
CHAPTER 1

LOGIC AND REASONING

1.1 Logic

1.1.1 Assertion (proposition)

Definition 1.1. Proposition (Assertion ) is a declarative statement declaring some fact. It is either true or false

but not both.

Example 1.2. • The proposition 2 + 2 = 5 is false

• The proposition if x > 4 then x > 2 is true. .

• The proposition M’sila is in France is false.

• The expression x > 0 is not a proposition, because contains a free variable x.

Remark 1.3. Following kinds of statements are not propositions-

• Command, example: Close the door.

• Question, example : Do you speak French?

• Exclamation, example: What a beautiful picture!

• Inconsistent, example : I always tell lie.

• Predicate or Proposition Function, example: P(x) : x + 3 = 5

1.1.2 Logical Connectives

Logical connectives are the operators used to combine one or more propositions. In propositional logic.

there are 5 basic connectives
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¬ Negation

Definition 1.4. The negation of a proposition P is the proposition, denoted P, defined by :

• P is true whenever P is false ;

• P is false whenever P is true.

Truth Table
P P

V F

F V

­ Conjunction:

Let P and Q be two propositions. The conjunction of P and Q is the proposition, denoted P ∧Q (P and

Q), defined as follow :

•P ∧Q is true when both P and Q are true.:

•P ∧Q is false when at least one of the two propositions is false.

Truth Table :
P Q P ∧Q

V V V

V F F

F V F

F F F

® Th disjunction:

Let P and Q be two propositions. The disjunction of P and Q is the proposition, denoted P ∨ Q (P or

Q), defined as follow :

•P ∨Q is true when at least one of the two propositions is true.

•P ∨Q is false when both P and Q are false.
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Truth Table :
P Q P ∨Q

V V V

V F V

F V V

F F F

¯ Implication

Definition 1.5. Let P and Q be two propositions.

1. The assertion P =⇒ Q means that if P is true then Q must be true too. the mathematical definition of "

P =⇒ Q" is the assertion (P ∨Q)".

Truth Table :
P P Q P =⇒ Q

V F V V

V F F F

F V V V

F V F V

2. The contrapositive of the implication ”P =⇒ Q” is the implication Q =⇒ P

3. The converse of the implication ”P =⇒ Q” is the implication Q =⇒ P.

4. The negation of the implication ”Q =⇒ P”: is ”P ∧Q”

° Equivalent

Let P and Q be two propositions. The equivalent P ⇐⇒ Q is the assertion P =⇒ Q and Q =⇒ P.

It is the statement that is true when the implication P =⇒ Q and its converse Q =⇒ P are both true

simultaneously. We say that P is equivalent to Q, or in other words, P is true if and only if Q is true.

• P ⇐⇒ Q is true when either both P and Q are true or both P and Q are false.

• P ⇐⇒ Q is false in all other cases.
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Truth Table :
P Q P ⇐⇒ Q

V V V

V F F

F V F

F F V

Proposition 1.6. Let P and Q be two propositions then:

• P ∧Q ⇐⇒ P ∨Q

• P ∨Q ⇐⇒ P ∧Q

• P =⇒ Q ⇐⇒ P ∧Q

• (P =⇒ Q) ⇐⇒ (Q =⇒ P)

1.1.3 Quantifiers

If P(x) is a predicate, then

1. Existential Quantifier ∃x : P(x) (there is, there exist(s),) means, “There exists at least one element

x such that P(x) holds. Example: ∃x ∈ R, x ≤ 0.

2. Universal Quantifiers ∀x : P(x) (for every , for all, for each) means, “For all x, the predicate P(x)

holds. Example: ∀x ∈ R, x2 ≥ 0.

Remark 1.7. • The negation of ∀x : P(x) is ∃x : P(x).

• The negation of ∃x : P(x) is ∀x : P(x). •

Example 1.8. • There is an integer x for which 5˘x = 2

. • 2n is an even number for all natural numbers n.

The existential quantifier is used in the first sentence, indicating that at least one integer x fulfills the equation

5˘x = 2. The second statement uses the universal quantifier, which states that 2n is an even integer for every

natural number n.

Remark 1.9. "We sometimes encounter the symbol ∃!, which means ’there exists a unique.’ For example: ∃!x ∈

R, x3 = 1." This symbol is used to indicate that there is one and only one element satisfying a particular condition.

In the given example, it means "there exists a unique real number x such that x3 = 1." The unique real number

satisfying this equation is 1, since 13 = 1.
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1.2 Modes of reasoning

1.2.1 Direct reasoning

A direct proof is one of the most familiar forms of proof. We use it to prove statements of the form "if

p then q" or "p implies q," which we can write as p ⇒ q. The method of the proof is to take an original

statement p, which we assume to be true, and use it to show directly that another statement q is true.

So, a direct proof has the following steps:

• Assume the statement p is true.

• Use what we know about p and other facts as necessary to deduce that another statement q is true,

that is, show p⇒ q is true.

Example 1.10. Directly prove that if n is an odd integer, then n2 is also an odd integer.

Solution: Let p be the statement that n is an odd integer, and q be the statement that n2 is an odd integer.

Assume that n is an odd integer, then by definition, n = 2k + 1 for some integer k. We will now use this

to show that n2 is also an odd integer.

n2 = (2k + 1)2 sincen = 2k + 1

= 4k2 + 4k + 1

= 2(2k2 + 2k) + 1
.

Hence we have shown that n2 has the form of an odd integer since 2k2 + 2k is an integer. Therefore, we

have shown that p⇒ q, and so we have completed our proof.

1.2.2 Proof by Cases:

If one wishes to verify a statement P(x) for all x in a set E, they show the statement for all x in a subset

A of E and then for x not belonging to A. This is the proof by cases.

