R}, x \leq 0$.
- 2. Universal Quantifiers $\forall x : P(x)$ (for every , for all, for each) means, "For all x, the predicate P(x) holds. Example: $\forall x \in \mathbb{R}, x^2 \ge 0$.

Remark 1.7. • *The negation of* $\forall x : P(x)$ *is* $\exists x : \overline{P(x)}$. • *The negation of* $\exists x : P(x)$ *is* $\forall x : \overline{P(x)}$. •

Example 1.8. • *There is an integer x for which* 5 x = 2

. • 2*n* is an even number for all natural numbers *n*.

The existential quantifier is used in the first sentence, indicating that at least one integer x fulfills the equation $5^{x}x = 2$. The second statement uses the universal quantifier, which states that 2n is an even integer for every natural number n.

Remark 1.9. "We sometimes encounter the symbol $\exists !$, which means 'there exists a unique.' For example: $\exists ! x \in \mathbb{R}, x^3 = 1$." This symbol is used to indicate that there is one and only one element satisfying a particular condition. In the given example, it means "there exists a unique real number x such that $x^3 = 1$." The unique real number satisfying this equation is 1, since $1^3 = 1$.

4

1.2 Modes of reasoning

1.2.1 Direct reasoning

A direct proof is one of the most familiar forms of proof. We use it to prove statements of the form "if p then q" or "p implies q," which we can write as $p \Rightarrow q$. The method of the proof is to take an original statement p, which we assume to be true, and use it to show directly that another statement q is true. So, a direct proof has the following steps:

- Assume the statement *p* is true.
- Use what we know about *p* and other facts as necessary to deduce that another statement *q* is true, that is, show *p* ⇒ *q* is true.

Example 1.10. Directly prove that if n is an odd integer, then n^2 is also an odd integer.

Solution: Let *p* be the statement that *n* is an odd integer, and *q* be the statement that n^2 is an odd integer. Assume that *n* is an odd integer, then by definition, n = 2k + 1 for some integer *k*. We will now use this to show that n^2 is also an odd integer.

$$n^2 = (2k+1)^2 \operatorname{since} n = 2k+1$$

= $4k^2 + 4k + 1$
= $2(2k^2 + 2k) + 1$

Hence we have shown that n^2 has the form of an odd integer since $2k^2 + 2k$ is an integer. Therefore, we have shown that $p \Rightarrow q$, and so we have completed our proof.

1.2.2 Proof by Cases:

If one wishes to verify a statement P(x) for all x in a set E, they show the statement for all x in a subset A of E and then for x not belonging to A. This is the proof by cases.

Example 1.11. *Prove by cases that, for all* $n \in \mathbb{N}$ *,* $n^2 + 3n + 7$ *is odd.*

Solution If $n \in \mathbb{N}$, then either *n* is even or *n* is odd.

Case 1: If *n* is even, then n = 2k for some $k \in \mathbb{N}$. Thus,

 $n^{2} + 3n + 7 = (2k)^{2} + 3(2k) + 7 = 2(2k^{2} + 3k) + 7 = 2p + 7,$

where $p = 2k^2 + 3k$. So since $2k^2 + 3k \in \mathbb{N}$, we have $n^2 + 3n + 7$ is odd.

Case 2: Similarly, if *n* is odd, then n = 2k + 1 for some $k \in \mathbb{Z}$. Thus,

$$n^{2} + 3n + 7 = (2k + 1)^{2} + 3(2k + 1) + 7 = 2(2k^{2} + 5k) + 1 + 7 = 2p + 1$$

where $p = 2k^2 + 5k$. So since $2k^2 + 5k \in \mathbb{N}$, we have $n^2 + 3n + 7$ is odd.

1.2.3 **Proof by Contrapositive**

The reasoning by Contrapositive is based on the following equivalence:

The statement " $P \implies Q$ " is equivalent to " $\overline{Q} \implies \overline{P}$ ".

So, if we want to prove the statement " $P \implies Q''$ ", we actually show that if " \overline{Q} " is true, then " \overline{P} " is true.

Example 1.12. Let $n \in \mathbb{N}$. Show that if n^2 is even, then n is even.

Solution: we assume that *n* is not even. We want to show that in this case, n^2 is not even. Since *n* is not even, it is odd, and therefore, there exists $k \in \mathbb{N}$ such that n = 2k + 1. Then $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2m + 1$, where $m = 2k^2 + 2k \in \mathbb{N}$. Thus, n^2 is odd. Conclusion: We have shown that if *n* is odd, then n^2 is odd. By Contrapositive, this is equivalent to: if n^2 is even, then *n* is even.

