CHAPTER 1

LOGIC AND REASONING

1.1 Logic

1.1.1 Assertion (proposition)

Definition 1.1. Proposition (Assertion ) is a declarative statement declaring some fact. It is either true or false

but not both.
Example 1.2. e The proposition 2 +2 = 5 is false
o The proposition if x > 4 then x > 2 is true. .

o The proposition M’sila is in France is false.

e The expression x > 0 is not a proposition, because contains a free variable x.
Remark 1.3. Following kinds of statements are not propositions-

o Command, example: Close the door.

Question, example : Do you speak French?

Exclamation, example: What a beautiful picture!

Inconsistent, example : I always tell lie.

Predicate or Proposition Function, example: P(x) : x +3 =5

1.1.2 Logical Connectives

Logical connectives are the operators used to combine one or more propositions. In propositional logic.

there are 5 basic connectives
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® Negation

Definition 1.4. The negation of a proposition P is the proposition, denoted P, defined by :
e D is true whenever P is false ;

e D is false whenever P is true.

Truth Table

|

@ Conjunction:

Let P and Q be two propositions. The conjunction of P and Q is the proposition, denoted P A Q (P and
Q), defined as follow :
oP A Q is true when both P and Q are true.:

oP A Q is false when at least one of the two propositions is false.

Truth Table :
P Q PAQ
\Y% \Y% \Y%
\Y% F F
F \Y% F
F F F

® Th disjunction:

Let P and Q be two propositions. The disjunction of P and Q is the proposition, denoted PV Q (P or
Q), defined as follow :
oP V Q is true when at least one of the two propositions is true.

PV Q is false when both P and Q are false.
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Truth Table :
P Q PVvQ
\Y% \Y% \Y%
\Y% F \Y%
F \Y% \Y%
F F F

@ Implication
Definition 1.5. Let P and Q be two propositions.

1. The assertion P => Q means that if P is true then Q must be true too. the mathematical definition of ”

P = Q" is the assertion (P V Q)".

Truth Table :

P P Q P = Q
% F \% \%
% F F F
F \% \% \%
F %4 F \%4

2. The contrapositive of the implication "P = Q” is the implication Q = P
3. The converse of the implication "P = Q" is the implication Q = P.
4. The negation of the implication ”Q = P”:is"P N Q"

® Equivalent

Let P and Q be two propositions. The equivalent P <= Q is the assertion P = Qand Q = P.
It is the statement that is true when the implication P = Q and its converse Q = P are both true

simultaneously. We say that P is equivalent to Q, or in other words, P is true if and only if Q is true.

e P <= (Qis true when either both P and Q are true or both P and Q are false.

e P < Qs false in all other cases.
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Truth Table :

P Q P < Q
\Y \Y \Y
\Y F F
F \% F
F F V

Proposition 1.6. Let P and Q be two propositions then:
ePAQ < PVQ

ePVQ < PAQ

eP — Q < PAQ

(P = Q) <= (Q = D)

1.1.3 Quantifiers
If P(x) is a predicate, then

1. Existential Quantifier Jx : P(x) (there is, there exist(s),) means, “There exists at least one element

x such that P(x) holds. Example: 3x € R, x < 0.

2. Universal Quantifiers Vx : P(x) (for every, for all, for each) means, “For all x, the predicate P(x)

holds. Example: Vx € R, x2 > 0.

Remark 1.7. e The negation of Vx : P(x) is 3x : P(x).

o The negation of 3x : P(x) is Vx : P(x). e

Example 1.8. o There is an integer x for which 5"x = 2
. ® 2n is an even number for all natural numbers n.
The existential quantifier is used in the first sentence, indicating that at least one integer x fulfills the equation

5°x = 2. The second statement uses the universal quantifier, which states that 2n is an even integer for every

natural number n.

Remark 1.9. "We sometimes encounter the symbol 3!, which means "there exists a unique.” For example: A!x €
R, x3 = 1.” This symbol is used to indicate that there is one and only one element satisfying a particular condition.

In the given example, it means "there exists a unique real number x such that x> = 1.” The unique real number

satisfying this equation is 1, since 13 = 1.
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1.2 Modes of reasoning

1.2.1 Direct reasoning

A direct proof is one of the most familiar forms of proof. We use it to prove statements of the form "if
p then g" or "p implies g," which we can write as p = 4. The method of the proof is to take an original
statement p, which we assume to be true, and use it to show directly that another statement g is true.

So, a direct proof has the following steps:
e Assume the statement p is true.

e Use what we know about p and other facts as necessary to deduce that another statement g is true,

that is, show p = g is true.
Example 1.10. Directly prove that if n is an odd integer, then n? is also an odd integer.

Solution: Let p be the statement that 7 is an odd integer, and g be the statement that 72 is an odd integer.
Assume that 7 is an odd integer, then by definition, n = 2k + 1 for some integer k. We will now use this

to show that 7 is also an odd integer.

n? = (2k+1)? sincen = 2k + 1
= 4k* +4k+1
= 2(2k*+2k) +1

Hence we have shown that 12 has the form of an odd integer since 2k? + 2k is an integer. Therefore, we

have shown that p = g, and so we have completed our proof.