Example 1.11. Prove by cases that, for alln ∈N, n2 + 3n + 7 is odd.

Solution If n ∈N, then either n is even or n is odd.

Case 1: If n is even, then n = 2k for some k ∈N. Thus,

n2 + 3n + 7 = (2k)2 + 3(2k) + 7 = 2(2k2 + 3k) + 7 = 2p + 7,
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where p = 2k2 + 3k. So since 2k2 + 3k ∈N, we have n2 + 3n + 7 is odd.

Case 2: Similarly, if n is odd, then n = 2k + 1 for some k ∈ Z. Thus,

n2 + 3n + 7 = (2k + 1)2 + 3(2k + 1) + 7 = 2(2k2 + 5k) + 1 + 7 = 2p + 1,

where p = 2k2 + 5k. So since 2k2 + 5k ∈N, we have n2 + 3n + 7 is odd.

1.2.3 Proof by Contrapositive

The reasoning by Contrapositive is based on the following equivalence:

The statement "P =⇒ Q” is equivalent to "Q =⇒ P".

So, if we want to prove the statement "P =⇒ Q”", we actually show that if "Q" is true, then "P" is true.

Example 1.12. Let n ∈N. Show that if n2 is even, then n is even.

Solution: we assume that n is not even. We want to show that in this case, n2 is not even. Since n is

not even, it is odd, and therefore, there exists k ∈ N such that n = 2k + 1. Then n2 = (2k + 1)2 =

4k2 + 4k + 1 = 2m + 1, where m = 2k2 + 2k ∈N. Thus, n2 is odd. Conclusion: We have shown that if n

is odd, then n2 is odd. By Contrapositive, this is equivalent to: if n2 is even, then n is even.

1.2.4 Proof by Contradiction

In this method, you assume the negation of the statement you want to prove and then show that this

assumption leads to a contradiction. Since a contradiction cannot be true, it follows that the original

statement must be true.

Example 1.13. Prove by Contradiction that
√

2 is not rational

To prove that the square root of 2 is not rational by contradiction, we assume the opposite: suppose

that
√

2 is rational. By definition, a rational number can be expressed as a fraction
a
b

, where a and b

are integers, and b 6= 0. So, we can express
√

2 as a fraction:
√

2 =
a
b

where a and b are integers with

pcd(a, b) = 1. Now, we square both sides of the equation: (
√

2)2 =
( a

b

)2
=⇒ 2 =

a2

b2 =⇒ a2 =

2 · b2 =. Since a2 is equal to 2 · b2, it means that a2 is even, because 2 · b2 is even. and by example ??

we deduce that a is even, that is a = 2k, k ∈ N. Substituting this into the equation a2 = 2 · b2, we get

b2 = 2k2, so by Example (??) b is even. Therefore, both a and b are even, which contradicts our initial

assumption that a and b have no common factors other than 1. So our initial assumption that
√

2 is

rational must be false. Therefore, the square root of 2 is not rational.
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1.2.5 Counterexample

In some cases, you can disprove a statement by providing a counterexample that shows the statement

is false for at least one instance.

Example 1.14. Consider real-valued functions defined on the interval 0 ≤ x ≤ 1. Give a counterexample to

disprove the following statement: “If the product of two functions is the zero function, then one of the functions

is the zero function.”

(The zero function is the function which produces 0 for all inputs — i.e. the constant function f = 0.)

Here are two functions whose product is the zero function, neither of which is the zero function:

f (x) =


1
2 − x if 0 ≤ x ≤ 1

2

0 if 1
2 < x ≤ 1

g(x) =

0 if 0 ≤ x ≤ 1
2

x− 1
2 if 1

2 < x ≤ 1

Remark 1.15. (a) A single example can’t prove a universal statement (unless the universe consists of only one

case!).

(b) A single counterexample can disprove a universal statement.

1.2.6 Induction

: Let P(n) be a given statement involving the natural number n ≥ n0 such that

i) The statement is true for n = n0, i.e., P(n0) is true

ii) If the statement is true for n = k (where k is a particular but arbitrary natural number), then the

statement is also true for n = k + 1, i.e, truth of P(k) implies the truth of P(k + 1). Then P(n) is

true for all natural numbers n.

Example 1.16. Let’s prove by induction that

n

∑
k=1

k2 = 13 + 23 + . . . + n3.

Let P(n) be the property: (1 + 2 + . . . + n)2 = 13 + 23 + . . . + n3. The property P(1) is true because 12 = 13.

Now, let n be a nonzero natural number. We will show that the implication P(n)⇒ P(n + 1) is true.
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Assume that the property is true for the rank n (this is the induction hypothesis) and let’s prove that it is also true

for the rank n + 1, i.e., we want to show that

(1 + 2 + . . . + n + 1)2 = 13 + 23 + . . . + (n + 1)3.

Let’s start from the left-hand side and arrive at the right-hand side (it’s simpler this way). Let S = 1+ 2+ . . .+ n.

Then, we have:

(1 + 2 + . . . + n + 1)2 = (S + (n + 1))2 = S2 + 2(n + 1)S + (n + 1)2.

Now, S, which is the sum of the first n integers, is equal to n(n + 1)/2. Also, according to the induction

hypothesis, S2 = 13 + 23 + . . . + n3. Therefore, we get:

(1 + 2 + . . . + n + 1)2 = 13 + 23 + . . . + n3 + n(n + 1)2 + (n + 1)2 = 13 + 23 + . . . + (n + 1)3.

Thus, we have shown that for any nonzero natural number n, the implication P(n) ⇒ P(n + 1) is true. The

principle of mathematical induction then allows us to conclude that the equality

(1 + 2 + . . . + n)2 = 13 + 23 + . . . + n3 holds true for all nonzero natural numbers n.

University of Msila Mathematics 01