1.2.4 Proof by Contradiction

In this method, you assume the negation of the statement you want to prove and then show that this assumption leads to a contradiction. Since a contradiction cannot be true, it follows that the original statement must be true.

Example 1.13. *Prove by Contradiction that* $\sqrt{2}$ *is not rational*

To prove that the square root of 2 is not rational by contradiction, we assume the opposite: suppose that $\sqrt{2}$ is rational. By definition, a rational number can be expressed as a fraction $\frac{a}{b}$, where a and b are integers, and $b \neq 0$. So, we can express $\sqrt{2}$ as a fraction: $\sqrt{2} = \frac{a}{b}$ where a and b are integers with pcd(a,b) = 1. Now, we square both sides of the equation: $(\sqrt{2})^2 = \left(\frac{a}{b}\right)^2 \implies 2 = \frac{a^2}{b^2} \implies a^2 = 2 \cdot b^2 =$. Since a^2 is equal to $2 \cdot b^2$, it means that a^2 is even, because $2 \cdot b^2$ is even. and by example ?? we deduce that a is even, that is $a = 2k, k \in \mathbb{N}$. Substituting this into the equation $a^2 = 2 \cdot b^2$, we get $b^2 = 2k^2$, so by Example (??) b is even. Therefore, both a and b are even, which contradicts our initial assumption that a and b have no common factors other than 1. So our initial assumption that $\sqrt{2}$ is rational must be false. Therefore, the square root of 2 is not rational.

1.2.5 Counterexample

In some cases, you can disprove a statement by providing a counterexample that shows the statement is false for at least one instance.

Example 1.14. Consider real-valued functions defined on the interval $0 \le x \le 1$. Give a counterexample to disprove the following statement: "If the product of two functions is the zero function, then one of the functions is the zero function."

(The zero function is the function which produces 0 for all inputs — i.e. the constant function f = 0.) Here are two functions whose product is the zero function, neither of which is the zero function:

$$f(x) = \begin{cases} \frac{1}{2} - x & \text{if } 0 \le x \le \frac{1}{2} \\ 0 & \text{if } \frac{1}{2} < x \le 1 \end{cases}$$
$$g(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2} \\ x - \frac{1}{2} & \text{if } \frac{1}{2} < x \le 1 \end{cases}$$

Remark 1.15. (a) A single example can't prove a universal statement (unless the universe consists of only one case!).

(b) A single counterexample can disprove a universal statement.

1.2.6 Induction

- : Let P(n) be a given statement involving the natural number $n \ge n_0$ such that
 - i) The statement is true for $n = n_0$, i.e., $P(n_0)$ is true
 - ii) If the statement is true for n = k (where k is a particular but arbitrary natural number), then the statement is also true for n = k + 1, i.e, truth of P(k) implies the truth of P(k + 1). Then P(n) is true for all natural numbers n.

Example 1.16. Let's prove by induction that

$$\sum_{k=1}^{n} k^2 = 1^3 + 2^3 + \ldots + n^3.$$

Let P(n) be the property: $(1 + 2 + ... + n)^2 = 1^3 + 2^3 + ... + n^3$. The property P(1) is true because $1^2 = 1^3$. Now, let n be a nonzero natural number. We will show that the implication $P(n) \Rightarrow P(n+1)$ is true. Assume that the property is true for the rank n (this is the induction hypothesis) and let's prove that it is also true for the rank n + 1, i.e., we want to show that

$$(1+2+\ldots+n+1)^2 = 1^3 + 2^3 + \ldots + (n+1)^3.$$

Let's start from the left-hand side and arrive at the right-hand side (it's simpler this way). Let S = 1 + 2 + ... + n*. Then, we have:*

$$(1+2+\ldots+n+1)^2 = (S+(n+1))^2 = S^2 + 2(n+1)S + (n+1)^2.$$

Now, *S*, which is the sum of the first *n* integers, is equal to n(n + 1)/2. Also, according to the induction hypothesis, $S^2 = 1^3 + 2^3 + ... + n^3$. Therefore, we get:

$$(1+2+\ldots+n+1)^2 = 1^3+2^3+\ldots+n^3+n(n+1)^2+(n+1)^2 = 1^3+2^3+\ldots+(n+1)^3.$$

Thus, we have shown that for any nonzero natural number n, the implication $P(n) \Rightarrow P(n+1)$ is true. The principle of mathematical induction then allows us to conclude that the equality $(1+2+\ldots+n)^2 = 1^3+2^3+\ldots+n^3$ holds true for all nonzero natural numbers n.