1.2.2 Proof by Cases:

If one wishes to verify a statement P(x) for all x in a set E, they show the statement for all x in a subset

A of E and then for x not belonging to A. This is the proof by cases.
Example 1.11. Prove by cases that, for alln € N, n? + 3n + 7 is odd.

Solution If n € N, then either n is even or 7 is odd.

Case 1: If n is even, then n = 2k for some k € IN. Thus,

n?+3n+7=(2k)*+3(2k) +7=2(2k* +3k) +7 =2p +7,
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where p = 2k? + 3k. So since 2k? + 3k € IN, we have n? + 3n + 7 is odd.
Case 2: Similarly, if n is odd, then n = 2k + 1 for some k € Z. Thus,

n?+3n+7=(2k+1)>+3(2k+1) +7=2(2k* +5k) + 1 +7 =2p +1,

where p = 2k? + 5k. So since 2k* + 5k € IN, we have n? + 3n + 7 is odd.

1.2.3 Proof by Contrapositive
The reasoning by Contrapositive is based on the following equivalence:
The statement "P = Q" is equivalent to "Q = D"
So, if we want to prove the statement "P — Q”", we actually show that if "Q"is true, then "P" is true.

Example 1.12. Let n € IN. Show that if n? is even, then n is even.

2 is not even. Since 7 is

Solution: we assume that 7 is not even. We want to show that in this case, n
not even, it is odd, and therefore, there exists k € IN such that n = 2k + 1. Then n? = (2k + 1)2 =
4k% 4+ 4k + 1 = 2m + 1, where m = 2k? + 2k € IN. Thus, n? is odd. Conclusion: We have shown that if

is odd, then n? is odd. By Contrapositive, this is equivalent to: if n? is even, then 7 is even.

1.2.4 Proof by Contradiction

In this method, you assume the negation of the statement you want to prove and then show that this
assumption leads to a contradiction. Since a contradiction cannot be true, it follows that the original

statement must be true.
Example 1.13. Prove by Contradiction that /2 is not rational

To prove that the square root of 2 is not rational by contradiction, we assume the opposite: suppose

that /2 is rational. By definition, a rational number can be expressed as a fraction —, where a and b

b
are integers, and b # 0. So, we can express V2 as a fraction: /2 = % where a and b are integers with
2 2
pcd(a,b) = 1. Now, we square both sides of the equation: (1/2)? = <%> = 2= i a’ =

2 - b? =. Since 4? is equal to 2 - b?, it means that a? is even, because 2 - b? is even. and by example ??
we deduce that a is even, that is a = 2k, k € IN. Substituting this into the equation a> = 2 - b?, we get
b?> = 2k?, so by Example (2?) b is even. Therefore, both a and b are even, which contradicts our initial

assumption that a and b have no common factors other than 1. So our initial assumption that /2 is

rational must be false. Therefore, the square root of 2 is not rational.
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1.2.5 Counterexample

In some cases, you can disprove a statement by providing a counterexample that shows the statement

is false for at least one instance.

Example 1.14. Consider real-valued functions defined on the interval 0 < x < 1. Give a counterexample to
disprove the following statement: “If the product of two functions is the zero function, then one of the functions
is the zero function.”

(The zero function is the function which produces 0 for all inputs — i.e. the constant function f = 0.)

Here are two functions whose product is the zero function, neither of which is the zero function:

(

=
o
INA
<
INA

N[—

1
z—x

(@)
=
N—

A\

=

[\
—_

o
=
o
IN
=
IN
N

x—3 ify<x<l1
Remark 1.15. (a) A single example can’t prove a universal statement (unless the universe consists of only one

case!).

(b) A single counterexample can disprove a universal statement.

1.2.6 Induction
: Let P(n) be a given statement involving the natural number n > ng such that
i) The statement is true for n = ny, i.e., P(ny) is true

ii) If the statement is true for n = k (where k is a particular but arbitrary natural number), then the
statement is also true for n = k + 1, i.e, truth of P(k) implies the truth of P(k 4 1). Then P(n) is

true for all natural numbers 7.

Example 1.16. Let’s prove by induction that
n
Y R=1+2%+. . +n
k=1
Let P(n) be the property: (1+2+...+n)? =13+ 23+ ... + n3. The property P(1) is true because 1> = 13.

Now, let n be a nonzero natural number. We will show that the implication P(n) = P(n + 1) is true.
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Assume that the property is true for the rank n (this is the induction hypothesis) and let’s prove that it is also true

for the rank n + 1, i.e., we want to show that
(A+2+...+n+1)2=134+2°2 4.+ (n+1)>%

Let’s start from the left-hand side and arrive at the right-hand side (it’s simpler this way). Let S = 1+2+...4+n.

Then, we have:
(14+2+...4n+1)?=(S+(n+1)*=8+2(n+1)S+ (n+1)%

Now, S, which is the sum of the first n integers, is equal to n(n + 1)/2. Also, according to the induction
hypothesis, S* = 13 4 23 + ... + n®. Therefore, we get:

(A+2+...+n+1)? =13 4+2% 4. 4+ +n(n+1)>?+n+1)?=13+28 4. .+ (n+1)°

Thus, we have shown that for any nonzero natural number n, the implication P(n) = P(n + 1) is true. The
principle of mathematical induction then allows us to conclude that the equality

(142 +...+n)?=13+23 + ... + n3 holds true for all nonzero natural numbers n.

University of Msila Mathematics 01



